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Abstract— We show that several important resource allocation
problems in wireless networks fit within the common framework
of Constraint Satisfaction Problems (CSPs). Inspired by the
requirements of these applications, where variables are located
at distinct network devices that may not be able to communicate
but may interfere, we define natural criteria that a CSP solver
must possess in order to be practical. We term these algorithms
decentralized CSP solvers. The best known CSP solvers were
designed for centralized problems and do not meet these criteria.
We introduce a stochastic decentralized CSP solver, proving that
it will find a solution in almost surely finite time, should one exist,
and also showing it has many practically desirable properties. We
benchmark the algorithm’s performance on a well-studied class
of CSPs, random k-SAT, illustrating that the time the algorithm
takes to find a satisfying assignment is competitive with stochastic
centralized solvers on problems with order a thousand variables
despite its decentralized nature. We demonstrate the solver’s
practical utility for the problems that motivated its introduction
by using it to find a non-interfering channel allocation for a
network formed from data from downtown Manhattan.

I. INTRODUCTION

A Constraint Satisfaction Problem (CSP) consists of N
variables, ~x := (x1, . . . , xN ), and M clauses, i.e. {0, 1}-
valued functions, (Φ1(~x), . . . ,ΦM (~x)). An assignment ~x is
a solution if all clauses simultaneously evaluate to 1. In
the context of wireless networks, we show that CSPs pro-
vide a unifying framework that encompasses many important
resource allocation tasks. Examples include: allocation of
radio channels so that transmissions by neighbouring WLANs
(Wireless Local Area Networks) or mobile phone cells do not
interfere; the selection of packets to be XORed on each link
in network coding; and finding a non-colliding schedule of
time-slots in a WLAN. Unlike in traditional CSPs, however, in
network applications each constrained variable xi is typically
co-located with a physically distinct device such as an access
point, base-station or a link. The resulting communication
constraints impose severe restrictions on the nature of the algo-
rithm that can be used for solving the CSP. These restrictions
are violated by existing CSP solvers, leading us to define a new
class of algorithms that we term decentralized CSP solvers. We
constructively establish the existence of decentralized solvers
by introducing a family of randomized algorithms belonging
to this class.

Roughly speaking, decentralized CSP solvers must be capa-
ble of finding a satisfying assignment, ~x, while updating each
variable xi based solely on knowledge of whether all of the
clauses in which xi participates are satisfied or at least one
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clause is unsatisfied. The following example gives a concrete
illustration of the origins of these constraints.

A. Motivating example: channel allocation

802.11 WLANs are ubiquitous, but their deployments are
unstructured and they operate in an unlicensed frequency band.
Within this band, an 802.11 WLAN can select one of several
channels, typically 11, to operate on. In the vast majority
of WiFi routers channel selection is, at present, based on
operator selection without any quantitative instruction from
the router. Self-selection of this channel is the task is we
consider here. Co-ordinated selection is hampered by the fact
that the interference range of a typical 802.11 device is sub-
stantially larger than its communication range. Consequently,
WLANs can interfere but may be unable to decode each others
messages (illustrated schematically in Fig. 1). Discovery by a
WLAN of the existence of interfering WLANs via its wired
back-haul may be prevented by firewalls and, in any case,
these WLANs may not know their physical location. These
practical restrictions mandate a decentralized channel-selection
algorithm.

We can identify the task of each WLAN self-selecting
a non-interfering channel with a CSP with communication
constraints imposed by the network topology. Let xi be the
channel selected by WLAN i ∈ {1, . . . , N} and define
M = N(N − 1)/2 clauses, one for each pair of WLANs,
that evaluates to one if the WLANs are on non-interfering
channels or are out of interference range and is zero otherwise.
Due to the unstructured nature of the deployment, the lack of
shared administrative control and communication constraints,
a WLAN cannot rely on knowing the number or the identity of
interfering WLANs or the channels that they currently have
selected. A practical CSP solver for this task can only rely
on each WLAN being able to measure whether: (i) all of the
neighbouring WLANs have selected a different channel from
it; or (ii) if one or more neighbours have selected the same
channel.

In certain settings, a limited amount of communication
of variable values between the stations hosting them may
be feasible. For example, it may be possible for a stations
hosting a link or for a WLAN to overhear beacons or traffic
from a subset of its interferers, bf or for an access point to
communicate with other, nearby access points. Algorithms for
channel selection that are proposed in the literature assume
the existence of end-to-end communication for centralized
solutions, for message passing in decentralized or gossiping
solutions, or to co-ordinate global restart in simulated anneal-
ing proposals e.g. [1], [2], [3], [4] and references therein. This
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Fig. 1. An illustration of overlapping interference regions in neighbouring
WLANs. Black dot indicates location of a wireless access point, shaded area
indicates region within which communication with access point can take place
and outer circles indicate regions within which transmissions interfere.

information, however, tends to be opportunistic in nature and
cannot be relied on a priori. We leave how best to exploit
such partial information to future work, focusing here on the
most challenging, fundamental cases where fully decentralized
algorithms are required.

B. Contribution

The primary contributions of this paper are fourfold. Firstly,
we show that CSPs provide a unifying framework that en-
compasses several important problems in wireless networks,
including channel selection, inter-session network coding and
decentralized scheduling in a WLAN. Each of these problems
is generally thought of as being distinct and requiring different
solution approaches. We show that they are fundamentally re-
lated as CSPs so that the decentralized CSP solver introduced
in this paper can be used for all of them. Secondly, we define a
new class of CSP algorithms which we term decentralized CSP
solvers and, extending our earlier approach to graph colouring
[5][6], introduce a novel stochastic decentralized CSP solver
proving that it will find a solution in almost surely finite
time, should one exist, and showing it has many practically
desirable properties. Thirdly, we benchmark the algorithm’s
performance on a well-studied class of application-agnostic
CSPs, random k-SAT. For problems with up to a thousand
variables, which are large for our motivating examples, we
find that the time the algorithm takes to find a satisfying
assignment is close to that of WalkSAT [7], a well regarded,
efficient centralized CSP solver, while also possessing de-
sirable features of Survey Propagation [8]. That is, despite
its decentralized nature, the algorithm is fast. Fourthly, we
demonstrate the solver’s practical utility in a complex, wireless
resource allocation case study.

