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Abstract

It is known that simulation of the mean position of a Reflected Random Walk (RRW) {Wn}
exhibits non-standard behavior, even for light-tailed increment distributions with negative
drift. The Large Deviation Principle (LDP) holds for deviations below the mean, but for
deviations at the usual speed above the mean the rate function is null. This paper takes a
deeper look at this phenomenon. Conditional on a large sample mean, a complete sample path
LDP analysis is obtained. Let I denote the rate function for the one dimensional increment
process. If I is coercive, then given a large simulated mean position, under general conditions
our results imply that the most likely asymptotic behavior, ψ∗, of the paths n−1W⌊tn⌋ is to
be zero apart from on an interval [T0, T1] ⊂ [0, 1] and to satisfy the functional equation

∇I
(

d
dtψ

∗(t)
)

= λ∗(T1 − t) whenever ψ(t) 6= 0.

If I is non-coercive, a similar, but slightly more involved, result holds.

These results prove, in broad generality, that Monte Carlo estimates of the steady-state mean
position of a RRW have a high likelihood of over-estimation. This has serious implications
for the performance evaluation of queueing systems by simulation techniques where steady
state expected queue-length and waiting time are key performance metrics. The results show
that näıve estimates of these quantities from simulation are highly likely to be conservative.
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1. Introduction

Consider W = {Wn, n ≥ 0}, a random walk that starts at zero, is reflected at the origin, and
has increments process X = {Xn, n ≥ 0}. The Reflected Random Walk (RRW) is governed
by Lindley’s recursion [25],

W0 := 0 and Wn+1 = [Wn +Xn]
+ for n ≥ 1. (1)

This recursion plays a fundamental rôle in queueing systems and has long been an important
object of study in evaluating their performance. With X being the difference between service
times and inter-arrival times of customers, the RRW W describes the evolution of waiting
times at a single server first-come first-served queue with infinite waiting space. Lindley’s
recursion also governs the evolution of the queue-length at certain single server queues, such
as the M/M/1 queue [2].

Since the 1980s, large deviation techniques have been brought to bear on the analysis of equa-
tion (1) and the distribution of an element of its stationary solution, which exists whenever
X is stationary [26]. For example, using a one-dimensional large deviations approach it has
been established in broad generality that the stationary distribution possesses logarithmic
asymptotics, see [20][12][13][15][23] and references therein. This fact is exploited in the the-
ory effective bandwidths [22] and in the development of on-the-fly estimation schemes from
observations of the queueing behavior for the determination of quality of service performance
metrics [11][18][21][36][14][30]. Moreover, through the use of functional large deviation tech-
niques, assuming X is i.i.d., the seminal paper [1] proved the significant, broadly applicable
result that the most likely path to a large value of the transient RRW is piece-wise linear.
This deduction has since been extended (e.g. [37]), including the establishment of results in
the stationary regime (e.g. [10][19][16]). All of these papers report piece-wise linear most
likely paths to a large value of the RRW or an element of its stationary solution.

The exclusive focus of all of the research cited above is to garner understanding of likelihood of
large values of the RRW either in the transient or stationary regime, and the determination of
the most likely paths to these large values. In the present article we employ a functional large
deviation approach to analyze the estimation of a fundamental quantity for the performance
evaluation of a RRW that has so far been overlooked: its mean value. This study reveals
substantially richer structure than the study of large values of the RRW, leading to non-
convex rate functions and concave most likely paths. Despite this, perhaps surprisingly,
general qualitative and quantitative deductions can still be made.

The starting point of the present paper is the following qualitative result: It was observed
recently that simulation of the mean position of a RRW,

Wn :=
1

n

n
∑

i=1

Wi,
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exhibits non-standard behavior, even for light-tailed increments with negative drift. For ex-
ample, if X is i.i.d., then the probability that Wn underestimates the long run expected value
decays exponentially in n, but the probability of an over-estimate decays sub-exponentially.
This is shown in the following proposition, which is taken from [32]. Part (i) follows from
Theorem 11.2.3 and part (ii) from Proposition 11.3.4 (see also [31]).

