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ABSTRACT
Ricciato [6] poses several questions, including why a particu-
lar LD (log-diagram) plot does not give the Hurst parameter
predicted by theory? We offer an explanation of his obser-
vation and highlight other unusual aspects of LD plots.

1. INTRODUCTION
In [6] Ricciato constructs two simulated data sets corre-

sponding to the number of active flows in a system over
time. During one hour 1,000 flows arrive to the system,
uniformly distributed throughout the period. Flow dura-
tions are Pareto distributed. The two data sets differ in
the Pareto tail-index parameter: α1 = 1.25 and α2 = 1.6.
When the number of flows is analysed using [7], the estimate
of the Hurst parameter for both data sets was found to be
approximately 0.76, rather than H1 = 0.875 and H2 = 0.7,
predicted by the well-known relation H = (3 − α)/2 ([5]).
We suggest that the observed discrepancy may be a more
general feature of these estimates and explore other unusual
aspects of LD plots.

2. LD ANALYSIS OF ON-OFF TRAFFIC
To consider the simplest version of this problem, we treat

a single source of traffic. Its on periods are distributed with
a heavy tailed Pareto distribution and its off periods are
distributed with a geometric distribution. This is a simpli-
fication of the traffic considered in [6], but should display
similar LD plots.

We use the wavelet estimator described in [1] to estimate
the Hurst parameter of these processes. The code provided
at [7] is designed to be general purpose and to operate on
real data. Instead, we use an implementation that exploits
the constant bursts of an on-off process [4]. This allows us
to quickly make calculations even in the region where α is
small and long bursts are common.

Figure 1 shows estimates for simulated on-off sources. On
periods last for bu−1/αc where u is uniform [0, 1], an off
period is longer than l with probability 2l−1 and each run
comprised 1,000,000 on-off cycles. The graph shows Hurst
parameter estimates obtained by a least-squares fitted slope
to the LD plots between octaves 3 and 15. For each different
value of α there are 10 runs. Theory predicts the line shown.

As we can see from Figure 1, the estimates display the
correct trend. However, the curve is flatter than the theory
predicts, and is pulled towards the middle value of 0.75.
Even with 1,000,000 on-off cycles, there is large variability.

Figure 2 shows the same experiment but for 1,000 on-
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Figure 1: LD plot estimates of the Hurst parameter
for Pareto on-off sources with 1 ≤ α ≤ 2, 1,000,000
cycles. Ten experiments are shown for each α value.

off cycles, mirroring the amount of data considered in [6].
Here we have fitted the slope over octaves 2 to 6, as this
better describes the straight region of the LD plots. By
repeating this experiment we find a distribution of Hurst
parameter estimates produced by this procedure. Figure 3
shows the results for 10,000 runs with α1 = 1.25 and α2 =
1.6. We can see that the estimates for α1 = 1.25 peak
closer to one, confirming the higher Hurst parameter that
we expect. We also see a number of estimates outside [0.5,1],
the meaningful range for the Hurst parameter. We include
these to demonstrate how noisy these estimates can be.

3. EXPLORING FURTHER
In Figure 1 and Figure 2 there is some indication that

if α is smaller then the values we see are more clustered,
although the distribution in Figure 3 suggests that we may
occasionally get estimates that are far from the peak.

This trend actually continues as we choose α values that
are less than 1. These processes have on periods drawn
from a distribution with infinite mean. They are interest-
ing because, unlike the processes with 1 < α, no stationary
version of them can be constructed. This puts them be-
yond the range where notions such as the Hurst parameter
are usually considered. Regardless, we may simulate such
on-off sources and construct their LD plots. The main ob-
stacle to this is the infinite expected burst length associated
with 0 < α ≤ 1, which makes the expected run time of
such a simulation infinite. However, using the wavelet code
adapted for long bursts makes this practical. The resulting
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Figure 2: LD plot estimates of the Hurst parameter
for Pareto on-off sources with 1 ≤ α ≤ 2, 1,000 cycles.
Ten experiments are shown for each α value.
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Figure 3: Distribution of LD plot estimates of the
Hurst parameter for two α values.

LD plots have linear sections similar to those for 1 < α < 2.
When we estimate the slopes of these lines over octaves 3–
15 we get estimates as shown in Figure 4. Theory predicts
the ‘hat’ function shown by considering the divergence of a
regularised power spectrum [2]. Thus, these estimates do
not uniquely identify α, even in theory. Naturally, another
statistic such as the tail of the on time distribution obtained
by Hill’s estimator [3], could distinguish them. For compari-
son Figure 5 shows the slopes fitted over octaves 6–18. Note
the estimates for small α are closer to the theoretical values,
but for larger α they are more scattered.

While processes with infinite mean on time seem exotic,
they do arise in networking contexts. For example, an M/M/1
queue whose mean arrival rate equals its mean service rate
(i.e. the traffic intensity ρ = 1 so the queue is on the bound-
ary of stability), has on-off output with α = 0.5 [2].

4. CONCLUSIONS
Using a simple Pareto on-off source we have briefly con-

sidered the variability of estimating the Hurst parameter.
We have seen that with small numbers of on-off periods, LD
estimates can be highly variable. Even with large amounts
of data, estimates are flattened towards the middle value of
0.75. This may help to explain the results seen in [6]. We
also note that when the α value is extended beyond that
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Figure 4: LD plot estimates of the Hurst parameter
for Pareto on-off sources with 0 < α ≤ 2, 1,000,000
cycles. Ten experiments are shown for each α value.
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Figure 5: As Figure 4, but fitting over octaves 6–18.

usually considered, the estimator takes an unexpected turn.
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