The rest of the paper is organized as follows. In Section
II we define decentralized CSP solvers and show that well-
known algorithms for solving CSPs fail to meet these criteria.
In Section III we introduce a decentralized CSP solver. We
prove that it finds a solution in finite time with probability one
whenever a feasible solution exists, obtaining an upper bound
on the algorithm’s convergence rate in the process. In Section

IV we consider its speed at identifying solutions of instances
of random k-SAT. In Section V we demonstrate the algorithm’s
utility in solving the problems that motivated its introduction.
Section VI contains discussion and closing remarks.

II. DECENTRALIZED CSP SOLVERS

We begin by formalizing the criteria that CSP solvers
must possess to be of use for problems with communication
constraints such as those outlined above. We call algorithms
that meet these criteria decentralized CSP solvers.

Definition 1 (CSP): A CSP with N variables,
{x1, . . . , xN}, and M clauses is defined as follows. The
variables each take values in a finite set D = {1, . . . , D} and
~x := (x1, . . . , xN ) ∈ DN . Each clause m ∈M = {1, . . . ,M}
is defined by a function Φm : DN 7→ {0, 1} where for an
assignment of variables, ~x, Φm(~x) = 1 if clause m is satisfied
and Φm(~x) = 0 if clause m is not satisfied. An assignment
~x is a solution to the CSP if all clauses are simultaneously
satisfied. That is,

~x is a satisfying assignment iff min
m∈M

Φm(~x) = 1. (1)
This encompasses all of our examples of interest as well as
k-SAT, the most well-studied general class of CSPs.

A CSP solver is an algorithm that can find a satisfying
variable assignment for any solvable CSP.

Definition 2 (CSP Solver): A CSP solver takes a CSP as
input and determines a sequence {~x(t)} such that for any CSP
that has satisfying assignments:

(D1) for all t sufficiently large ~x(t) = ~x for some
satisfying assignment ~x;

(D2) if t′ is the first entry in the sequence {~x(t)} such that
~x(t′) is a satisfying assignment, then ~x(t) = ~x(t′) for
all t > t′.

To provide criteria that classify CSP solvers as being
decentralized, we begin with the following definition.

Definition 3 (Clause participation): We say that variable
xi participates in clause Φm(~x) if the value of xi can influence
the clause’s satisfaction for at least one assignment of the rest
of the variables in ~x.

For each variable xi, let Mi denote the set of clauses in
which it participates:

Mi =
⋃
j 6=i

⋃
xj∈D

{
m : min

xi∈D
Φm(xi, {xj}) = 0

and max
xi∈D

Φm(xi, {xj}) = 1
}
.

Re-writing the left hand side of eq. (1) in a way that focuses
on the satisfaction of each variable we have:

~x is a satisfying assignment iff min
i

min
m∈Mi

Φm(~x) = 1. (2)

A decentralized CSP algorithm can be thought of as having
intelligence co-located with each variable. The intelligence
at variable xi can only determine whether all of the clauses
that xi participates in are satisfied or that at least one clause
is unsatisfied and must make update decisions locally based
solely on this knowledge.
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Definition 4 (Decentralized CSP Solver): A decentralized
CSP solver is a CSP solver that for each variable xi, i ∈
{1, . . . , N}, must select its next value based only on an
evaluation of

min
m∈Mi

Φm(~x). (3)

That is, for each variable xi the solver must make a decision
on the next value of xi based solely on knowing whether
that variable is currently satisfied or not without explicitly
knowing:

(D3) the assignments of other variables, xj for any j 6= i;
(D4) the set of clauses that any variable, including itself,

participates in, Mj for j ∈ {1, . . . , N};
(D5) the functions that define clauses, Φm for m ∈

{1, . . . ,M}.
Note that the properties (D1) (D2) of any CSP solver mean
that a decentralized CSP solver must, without explicit com-
munication, settle upon a satisfying assignment the first time
one is found. Communication to co-ordinate global stopping
or restarting of the solver would be contrary to the nature of
the natural constraints of these problems and so is forbidden.

The stochastic algorithm we define in Section III shall
provably satisfy the properties of a decentralized CSP solver
with probability one. Moreover, it will also have the desirable
property that it will automatically restart its search, without
communication, upon any change to the clauses of a CSP that
makes the current variable assignment no longer satisfying.
This is significant in practical applications as, for example,
the arrival of new transmitters in a wireless network would
induce a change the associated CSP.

A. Formulating Wireless Network Tasks As CSPs

Before proceeding, we demonstrate that several important
resource allocation tasks in wireless networks fall within
this CSP framework, which, therefore, provides a unifying
framework for analyzing these tasks.

1) Graph colouring. As briefly described in Section I-A,
the channel assignment problem corresponds to decentralized
graph colouring. In the simplest model, the network is de-
scribed by an undirected interference graph G = (V,E) with
vertices V and edges E. Each vertex represents a WLAN and
an edge exists between two WLANs if they interfere with each
other when on the same channel. Define N = |V | and M =
|E| and let D denote the set of available colours (channels) and
let xi be a variable with value equal to the colour selected by
an intelligence co-located with each vertex i ∈ V . Each clause
m ∈ {1, . . . , |E|}, which is an enumeration of the elements
of E, can be identified with an edge (i, j) ∈ E. We define

Φm(~x) = Φm(xi, xj) =

{
1 if xi 6= xj

0 otherwise.

The participation set, Mi, of a variable xi consists of all
clauses where the vertex i is one end of the associated edge,

Mi = {m ≡ (i, j) : (i, j) ∈ E} .

A variable assignment satisfies this CSP if and only if it is
also a proper colouring for the graph G. Proper colourings

correspond to channel assignments in which no two neigh-
bouring WLANs in the interference graph have selected the
same channel. To find a proper colouring, when one exists,
a decentralized CSP solver requires only that an intelligence
co-located with each vertex i can measure whether: (i) all of
its neighbours are using a different colour from vertex i; or
(ii) at least one neighbour has selected the same colour as
vertex i. This information is sufficient to evaluate eq. (3) and,
in particular, the intelligence at each vertex does not need to
know: (D3) the colour selected by any other vertex; (D4) its
set of neighbours; or (D5) the exact nature of the clauses Φm,
m ∈ {1, . . . ,M}.