Proposition 1. Consider the RRW where X is i.i.d. with E[X0] < 0 and E[X2
0 ] <∞. Then

the Markov chain W has a unique invariant probability measure with finite steady-state mean
W , and the simulated averages have the following properties.

(i) The lower error-probability decays exponentially: For each r < W ,

lim sup
n→∞

1

n
log P

{

Wn ≤ r
}

< 0.

(ii) The upper error-probability decays sub-exponentially: For each r > W ,

lim
n→∞

1

n
log P

{

Wn ≥ r
}

= 0.

This paper takes a deeper look at the latter phenomenon, providing a detailed understanding
of why it is hard to simulate the mean position of a RRW and, therefore, why care must
be taken drawing deductions regarding average queueing performance from the output of
a simulation. We establish that, in broad generality, the process {n−2

∑n
i=1Wi} satisfies a

Large Deviation Principle (LDP) with a non-trivial rate function. As a consequence, the
likelihood that the sample-mean estimate of a RRW is an overestimate decays on a slower
than exponential scale. The rate function in question is non-convex and this LDP could not,
therefore, be established by asymptotic analysis of scaled cumulant generating functions,
an approach commonly employed in queueing theory and used in the Gärtner-Ellis method.
Unlike the most likely paths of the RRW that lead to a large position which are piece-wise
linear [1][17], we ascertain that that the most likely paths associated with a large simulated
mean possess more complex features: they are concave, with a possible discontinuity when
the path first becomes deviant. A number of examples of these general results are presented
to demonstrate the range of qualitative possibilities.

The results contained in this article clearly indicate that significant statistical care must be
taken when using estimates from simulation of the mean position of a RRW. This has serious
implications for the performance evaluation of queueing systems by simulation techniques
where steady state expected queue-length and waiting time are key performance metrics.
Our results show, in broad generality, that the most natural estimation scheme, Monte Carlo
estimates, of these expected values suffer a likelihood of over-estimation that is, approximately
speaking, Weibull-like with shape parameter 1/2. Consequently, näıve estimation of these
quantities from simulation is likely to underestimate system performance.
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As a concrete illustration of these general results, one example in which the rate function and
most likely paths are explicitly computable can be found in the following proposition.

Proposition 2. Consider the RRW in which the increments process X consists of i.i.d Gaus-
sian random variables with mean −δ < 0 and variance σ2. Then {n−1Wn} satisfies the LDP
in [0,∞) with rate function

IW (z) =















4δ

σ2

√

zδ

6
if z ∈ [0, δ/6],

3

2σ2

(

z +
δ

2

)2

if z ∈ [δ/6,∞).

(2)

As n tends to infinity, the most likely paths of n−1W⌊nt⌋ leading to W n ≥ nz, which we denote
ψ∗ are as follows.

(i) If z ∈ (0, δ/6], then for any T0 ∈ [0, 1 −
√

6z/δ]

ψ∗(t) =







0 if t ∈ [0, T0] ∪ [T0 +
√

6z/δ, 1],

δ(t− T0) − δ

√

δ

6z
(t− T0)

2 for t ∈ [T0, T0 +
√

6z/δ].

(ii) If z ∈ [δ/6,∞), then

ψ∗(t) = 3

(

z +
δ

2

)(

t− t2

2

)

− δt for t ∈ [0, 1].

We return to this example in Section 4.1 where the rate function in equation (2) and two
most likely paths are illustrated in Figure 4.

Proposition 2 and other results that follow concern asymptotics of the doubly scaled sum
n−1W n = n−2

∑n
i=1Wi. The n2 scaling is similar to [4, Theorem 4.1], concerning asymptotics

for the GI/G/1 queue in the light tailed setting. This result proves that the tail of the busy
time distribution decays more slowly than exponentially: limn→∞ n−1 logP

(

B > n2z
)

=
−K√

z for each z > 0 and some K > 0, where B denotes the busy time in steady-state.
The form of the limit can be predicted through scaling arguments: If {n−2B} satisfies the
LDP, it must do so with a rate function of the form K

√
z, as can be seen by considering the

substitution m = n
√

z/y. The rate function for the large deviations of the process {n−1Wn}
is necessarily more complex and, in general, the rate function will diverge more rapidly than√
z as z → ∞.

The rest of this paper is organized as follows. In Section 2 we prove in broad generality that
the sample paths of the rescaled simulated mean n−1Wn satisfy a functional LDP. Using this
LDP, in Section 3 we characterize properties of the most likely paths of the RRW given that
the rescaled simulated mean is large. In Section 4 we present examples including the RRW
with i.i.d. Gaussian increments, the M/D/1 queue, the D/M/1 queue and the M/M/1 queue,
as these exhibit the full range of theoretically possible behaviors.
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2. Functional LDP for the rescaled simulated mean position

We assume that the reader is familiar with the basics of large deviation theory, such as the
definition of the LDP and the statement of the Contraction Principle, as can be found in
[9][7][8][17]. The notation in this paper is as follows. Let C[0, 1] denote the set of continuous
R-valued functions on [0, 1] equipped with the topology induced by the supremum norm,
‖φ‖ = supt∈[0,1] |φ(t)|. Let D[0, 1] denote the space of R-valued cádlág functions on [0, 1]
equipped with the Skorohod (J1) topology [39][3][40] induced by the following metric: for
any two functions φ,ψ ∈ D[0, 1], define

d(φ,ψ) := inf
λ∈Λ

{

max (‖φ ◦ λ− ψ‖, ‖λ − e‖)
}

,

where e is the identity (e(t) = t), and Λ is the set of strictly increasing functions λ from [0, 1]
to [0, 1] that are continuous, with a continuous inverse. Finally, let L[0, 1] ⊂ D[0, 1] denote
the set of functions that have finite variation. Each φ ∈ L[0, 1] has a Lebesgue decomposition
with respect to Lebesgue measure whose absolutely continuous part we denote φ(a) and
whose singular component we denote φ(s), so that φ(t) =

∫ t
0 φ̇

(a)(s)ds+φ(s)(t). Furthermore,

we decompose φ(s) into its positive φ↑ and negative φ↓ parts by the Hahn Decomposition
Theorem.

For each n ∈ N and all t ∈ [0, 1], we define the following scaled sample paths:

xn(t) :=
1

n

⌊nt⌋−1
∑

i=0

Xi, wn(t) :=
1

n
W⌊nt⌋ and w̄n(t) :=

1

n2

⌊nt⌋
∑

i=1

Wi +
1

n2
(nt− ⌊nt⌋])W⌊nt⌋+1.

The first two of these are elements of D[0, 1] and correspond to the paths for the simulated
position of the unconstrained random walk and for the simulated position of the RRW,
respectively. The sample path w̄n is an element of C[0, 1] and is the polygonally approximated
continuous path for the rescaled simulated mean location of the RRW. In particular, note
that w̄n(1) = n−1W n = n−2

∑n
i=1Wi is the rescaled simulated mean of the RRW.

For the general qualitative theorem we make the following assumption.

Assumption 1. The sample paths for the unconstrained random walks {xn} satisfy the LDP
in D[0,1] with good rate function IX .

This assumption is known to hold for a large collection of processes. For example, if X is
an i.i.d. sequence, then define θ↓ := sup{θ > 0 : E[exp(−θX0)] < ∞} and θ↑ := sup{θ > 0 :
E[exp(θX0)] < ∞}. If min{θ↓, θ↑} > 0, then by Cramér’s Theorem [5][7] the partial sums of
{xn(1)} satisfy the LDP in R with the good, convex (local) rate function

I(y) := sup
θ

(θy − log E[exp(θX0)]) , for y ∈ R, (3)
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and Mogul’skii’s Theorem [33] proves that Assumption 1 holds true. The rate function is
typically of the form (e.g [28][34][37][38]):

IX(γ) =

{

∫ 1
0 I(γ̇

(a)(s))ds+ θ↓γ↓(1) + θ↑γ↑(1) if γ ∈ L[0, 1],

+∞ otherwise,
(4)

where θ↓γ↓(1) := 0 if θ↓ = ∞ and γ↓(1) = 0, and θ↑γ↑(1) := 0 if θ↑ = ∞ and γ↑(1) = 0.
Dembo and Zajic [6] have generalized Mogul’skii’s Theorem to include sequences X that
need not be i.i.d, but that satisfy a uniform super-exponential tail condition that ensures
that the generalization of min(θ↓, θ↑) is +∞, as well as a mixing condition that encompasses,
for example, Markov chains that are uniformly ergodic. The resulting rate function for
these processes is also of the form in equation (4), but the cumulant generating function
log E[exp(θX0)] in equation (3) is replaced with the scaled cumulant generating function
limn−1 log E[exp(θ(X0 + · · · +Xn−1))].