2) Channel assignment with channel-dependent interfer-
ence. Whether or not transmitters interfere in the channel
assignment task may depend on the radio channel selected.
This can arise due to frequency dependent radio propagation
or to channel dependent spectral masks. That is, for regulatory
reasons, different spectral masks are typically used when
transmitting on channels at the edge and on channels in the
middle of a radio band. This problem then has a collection
of conflict graphs, one for each possible radio channel. This
version of the channel assignment task can also be formulated
as a CSP even though it is no longer a graph colouring
problem. Let G(c) = (V,E(c)), c ∈ D be a set of undirected
graphs with the same vertices V but possibly differing edge
sets E(c). Again each vertex represents a WLAN, but the
interference graph is channel-dependent. The Graph G(c) is
associated with radio channel c and an edge exists in E(c) if
two WLANs interfere while on channel c. Let xi be a variable
with value equal to the channel selected by each vertex i ∈ V .
Each clause m ∈ {1, . . . , |E(1)|+ · · ·+ |E(D)|}, which is an
enumeration of all edges in all graphs, can be identified with
a c ∈ D and an edge (i, j) ∈ E(c) and is defined by

Φm(~x) = Φm(xi, xj) =

{
0 if xi = xj = c

1 otherwise.

The collection of clauses that variable xi, associated with
vertex i, participates in can be identified as

Mi =
⋃
c∈D

{m ≡ (i, j, c) : (i, j) ∈ E(c)} .

With xi being the current channel selection of vertex i, for
all c 6= xi the clauses associated with m ≡ (i, j, c) are
automatically satisfied. Thus to evaluate eq. (3) it is sufficient
for the station to measure if no neighbour coincides with
its current channel selection or if at least one does. To find
an interference-free channel assignment, a decentralized CSP
solver requires that each vertex i can measure whether: (i) all
of its neighbours on the currently selected channel are using
a different channel from itself; or (ii) at least one neighbour
has selected the same channel.

3) Inter-session network coding. Network coding has been
the subject of considerable interest in recent years as it offers
the potential for significant increases in network capacity [9],
[10], [11]. In network coding, network elements combine
packets together before transmission rather than forwarding
them unmodified. The combined packets can be from indi-
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vidual flows, known as intra-flow coding, or across multiple
flows, inter-flow coding.

While intra-flow coding within multicast flows has been
well studied, inter-flow coding between unicast flows has
received less attention, yet is, perhaps, of more immediate
relevance to current Internet traffic. Inter-flow coding is known
to be challenging [12]. The task of a network finding a feasible
linear network code in a distributed fashion, but with some
global sharing of calculations, is investigated in [13] through
the use of a genetic algorithm. This task can be formulated as
a CSP.

Let G = (V,E) denote a directed acyclic multi-graph
representing the network with vertices V and edges E. Each
vertex represents either a source of an information flow, a
destination or router in the network. Edges represent physical
connections between these elements. Time is slotted and each
edge can transmit a single packet per slot. We allow multiple
edges between vertex pairs in order to accommodate higher
rate links. It is the goal of each link beyond the source to
determine a linear combination of its incoming packets to
forward so that ultimately all flows get to their destinations.
As the combination of packets coded by each link will take
care of routing, each flow p ∈ P is defined by its source,
σ(p) ∈ V , and its destination δ(p) ∈ V . Each flow is assumed
to be unit rate with higher rate flows accommodated by flows
with the same source and destination vertices. We will treat the
collection of source,

⋃
p∈P {σ(p)}, and destination vertices,⋃

p∈P {δ(p)}, as special, solely having one incoming and one
outgoing edge per flow respectively.

For each edge i ∈ E, define s(i), s : E 7→ V , to be its
source vertex and t(i), t : E 7→ V , to be its target vertex.
For each vertex v ∈ V we define the set of incoming edges
Iv := {i ∈ E : t(i) = v} and the set of outgoing edges
Ov := {i ∈ E : s(i) = v}. For each edge not corresponding to
source, i ∈ E\

⋃
p∈P Oσ(p), we associate a variable xi ∈ D :=

{1, . . . , 2|P |}, which is an enumeration of the power set of the
set of flows P . We define a bijective map ψ : D 7→ {0, 1}|P |
that determines a vector whose positive entries correspond to
flows to be coded.

In total, we have |E \
⋃

pOσ(p)| clauses. One for every
link that isn’t an outgoing link from a source vertex. At each
time slot, each link that doesn’t correspond to a source or
final destination link, i ∈ E \

⋃
p(Oσ(p) ∪ Iδ(p)), wishes to

forward a packet consisting of XORed packets (corresponding
to addition in the Galois field of two elements) from the flows
indicated by ψ(xi). Each final link i ∈

⋃
p Iδ(p) wishes to

forward packets from p, which we indicate by the vector γp

with a 1 at the location p and zeros elsewhere. A link and its
immediate upstream neighbouring links will be dissatisfied if
it cannot do so.

More formally, for each edge not corresponding to the
outgoing link from a source or incoming link to a destination,
i ∈ E \

⋃
p∈P (Oσ(p)∪Iδ(p)), we have a clause m ≡ i, Φm(~x),

defined by

Φm(xi, xj:j∈Is(i)) =

{
1 if ∃ θ s.t. Ψ(Is(i))θT = ψ(xi)T

0 otherwise.

where θ is a binary vector and Ψ(Is(i)) is the rectangular
matrix consisting of ψ(xj)T for j ∈ Is(i) \

⋃
p∈P Oσ(p) and

and γT
p if i ∈ Oσ(p) for some p.

To complete the CSP, we need to ensure that packets
from flow p can be decoded at their destination δ(p). For
i ∈

⋃
p∈P Iδ(p), then with δ(p′) = t(i) we introduce a clause

Φm(xj:j∈Is(i)) =

{
1 if ∃ θ s.t. Ψ(Is(i))θT = γT

p′

0 otherwise.

where again θ is a binary vector and Ψ is is the rectangular
matrix defined above. The set of clauses a link variable xi,
i ∈ E \ (

⋃
p∈P Oσ(p) ∪ Iδ(p)), participates in is

Mi = {m ≡ j : j = i or i ∈ Is(j)}

Any variable assignment then satisfies this CSP if and only if
it is a realizable network code satisfying all flow demands.

Hence, to find a proper assignment a decentralized CSP
solver requires only that each link i can determine whether: (i)
its own coding is realizable and the coding of its immediately
down-stream links are realizable; or (ii) if at least one of these
is not realizable. This is sufficient to evaluate eq. (3). Each link
does not need to explicitly know: (D3) the code selected by
any other link; (D4) the network topology; (D5) any details
of how code realizability is determined at any link.

4) Decentralized transmission scheduling. In an Ethernet or
WLAN it is necessary to schedule transmissions by stations.
This might be achieved in a centralized manner using TDMA,
but it can also be formulated as a decentralized problem.
The classical CSMA/CA approach to decentralized scheduling
never settles to a single schedule and some comes at a cost
of the possibility of continual collisions. Recently, there has
been interest in decentralized approaches for finding collision-
free schedules, see [14], [15]. This task can be formulated as
a CSP as follows. Let V denote the set of transmitters in the
WLAN, T denote the set of available time slots and define
N = |V | and M = N(N − 1)/2. Let xi be a variable with
value equal to the transmission slot selected by transmitter
i ∈ V . Define a clause Φm(~x) associated with each pair of
transmitters m ≡ (i, j) such that

Φm(xi, xj) =

{
1 if xi 6= xj

0 otherwise.

The participation sets are

Mi =
⋃
j 6=i

{m ≡ (i, j)}.

Any variable assignment satisfies this CSP if and only if it is
also a collision-free time-slot schedule. To find a collision-free
schedule, when one exists, a decentralized CSP solver requires
only that each transmitter i can measure whether: (i) all of its
neighbours are using a different time-slot from transmitter i;
or (ii) at least one transmitter in the WLAN has selected the
same time-slot as transmitter i. Again, this is all that is needed
to evaluate eq. (3). Each transmitter does not need to know:
(D3) the time-slot selected by any other transmitter; (D4) the
set of transmitters; (D5) the clauses.
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B. Related work - existing algorithms are not decentralized

The literature on general purpose CSP solvers is vast,
typically focusing on solving k-SAT problems in conjunctive
normal form, but they can be broadly classified into those
based on: (i) the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [16], [17]; (ii) Survey Propagation [8]; and (iii) on
Stochastic Local Search (SLS) [7]. Each of these approaches
has experienced substantial development and has its own
merits, but none were motivated by problems where variables
have a geographical sense of locality.

Algorithms developed from the DPLL approach have proved
to be the quickest at SAT-Race and SAT Competition in recent
years, e.g. ManySAT [18]. The DPLL approach ultimately
guarantees a complete search of the solution space and so
meets the (D1) and (D2) criteria. They are, however, based
on a branching rule methodology, e.g. [19], that assumes the
existence of a centralized intelligence that employs a back-
tracking search. The implicit assumptions of the information
available to this intelligence breaks the conditions (D3) (D4)
(D5) and so they are not decentralized CSP solvers.

Survey propagation, a development of belief propagation
[20] from trees to general graphs, has proved effective in
graphs that do not contain small loops [21]. For a given CSP,
the fundamental structure of study is a called a factor graph.
In order to generate this, it is necessary to know what clauses
each variable participates in and the nature of each of the
clauses, breaking the (D4) and (D5) criteria and so these are
not decentralized CSP solvers.

SLS algorithms also depend fundamentally upon the ex-
change of information, mostly in an explicit manner breaking
the (D3) condition by basing update decisions on relative
rankings of the constraint variables but also in a more sub-
tle fashion. To see this implicit requirement, consider the
following algorithm for binary valued variables originally
proposed by Papadimitriou [22] and developed further by
Schöning [23]. Pick a random assignment of values for the
constraint variables. Repeat the following: from all of the
unsatisfied clauses, pick one uniformly at random, select one
of the variables participating in that clause and negate its
value, breaking the (D4) and (D5) conditions. The algorithm
halts when all clauses are satisfied or a specified time limit
expires. Although simple, this forms the basic building block
for all SLS algorithms, including the well-studied WalkSAT
algorithm [7]. It is important that a single unsatisfied clause is
selected at each step and that a single variable within the clause
is adjusted as it is this that leads to the algorithm behaving as
a random walk [23]. Thus, again, solvers in this class are not
decentralized.

III. A DECENTRALIZED CSP SOLVER

We now introduce an algorithm that satisfies the decentral-
ized CSP solver criteria.

A. Communication-Free Learning Algorithm

An instance of the following Communication-Free Learning
(CFL) algorithm is run in parallel for every variable. For each
variable, i ∈ {1, 2, ..., N} it keeps a probability distribution,

pi,j over j ∈ D as well as the current variable value xi. In
pseudocode, the CFL algorithm is:

ALGORITHM 1: Communication-Free Learning
1: Initialize pi,j = 1/d, j ∈ {1, ..., D}.
2: loop
3: Realize a random variable, selecting xi = j with probability

pi,j .
4: Evaluate minm∈Mi Φm(~x), returning satisfied if its value is

1, as this indicates all of variable i’s clauses are satisfied
given the present assignment, and unsatisfied otherwise.

5: Update: If satisfied,

pi,j =


1 if j = xi

0 otherwise.