Theorem 3. The following hold under Assumption 1:

(i) The sequence of rescaled paths of the simulated mean of the RRW {w̄n} satisfies the
LDP in C[0, 1] with rate function

IW (φ) = inf
γ∈L[0,1]

{

IX(γ) :

∫ t

0
sup
s≤t

(γ(t) − γ(s)) dt = φ(t) for all t ∈ [0, 1]

}

.

(ii) If IX is of the form in equation (4), then IW is only finite at those functions φ such

that φ̇ exists, φ̇ is non-negative and φ̇ is an element of L[0, 1], in which case

IW (φ) =

∫ 1

0

(

I(φ̈(a)(s))1{φ̇(s)>0} + inf
y≤0

I(y)1{φ̇(s)=0}

)

ds+ θ↓φ̇↓(1) + θ↑φ̇↑(1). (5)

Proof. The proof of the first assertion follows from the contraction principle (e.g. [7, The-
orem 4.2.16]) after noting the following. The Skorohod map, f(γ)(t) = γ(t) − infs≤t γ(s),
is continuous from D[0, 1] to D[0, 1] (e.g. [40, Theorem 13.5.1]) and f(xn)(t) = wn(t). The
integration map, g(ψ)(t) =

∫ t
0 ψ(s) ds is continuous from D[0, 1] to C[0, 1] (e.g. [40, Theorem

11.5.1]) and g(wn)(t) = w̄n(t).

For the second assertion, if φ is such that φ̇ does not exist, takes negative values or is not
an element of L[0, 1], then IW (φ) = +∞, as can be seen from the contraction principle. If φ̇
exists, is non-negative and is an element of L[0, 1], then

IW (φ) = inf
γ∈L[0,1]

{
∫ 1

0
I(γ̇(a)(s)) ds + θ↓γ↓(1) + θ↑γ↑(1) :

sup
s≤t

(γ(t) − γ(s)) = φ̇(t) for all t ∈ [0, 1]

}

.
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If φ̇(t) > 0, then γ must satisfy φ̈(a)(t) = γ̇(a)(t). As φ̈(a)(t) = 0 for almost all t such that
φ̇(t) = 0, if φ̇(t) = 0 we are free to choose γ̇(a)(t) = infy≤0 I(y) to minimize the rate function.
The singular parts φ̇↓ and φ̇↑ must be mimicked by γ(s). In order to minimize the rate
function, γ(s) is unchanging everywhere else, leading to the result. ⊓⊔

The rate function in equation (5) can be understood as follows. In order to see the rescaled
simulated mean sample path φ, in the integral one must locally pay for changes in the incre-
ments process so long as the location is positive. If the location is zero, then the increments
can take their most likely value less than or equal to zero. The singular parts of the location
are matched by singular parts in the increments.

3. Most likely RRW paths to a large simulated mean position

Considering Theorem 3 in conjunction with the contraction principle and the projection
φ 7→ φ(1), roughly speaking, we can deduce that

P

{

1

n2

n
∑

i=1

Wi ≈ z

}

∼ exp

(

−n inf
φ∈C[0,1]

{

IW (φ) : φ(1) = z
}

)

.

Thus consider the following minimization problem:

inf
φ∈C[0,1]

{

IW (φ) : φ(1) = z
}

.