If unsatisfied,

pi,j =

(
(1− b)pi,j + a/(D − 1 + a/b) if j = xi

(1− b)pi,j + b/(D − 1 + a/b) otherwise,

where a, b ∈ (0, 1] are design parameters.
6: end loop

To understand the logic behind CFL, note that for each
variable a probability distribution over all possible variable-
values is kept. The variable’s value is then selected from this
distribution. Should all the clauses that the variable participates
in be satisfied with its current value, the associated probability
distribution is updated to ensure that the variable value remains
unchanged. If at least one clause is unsatisfied, then the
probability distribution evolves by interpolating between it and
a distribution that is uniform on all values apart from on the
one that is presently generating dissatisfaction. Thus if all of
a variable’s clauses were once satisfied, the algorithm retains
memory of this into the future. This has the effect that if a
collection of variables are content, they can be resistant, but
not impervious, to propagation of dissatisfaction from other
variables.

CFL possesses two parameters. The parameter b determines
how quickly the past is forgotten, while a determines the
algorithm’s aversion to a variable value should it be found
to cause dissatisfaction. Even though an instance of CFL is
run for each variable, we shall show that this completely
decentralized solution is a CSP solver.

From here on we will assume that the update Step 5 is
performed in a synchronized fashion across variables. Without
synchronization, the fundamental character of the algorithm
doesn’t change, but the analysis becomes more involved.
Synchronization solely requires that algorithm instances each
have access to a shared sense of time and that this can be
achieved without information-sharing or other communication
between variables, i.e. between algorithm instances. A suitable
clock is, for example, available to any Internet connected
device via the Network Time Protocol (NTP).

B. CFL is a decentralized CSP solver

By construction, the only information used by the algorithm
is minm∈Mi Φi(~x) in Step 4 and thus it satisfies the criteria
(D3) , (D4) and (D5) . That is, it only needs to know if all
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clauses in which variable i participates are satisfied or if one
or more are not. The CFL algorithm also satisfies the (D2)
criterion that it sticks with a solution from the first time one
is found. To see this, note that the affect of Step 5 is that if a
variable experiences success in all clauses that it participates in
it continues to select the same value with probability 1. Thus
if all variables are simultaneously satisfied in all clauses, i.e.
if mini minm∈Mi Φi(~x) = 1, then the same assignment will
be reselected indefinitely with probability 1.

To establish that the CFL algorithm is a decentralized CSP
solver all that remains is to show that it meets the (D1)
criterion, that if the problem has a solution it will be found,
which is dealt with by the the following theorem. It provides
an upper bound on the distribution of the number of iterations
the algorithm requires to find a solution to any solvable CSP.
It’s proof exploits the iterated function system structure of the
algorithm and can be found in the Appendix.

Theorem 1: For any satisfiable CSP, with probability
greater than 1 − ε ∈ (0, 1) the number of iterations for the
CFL algorithm to find a satisfying assignment is less than

N exp
(
N(N − 1)

2
log(γ−1)

)
log(ε−1),

where γ =
min(a, b)

D − 1 + a/b
.

For a CSP corresponding to graph coloring, a tighter bound
holds and a satisfying assignment will be found with proba-
bility greater than 1− ε in a number of iterations less than

N exp(2N log(γ−1)) log(ε−1).
Theorem 1 proves that for fixed N the tail of the distribution

of the number of iterations until the first identification of
a satisfying assignment is bounded above by a geometric
distribution and so all of its moments are finite. As Theorem 1
covers any arbitrary CSP that admits a solution, for any given
instance these bounds are likely to be loose. They do, however,
allow us to conclude the following corollary proving that if a
solution exists, the CFL algorithm will almost surely find it.

Corollary 2: For any CSP that admits a satisfying assign-
ment, the CFL algorithm will find a satisfying assignment in
almost surely finite time.

Hence the CFL algorithm satisfies all of the criteria (D1)
(D2) (D3) (D4) (D5) , almost surely, and so is a decentralized
CSP solver.

C. Parameterization

Theorem 1 establishes that the CFL algorithm provably
identifies satisfying assignments for all values of its two design
parameters, a and b. The value of a determines the algorithm’s
aversion to variable values for which clause failure has been
experienced. The value of b impacts on the speed of conver-
gence of the algorithm. Optimal values of a and b depend upon
each problem and a performance metric. For fast convergence
across a broad range of CSPs with distinct structure, we have
found that small values of a and b, corresponding to strong
aversion to a dissatisfying variable value and reasonably long
memory, work well. Thus for simplicity, we set a = b in all
experimental examples. We use b = 0.2 for random 3-SAT,

b = 0.1 for random 4-SAT and b = 0.05 for random 5-SAT.
We use b = 0.1 for our wireless networks example, a value
which we have found to yield good performance across a range
of k-SAT problems.

IV. APPLICATION-AGNOSTIC BENCHMARKING

A CSP associated with a specific networking task will
possess structure induced by its topology. Before considering
practically-motivated applications in Section V, as the CFL
algorithm can solve any CSP but its design was subject to
restrictions not normally considered it is prudent to investigate
its performance as a CSP solver in an application-agnostic
setting.

We present simulation data evaluating the performance of
the CFL algorithm for random k-SAT, a well-studied class of
CSPs. A k-SAT problem is a CSP in which all variables are
binary-valued and clauses consist solely of logical disjunctions
of no more than k variables. In random k-SAT, an instance of
k-SAT is generated by drawing M such clauses uniformly at
random [22]. Our investigation surprisingly reveals that the
CFL algorithm is competitive with centralized and distributed
solvers on problems of reasonable size (order 1000 variables).

Briefly, we first review current knowledge regarding random
k-SAT. The behavior of random k-SAT is known to depend
strongly on the parameter r = M/N with phase transitions and
associated thresholds r¬exist,k and rexist,k. If r > r¬exist,k

the constraint problem is unsatisfiable with high probability,
while if r < rexist,k a satisfying assignments exist with
high probability. Evidently, rexist,k ≤ r¬exist,k and it is
conjectured that rexist,k = r¬exist,k [25]. A simple argument
gives r¬exist,k ≤ 2k log 2 and this upper bound can be refined
to obtain the values in the second row of Table I. Also shown
in row four of this table are estimated values for r¬exist,k

derived from statistical physics considerations. These latter
estimates are supported by experimental data for k = 3, e.g.
[30], although there are fewer experimental studies for k > 3.
It can be seen that the theoretical bound for r¬exist,k and the
estimated values are in good agreement for k ≥ 5, and that
both approach 2k log 2 for large k. Recent mathematical results
have established that rexist,k ≥ 2k log 2−k [24] and this lower
bound can be tightened to obtain the theoretical values shown
in the third row of Table I.

There also exists a threshold rpoly,k below which a sat-
isfying assignment can be found in polynomial time with
high probability. This threshold has been the subject of much
interest and the current best analytic lower bound for rpoly,k

is also indicated in Table I. Statistical physics considerations
have led to the conjecture that rpoly,k is equal to the value
r1RSB,k at which the one-step replica symmetry breaking
(1RSB) instability occurs [31]. Current best estimates for this
value are given in Table I. For k ≥ 8, it has been proven
analytically that the set of satisfying assignments is grouped
into widely separated clusters, which lends support to this
conjecture [32]. For values of k < 8 the situation is less clear,
with experimental evidence indicating that rpoly,k lies above
r1RSB,k for k = 3, 4 and 5 [33].

We now consider the performance of the CFL algorithm.
Fig. 2 gives median measurements of normalized stopping
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k 3 4 5 7 10 20
Theoretically derived bounds
2k log 2 5.54 11.09 22.18 88.72 709.78 726,817
r¬exist,k[24] 4.51 10.23 21.33 87.88 708.94 726,817
rexist,k[25], [26] 3.52 7.91 18.79 84.82 704.94 726,809
2k log 2− k 2.54 7.09 17.18 81.72 699.78 706,817
rpoly,k [27], [26] 3.52 5.54 9.63 33.23 172.65 95,263
Estimates
r¬exist,k[28] 4.267 9.93 21.12 87.79 708.91 -
r1RSB,k[28], [29] 4.15 9.38 19.16 62.5 - -

TABLE I
CURRENT BEST UPPER/LOWER BOUNDS ON THE PHASE TRANSITION THRESHOLDS IN RANDOM K-SAT.
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Fig. 2. Median normalized stopping time of CFL algorithm vs r for random
3-SAT and N = 100. Each point is derived from at least 1000 runs of the
algorithm; algorithm terminated after 107 iterations if no satisfying assign-
ment found. For comparison, stopping time measurements for WalkSAT taken
from [30, Fig 2a] are also indicated. (Inset) CFL algorithm measurements for
random 4-SAT and 5-SAT. Measurements shown are for values of r up to 4.20
(3-SAT), 9.90 (4-SAT), 21.10 (5-SAT); close to the current best estimates for
rexist,k and well above r1RSB,k .
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Fig. 3. Normalized stopping time of CFL algorithm vs N and r for 3-SAT
and 5-SAT. Each point is derived from at least 1000 runs.

time (stopping time divided by N ) of the CFL algorithm vs
r=M/N when the number of variables N = 100. Fig. 3 gives
median measurements of normalized stopping time vs N with
r held constant. Data is shown for random k-SAT with k = 3, 4
and 5. Observe two striking features from this data. Firstly,
from Fig. 2 noting that a log scale is used on the y-axis, the
median normalized stopping time increases exponentially with
r when N is held constant . Secondly, from Fig. 3 the median
normalized stopping time vs N , with r held constant, is upper
bounded by a constant. That is, a satisfying assignment is
found in a time with median value that increases no more than
linearly with N . This linearity holds even when r is close to
rexist,k (data is shown in Fig. 3 for 3-SAT with r = 4) and
is of great practical importance as it implies that with high
probability the CFL algorithm finds a satisfying assignment
in polynomial time.

Comparing the performance of the CFL algorithm with
the popular WalkSAT algorithm, we note that the WalkSAT
algorithm also exhibits an exponential-like dependence of
stopping time on r and linearity in N [30], [34], [33]. To
allow comparison in more detail, median stopping time data
taken from [30, Fig 2a] is marked on Fig. 2. For r < 3.9,
the median stopping time is similar for CFL and WalkSAT.
Above this value, however, the stopping time for WalkSAT
diverges, increasing super-exponentially in r. This divergence
is a feature not only of WalkSAT but also of other local search
algorithms algorithms e.g. ChainSat [33]. It is not exhibited
by the Survey Propagation algorithm [30], [8], which has been
the subject of considerable interest as it creates the ability to
operate close to the rexist,k threshold. Observe that the CFL
algorithm also does not exhibit divergence as r approaches
rexist,k. These comparisons are encouraging as they indicate
that the CFL algorithm is competitive with some of the most
efficient general-purpose k-SAT algorithms currently available.
It is also unexpected as information sharing is a key compo-
nent of both WalkSAT and Survey Propagation, whereas CFL
makes local decisions simultaneously with no use whatsoever
of information-sharing, raising fundamental questions as to the
role of message passing, the relationship between information
exchange and algorithm performance and, in particular, what
performance cost is imposed by constraining attention to
decentralized operation.
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V. CASE STUDY: CHANNEL ALLOCATION IN 802.11
WLANS

Having established general properties of CFL and deter-
mined its performance on random instances of k-SAT, we re-
turn to a problem of the sort that motivated its introduction. We
consider the performance of the CFL algorithm in a realistic
wireless network case study. From the online database WIGLE
[35] we obtained the locations of WiFi wireless Access Points
(APs) in an approximately 150m2 area at the junction of 5th
Avenue and 59th Street in Manhattan1. This space contains
81 APs utilizing the IEEE 802.11 wireless standard. It can
be seen from Figure 4, which plots the mean number of APs
lying within distance d of an AP, that within a 15m radius an
AP has on average 3 neighbours and within a 30m radius it
has on average 10 neighbours. Of the 11 channels available
in the 802.11 protocol, only 3 are orthogonal. Thus managing
interference in this dense deployment is a challenging task.