If IX is of the form in equation (4), then this problem can be rewritten in terms of the fluid
limit paths of the RRW:

minimize J(ψ)

subject to ψ ∈ L+[0, 1] and

∫ 1

0
ψ(s) ds = z,

(6)

where L+[0, 1] is the set of non-negative elements of L[0, 1] and the objective function is

J(ψ) :=

∫ 1

0

(

I(ψ̇(a)(s))1{ψ(s)>0} + inf
y≤0

I(y)1{ψ(s)=0}

)

ds+ θ↓ψ↓(1) + θ↑ψ↑(1). (7)

The evaluation of the optimization (6) and the identification of properties of its infimal
argument (or arguments) are the subject of the rest of this paper. That is, we wish to identify
properties of the most likely fluid simulated RRW paths that give rise to the simulated
mean position being unusually large. These optimizers are most likely paths in the sense
that if G is any measurable neighborhood of the set of minimizing arguments to (6) and
G = {φ : φ(t) =

∫ t
0 ψ(s) ds for some ψ ∈ G}, then limn→∞ P{w̄n ∈ G} = 1. This follows, for

example, by [24, Theorem 2.2].

In addition to Assumption 1, the following assumption is in force throughout the rest of this
article.
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Assumption 2. The rate function IX is of the form in equation (4), where I is a good,
convex rate function, and there exists δ > 0 such that I(−δ) = 0, so that the RRW is stable.

Note that as I is a rate function, it is lower semi-continuous. The maximal value for which
it is finite is denoted by

r̄ := sup{r : I(r) <∞}. (8)

Suppose that I is a non-coercive function: r̄ <∞ and limr↑r̄ I(r) <∞. Then the limit must
coincide with I(r̄), which is thus finite. This is needed to ensure the existence of optimal
paths. Note also that I being non-coercive is mutually exclusive with θ↑ <∞, which requires
I(r) <∞ for all positive r.

Theorem 4. An optimal solution to the optimization problem (6) exists, and any optimal
solution ψ∗ satisfies the following properties: There exists 0 ≤ T0 < T1 ≤ 1 such that,

(i) ψ∗(t) > 0 on the open interval (T0, T1) and ψ∗(t) = 0 for t ∈ [0, 1] \ [T0, T1];

(ii) ψ∗ is concave on [T0, T1];

(iii) ψ∗ is continuous on (T0, T1], with a possible jump at t = T0.

The proofs of this theorem and the two that follow are postponed to the end of this section.

The time T0 is taken to be the minimal time that a path is non-zero and T1 the maximal
time that it is non-zero:

T0 := inf{t ≥ 0 : ψ(t) > 0} and T1 := sup{t ≤ 1 : ψ(t) > 0}. (9)

If 0 < r̄ <∞, then we define

T 0
0 := sup{t ≥ 0 : d

dt

−
ψ(t) = r̄}. (10)

If the supremum is over an empty set then we take T 0
0 = T0; hence the inclusion T 0

0 ∈ [T0, T1]
follows from the definitions. The following theorem identifies the structure of the most likely
path for t between T 0

0 and T1. The one that follows it identifies how most likely paths must
end.

Theorem 5. Let 0 ≤ T0 ≤ T 0
0 < T1 ≤ 1 denote the values given in (9) and (10). Then for

ψ∗ to be an optimal path, there must exist constants b ∈ R and λ∗ > 0 such that

∇I(ψ̇∗(t)) = b− λ∗t for all T 0
0 < t < T1. (11)

In particular, if I is coercive, then T 0
0 = T0 and equation (11) is satisfied for all t such that

ψ∗(t) > 0.



9

Theorem 6. Suppose that T 0
0 < T1. Then d

dt

−
ψ∗(t)|t=T1

= −δ and b = λ∗T1 in equation
(11).

As well as providing insight into the structure of the most likely paths, Theorems 4, 5 and 6
enable the reduction of the problem (6) from an infinite dimensional optimization to a finite
dimensional optimization problem that can be readily solved numerically, if not analytically.

Proposition 7. Given z > 0, define the subset Sz ⊂ L+[0, 1] of potential solutions to be the
collection of functions ψ◦ such that, for some 0 ≤ T0 < T1 ≤ 1 and T 0

0 ∈ [T0, T1]:

(i) ψ◦(t) = 0 for t ∈ [0, T0) ∪ (T1, 1];

(ii) if T1 < 1, then ψ◦(T1) = 0;

(iii)
∫ T1

T0
ψ◦(t)dt = z.

(iv) if T 0
0 < T1, then d

dt

−
ψ∗(t)|t=T1

= −δ.

(v) ∇I(ψ̇∗(t)) = λ∗(T1 − t) for all t ∈ (T 0
0 , T1).

If I is coercive and θ↑ = ∞, then in addition to (i)-(v):

• T 0
0 = T0;

• ψ◦ has no discontinuities.

If I is coercive and θ↑ <∞, then in addition to (i)-(v):

• T 0
0 = T0;

• if ψ◦ has a discontinuity, it is at T0.

If I is non-coercive (which ensures that θ↑ = ∞), then in addition to (i)-(v):

• ψ̇◦(t) = r̄ for t ∈ [T0, T
0
0 );

• ψ◦ has no discontinuities.

The problem (6) is then equivalent to

minimize I(r̄)(T 0
0 − T0) +

∫ T1

T 0

0

I(ψ̇◦(s))dt + ψ◦↑(T0)θ
↑

subject to ψ◦ ∈ Sz.

(12)
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After proving Theorems 4, 5 and 6, in Section 4 we will use the reduced representation of the
problem defined in equation (12) in the consideration of illustrative examples.

The following lemma will be used to establish properties of an optimal fluid trajectory.

Lemma 8. Suppose that ψ0 is a fluid trajectory satisfying z(0) :=
∫ 1
0 ψ

0(s) ds <∞.

(i) For any d ≥ 0 and t ∈ [0, 1] define ψd(t) = max(0, ψ0(t)− d), and z(d) :=
∫ 1
0 ψ

d(s) ds.
Then z( · ) is convex and non-increasing as a function of d.

(ii) If ψ◦↑(1) = 0 then J(ψd) is non-increasing as a function of d.

Proof. For each t, the function of d given by ψd(t) = max(0, ψ0(t) − d) is convex and
non-increasing. It follows that its integral over time is also concave and non-increasing.

Part (ii) then follows from the definition of J given in equation (7). ⊓⊔

Proof of Theorem 4.. We first establish the existence of an optimizer, which follows from
topological arguments. The objective function J : D[0, 1] 7→ [0, 1] is defined for elements of
L+[0, 1] in equation (7); set J(ψ) = +∞ for ψ 6∈ L+[0, 1]. The function J is lower semi-
continuous and has compact level sets as it is the good rate function for the LDP of the
sample path process {wn}. With domain D[0, 1], the mapping ψ 7→

∫ 1
0 ψ(s) ds is continuous

(e.g. [40, Theorem 11.5.1]), so that the set {ψ ∈ D[0, 1] :
∫ 1
0 ψ(s) ds = z} is closed. In a

Hausdorff space, the infimum of a lower semi-continuous function with compact level sets
is attained on closed sets (e.g. [17, Lemma 4.1]). Thus if the infimum in (6) is finite, it is
attained at some ψ∗ ∈ L+[0, 1] such that

∫ 1
0 ψ

∗(s) ds = z.

Regarding the properties of an optimizer ψ∗, note first that it is obvious that ψ↓(1) = 0: By
removing downward jumps we reduce J(ψ), while increasing the area

∫ 1
0 ψ(s) ds. On letting

ψ0 denote the new trajectory, and setting z(d) :=
∫ 1
0 ψ

d(s) ds, Lemma 8 then implies that
z(d) = z for some d ≥ 0, with J(ψd) ≤ J(ψ).

We assume without loss of generality that the closure of {t : ψ(t) > 0} is equal to the interval
[T0, T1] (where the endpoints are defined in (9)): If there exist times t0 < t1 satisfying t0 ≥ T0,
t1 ≤ T1, and ψ(t) = 0 for t ∈ (t0, t1), then the trajectory can be shifted as follows,

ψ0(t) =











ψ(t) t ∈ [T0, t0]

ψ(t+ (t1 − t0)) t ∈ [t0, 1 − (t1 − t0)]

max(0, ψ(1) + (1 − (t1 − t0) − t)δ) t ∈ (1 − (t1 − t0), 1).