Imagine a worst-case scenario where after a power-outage
all these APs are switched back on. The aim of each AP is to
select its radio channel in such a way as to ensure that it is
sufficiently different from nearby WLANs. This can be written
as a CSP where we have N = 81 APs and N variables xi

corresponding to the channel of AP i, i = 1, 2, ..., N . As per
the 802.11 standard [36] and FCC regulations, each AP can
select from one of 11 radio channels in the 2.4GHz band and
so the xi, i = 1, 2, .., N take values in D = {1, 2, .., 11}.
To avoid excessive interference each AP requires that: (a)
no other AP within a 5m distance operates closer than 3
channels away; (b) no AP within a 10m distance operates
closer than 2 channels away and (c) no AP with a 30m distance
operates on the same channel. We can realize this as a CSP
with 3 constraint clauses per AP, giving 3N in total, Φm(~x),
m = 1, ..., 3N . With e(i, j) denoting the Euclidean distance
between APs i and j in metres, for m = 1, ..., N

Φm(~x) =

{
1 if minj:e(m,j)<5 |xm − xj | ≥ 3
0 otherwise,

for m = N + 1, ..., 2N

Φm(~x) =

{
1 if minj:e(m−N,j)<10 |xm−N − xj | ≥ 2
0 otherwise,

and for m = 2N + 1, ..., 3N

Φm(~x) =

{
1 if minj:e(m−2N,j)<30 |xm−2N − xj | ≥ 1
0 otherwise,

The attenuation between adjacent channels is −28dB [36].
Taking the radio path loss with distance as dα, where d is
distance in meters and α = 4 the path loss exponent, then
these constraints ensure > 60 dB attenuation between APs.

Assuming all APs use the maximum transmit power of
18dBm allowed by the 802.11 standard, this means that the
SINR is greater than 20dB within a 10m radius of each AP
which is sufficient to sustain a data rate of 54Mbps when the

1The extracted (x,y,z) coordinate data used is available online at www.
hamilton.ie/net/xyz.txt
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Fig. 5. A satisfying assignment of radio channels. Each dot marks the location
of a WiFi wireless access point and is based on measurements taken at the
junction of 5th Avenue/59th Street in Manhattan. The color of a dot indicates
the radio channel. To avoid interference between transmissions, nearby access
points need to operate on radio channels that are spaced sufficiently far apart.
There are 11 radio channels available to choose from, but the frequencies of
these channels overlap so that only 3 orthogonal/non-overlapping channels
are available; there are 81 wireless access points in total.

connection is line of sight and channel noise is Gaussian [36],
[37].

Observe that each variable xi is located at a different AP.
The APs do not belong to a single administrative domain
and so security measures such as firewalls prevent commu-
nication over the wired network. An AP cannot rely on
decoding wireless transmissions to communicate with all of
its interferers or even just to identify them. This is because
interferers may be too far away to allow their transmissions
to be decoded and yet still their aggregate transmission power
may be sufficiently powerful to create significant interference.
That is, an AP cannot know the channel selections of other
APs, condition (D3) and, moreover, cannot reliably identify or
enumerate the clauses in which it participates, condition (D4)
. A decentralized algorithm is therefore mandated.

Fig. 5 shows an example satisfying assignment of radio
channels obtained by running an instance of the CFL algorithm
at all APs. The complexity of the topology generated by the
physical location of the APs and the non-uniformity of the
clauses it causes is apparent.

Fig. 6 shows the measured distribution of number of itera-
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Fig. 6. Log of the empirical complementary cumulative distribution of
convergence time in iterations, based on 12,000 runs of CFL algorithm for
5th Avenue data. The median is 21 and the 95% percentile is 98 iterations. In
current hardware one iteration can readily be performed in under 10 seconds,
leading to a median time to convergence of less than 4 minutes.

tions required to find a satisfying assignment, whereupon the
algorithm natural halts in a decentralized fashion. The median
value is 21 iterations and the 95% centile is 98 iterations. Note
that during this convergence period, although the network is
operating sub-optimally, it does not cease to function. In a
prototype lab set-up we have shown that a CFL update interval
of less than 10 seconds is feasible on current hardware. Thus
the median time to convergence is under 4 minutes. This is
a reasonable time-frame for practical purposes, particularly as
subparts of the network are functioning during this conver-
gence period, and thus the CFL algorithm offers a pragmatic
solution to this difficult decentralized CSP for which existing
solvers could not be employed.

VI. CONCLUSIONS

We have shown that apparently distinct problems in net-
working can be placed within the framework of CSPs, where -
unlike with traditional motivating examples - the variables are
co-located with devices that may not be able to communicate.
We define the criteria that practical solvers must possess
in order to be suitable for theses problems, labeling them
decentralized CSP solvers.

As existing solvers fail to meet one or more of these criteria,
we introduce a decentralized algorithm for solving CSPs. We
prove that it will almost surely find a satisfying solution if
one exists. In doing so, we generate bounds for the speed of
convergence of the algorithm. We suspect, however, that our
bounds for a general CSP are not tight and conjecture that the
real bound should be closer to the one we have for the specific
case of CSPs corresponding to graph coloring.

Given how much information decentralization is sacrificing,
surprisingly an experimental investigation of solving random
k-SAT instances suggests that the algorithm is competitive
with two of the most promising centralized k-SAT solvers,
WalkSAT and Survey Propagation, on instances of random k-
SAT with order one thousand variables. This raises the ques-
tion: what is the performance cost of decentralized operation?
This is particularly pertinent as the decentralized nature of the

CFL algorithm lends itself to parallelized computation as it
has a small, fixed memory requirement per variable, making it
suitable for use in circumstances where a centralized algorithm
could also be used but would be difficult to implement in a
distributed fashion.

APPENDIX

For each i ∈ {1, . . . , N} let ~pi(t) ∈ [0, 1]D, t ∈ N, be
the CFL probability vector for variable i at time t and xi(t)
be the variable’s value selected stochastically from ~pi(t). Let
P (t) = (~p1(t), . . . , ~pN (t)) and X(t) = (x1(t), . . . , xN (t))
record the overall state of the CSP-CFL system.

The state of the probability vectors {P (t)} forms a Markov
Chain, or Iterated Function System, with place dependent
probabilities [38]. The convergence time of the algorithm is
the first time the chain enters an absorbing state representing a
valid solution to the CSP. The absorbing states are identifiable
in terms of the variable values {X(t)}:

A =
⋃
{~x : Φm(~x) = 1 for all m ∈M} ,

as if X(t) ∈ A, then P (t+1) = (δx1 , . . . , δxN
) so that X(t+

1) = X(t) almost surely and hence a solution to the CSP has
been found. The algorithm’s stopping time is

τ := inf
t≥0

{X(t) ∈ A} .