Once again, on setting z(d) :=
∫ 1
0 ψ

d(s) ds, we have z(0) ≥ z, and on applying Lemma 8 we
have z(d) = z for some d ≥ 0, with J(ψd) ≤ J(ψ).
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Next, we assume without loss of generality that T0 = 0: We can replace ψ by,

ψ0(t) =

{

ψ(t− T0) t ∈ [0, 1 − T0]

max(0, ψ(1 − T0) + (1 − T0 − t)δ) t ∈ (1 − T0, 1).

An application of Lemma 8 again shows that J(ψd) ≤ J(ψ0) = J(ψ), and z(d) = z =
∫ 1
0 ψ(t) dt for some d ≥ 0.

We can now prove (iii): Figure 1 illustrates why a jump following time T0 cannot be optimal.
A formal proof can be performed through construction as in the previous steps. We define,
for any ψ, the new trajectory with ψ0(0) = ψ(0), and

ψ0(t) = ψ↑(1) + ψ(t), 0 < t ≤ 1.

We have J(ψ0) = J(ψ), and
∫ 1
0 ψ

0(s) ds ≥
∫ 1
0 ψ(s) ds. Applying Lemma 8 we have z(d) = z

for some d ≥ 0, with J(ψd) ≤ J(ψ). This proves (iii).

ψ(t) ψ0(t)

t t t

J(ψ0) = J(ψ)

Area
0

≥ Area

ψ(t)

ψ0(t)

Figure 1: A jump for t > T0 cannot be optimal. The rate functional evaluated at the two paths ψ and ψ0 is
the same, yet the area is greater using ψ0.

Similar reasoning establishes concavity of an optimal path — Figure 2 shows a transformation
of a given trajectory to form a new trajectory with reduced value J(ψ0), but strictly greater
area. Applying Lemma 8 we obtain (ii). Part (i) then follows from (ii). ⊓⊔

t tt

ψ(t) ψ0(t) J(ψ0) ≤ J(ψ)

Area
0

≥ Area

ψ(t)

ψ0(t)

Figure 2: An optimal path is concave on (T0, T1). Convexity of I(r) implies that J(ψ0) ≤ J(ψ), yet the area
is greater using ψ0.
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Proof of Theorem 5.. From Theorem 4, if ψ∗ is an optimal solution for (6) then it is
continuous apart from at T0; if T1 < 1, then ψ∗(T1) = 0. Thus (6) can be considered as
identifying

inf
ψ(T0)≥0

inf
T1≤1

inf
T 0

0
≤z/r̄

{

(T 0
0 − T0)I(r̄) +

∫ T1

T 0

0

I(ψ̇(t))dt + θ↑ψ(T0) (13)

: (T 0
0 − T0)

2 r̄

2
+ (T1 − T0)ψ(T0) +

∫ T1

T 0

0

ψ(t)dt = z, ψ(T1) = 0 if T1 < 1

}

,

For fixed T0, ψ(T0), T1 and T 0
0 , we are left to consider finding the solution of a problem of

the following kind:

minimize

∫ T

0
I(ψ̇(t)) dt

subject to

∫ T

0
ψ(s) ds = z′.

If ψ is feasible path, then integration by parts gives

∫ T

0
tψ̇(t) dt = Tψ(T ) − z′. (14)

Introduce the Lagrangian

L(ψ, λ) =

∫ T

0
I(ψ̇(t)) dt + λ

(

∫ T

0
tψ̇(t) dt + z′ − Tψ(T )

)

.

There exists λ = λ∗ so that complementary slackness holds. Hence the optimizer ψ∗ of (6)
also minimizes L(ψ, λ∗) over all ψ. The constant λ∗ exists by [27, (Theorem 1 of Section
8.3)], which only requires feasibility of (14) for z′′ in a neighborhood of z′ (which is true
when T 0

0 < T1. If T 0
0 = T1 then there is nothing to prove).

If ψ∗ minimizes the Lagrangian, and if δ represents a perturbation satisfying δ(t) = 0 for
t ∈ (T 0

0 , T1)
c, then,

0 =
d

dθ
L(ψ∗ + θδ, λ∗)

∣

∣

∣

θ=0
=

∫ T

0
[∇I(ψ̇(t)) + λ∗t]δ̇(t) dt

It follows that there exists a constant b such that

∇I(ψ̇(t)) = b− λ∗t for a.e. t ∈ (T 0
0 , T1).