Define γ = min(a, b)/(D − 1 + a/b) and let S be the set
of states such that for all i ∈ N either pi = δk for some
k ∈ {1, · · · , D} or (pi)k ≥ γ for all k ∈ {1, · · · ,M}. The
next lemma is obvious.

Lemma 1: For any integer t ≥ 0, P (t) ∈ S.
Proof: [Theorem 1] The method of proof for both state-

ments is similar: we create a sequence of events over N − 1
iterations that, regardless of the initial configuration, lead to a
satisfying assignment with a probability that we find a lower
bound for. Due to the Markovian nature of the algorithm and
the independence of the probability of this event on its initial
conditions, if this event does not occur in N − 1 iterations,
it has the same probability of occurring in the next N − 1
iterations. This is what leads to the geometric nature of the
bounds. The difference between a general CSP and those
corresponding to coloring is that for the latter the variables
are ensured to experience fewer dissatisfaction events before
finding a satisfying assignment.

First consider a general CSP. Select an arbitrary valid
solution ~a ∈ A with components (~a)i. For each m ∈ M
define Nm to be the variables that participate in clause m.
For each t ≥ 0, define the set of unsatisfied variables at time
t by

Ut :=
⋃

m∈M
{Nm : Φm(X(t)) = 0}

and the number of unsatisfied variables to be nt = |Ut|. At
time 0 assume X(0) = ~x(0), some ~x(0). If U0 = ∅ then
X(0) ∈ A, the algorithm has found a solution and τ = 0. If
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U0 6= ∅, the algorithm has not yet found a solution. Define the
components, ~x(1)i, of the vector ~x(1) by

~x(1)i =

{
~ai if i ∈ U0

~x(0)i if i /∈ U0

and, by Lemma 1,

P (X(1) = ~x(1)|X(0) = ~x(0)) ≥ γn0 .

If U1 = ∅ then X(1) ∈ A, the algorithm has found a solution
and τ = 1. If U1 6= ∅, the algorithm has not yet found a
solution and we proceed in an iterative fashion. For t ≥ 0,
define the components, ~x(t+ 1)i, of the vector ~x(t+ 1) by

~x(t+ 1)i =

{
~ai if i ∈ Ut

~x(t)i if i /∈ Ut

and, by Lemma 1,

P (X(t+ 1) = ~x(t+ 1)|X(t) = ~x(t)) ≥ γnt .

Let t∗ = inf{t : nt = 0} and note that

P (X(t∗) ∈ A) ≥

P (X(t∗) = ~x(t∗), . . . , X(0) = ~x(0)) ≥ γ
Pt∗

t=0 nt .

We wish, therefore, to place an upper bound on the sum in
the exponent. Observe that t∗ ≤ N − 1, as one starts with at
least one unsatisfied variable at each stage we me must include
at least one new variable and, therefore, this procedure must
terminate in no more than N−1 steps with a valid assignment.

In general, the {n∗t } sequence that maximizes this sum, even
though this sequence may not be feasible for a given CSP, is

n∗0 = 1, n∗1 = 2, . . . , n∗N−1 = N − 1,

This occurs if we start with one unsatisfied variable and, in
changing to the valid solution, at each iteration one additional
variable has cause to be unsatisfied. On taking its new value,
the unsatisfied variable included at time t triggers the failure
of t− 1 clauses each of which contains 3 variables: itself, the
variable included immediately previously and one of the other
variables that has already experienced a failure. This gives

t∗∑
t=0

nt ≤
N−1∑
t=0

n∗t =
(N − 1)N

2
.

and therefore

P (X(N − 1) ∈ A) ≥ γ(N−1)N/2.

For a CSP corresponding to graph coloring with D colours,
the advantage is that variables cannot be dissatisfied indefi-
nitely by newly dissatisfied variables. Instead this procedure
generates a flame-front of dissatisfied variables where those
variables sufficiently far within the interior of this flame-
front can select their final value without further disturbance.
For graph colouring, clauses occur only for each pair of
neighbors, i and j, such that Φ(~x) = 0 if (~x)i = (~x)j and
Φ(~x) = 1 otherwise. For any initial configuration ~x(0) with
dissatisfaction, we must have n0 ≥ 2. In a sequence of events
analogous to those in the proof of [6][Theorem 3], these two
variables select their final values, ~ai and (~a)j , at the next

round, causing their initial clause to be satisfied as ~a ∈ A. If
either of the variables taking its final value causes no further
clause to be dissatisfied, then in this sequence of events it will
never appear in a dissatisfied clause again and stays with its
value with probability 1. If it does cause one or more clause
to be triggered, once these are satisfied it will experience no
more dissatisfaction. Thus each variable experiences at most
2 rounds of dissatisfaction so that for graph colouring:

t∗∑
t=0

nt ≤
N−1∑
t=0

n∗t = 2N.

As an example that illustrates the difference between a
general CSP and graph colouring, consider an instance of 3-
SAT starting with one unsatisfied variable, x1. The following
sequence of clauses is possible in general, but not with graph
colouring. Starting with an unsatisfied x1, changing its value
to satisfy the first clause causes x2 to be dissatisfied, which
in turn causes x1 and x2 and x3 to be dissatisfied:

x1, ¬x1 ∨ x2 and ¬x1 ∨ ¬x2 ∨ x3.

Satisfying these clauses for x1, x2 and x3 causes two more
clauses with x4 to trigger, keeping all variables unsatisfied:

¬x1 ∨ ¬x2 ∨ x4 and ¬x1 ∨ ¬x3 ∨ x4.

Satisfying these two clauses causes three further clauses in-
volving x5 to become unsatisfied:

¬x1 ∨ ¬x2 ∨ x5, ¬x1 ∨ ¬x3 ∨ x5 and ¬x1 ∨ ¬x4 ∨ x5

and so forth triggering clauses with three variables at a time
such that all variables are unsatisfied until a solution is found.
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