Returning to problem (13), this implies that irrespective of the optimal values of T0, ψ(T0),
T 0

0 or T1, the optimal path satisfies ∇I(ψ̇∗(t)) = b− λ∗t for t ∈ (T 0
0 , T1). ⊓⊔
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Area: O(ε2)

T1 − ε T1

− δ̄

ψ(t)

ψ(t)

ψ0(t)

Slope  −δ
Slope  −δ

t0 = bε2t t

J(ψ0) ≤ J(ψ)

Area
0

≥ Area

Figure 3: An unnatural slope is costly near t = T1.

Proof of Theorem 6.. Figure 3 illustrates the idea of the proof in the special case T1 < 1.

Let δ̄ = − d
dt

−
ψ(t)|t=T1

, and suppose that δ̄ < δ. We will construct a new trajectory ψ0 with
a lower value of J(ψ0), and increased area. An application of Lemma 8 will then show that
ψ cannot be optimal.

We henceforth assume without loss of generality that T0 = 0. Concavity of ψ on [0, T1]
implies that d

dtψ(t) ≥ −δ̄ for all t ∈ (T0, T1). The main idea of the proof (as illustrated in the
figure) is as follows: For given ε > 0, the cost contribution to J(ψ) over [T1 − ε, T1] is greater
than εI(−δ̄) = O(ε) if δ̄ < δ. However, the additional area obtained is bounded by O(ε2).

We let −δ0 denote the right derivative, following a possible jump:

δ0 = − lim
t↓0

d
dtψ(t)

For fixed ε > 0, b > 0, let t0 = bε2, and let ψ0 denote the concave function defined by
ψ0(0+) = ψ(0+), with derivatives for t > 0 defined as follows:

d
dtψ

0(t) =











−δ0 t ∈ (0, t0]
d
dtψ(t− t0) t ∈ (t0, T1 + t0 − ε]

−δ t > T1 + t0 − ε (provided ψ0(t) > 0).

(15)

For b sufficiently large, we have
∫ 1
0 ψ

0(s) ds ≥
∫ 1
0 ψ(s) ds for all ε > 0 sufficiently small. For

the same constant b we also have J(ψ0) ≤ J(ψ) − O(ε) + O(ε2), so that J(ψ0) ≤ J(ψ) for
sufficiently small ε > 0. Fixing b and ε so that these bounds hold, we then apply Lemma 8 to
conclude that z(d) = z for some d ≥ 0, with J(ψd) ≤ J(ψ0) ≤ J(ψ). The second statement

of the theorem follows from d
dt

−
ψ∗(t)|t=T1

= −δ and Theorem 5 on noting that ∇I(−δ) = 0.

⊓⊔

4. Examples

4.1. Coercive rate function: continuous paths

We present two examples with coercive rate functions. One is the RRW with Gaussian
increments. Here the rate function and most likely path can be determined explicitly. The
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RRW in the second example corresponds to the queue-length at departures of an M/D/1
queue with batch services. In this case, identification of the rate function and the most likely
paths requires the solution of two transcendental equations, which can be readily obtained
numerically.

Gaussian increments. Let X be i.i.d. Gaussian, withX0 having mean −δ < 0 and variance
σ2. Then the conditions of Mogul’skii’s Theorem are met with θ↓ = θ↑ = +∞ and the local
rate function is

I(x) =
1

2σ2
(x+ δ)2.

As θ↓ = θ↑ = +∞ the sample path rate function IX is only finite at absolutely continuous
functions.

Without loss of generality, assume that T0 = 0 and define T = T1 (so that T represents
T1 − T0). By Proposition 7, to solve the problem (12) for a given z > 0, for each T ∈ (0, 1]
we first identify paths ψ◦ that satisfy ∇I(ψ̇◦(t)) = λ∗(T − t) in [0, T ] and ψ̇◦(T ) = −δ, which
leads to candidate solutions satisfying

ψ̇◦(t) = σ2λ∗(T − t) − δ.

If T < 1, then in addition we have that ψ◦(T ) = 0 and
∫ T
0 ψ◦(t) dt = z giving σ2λ∗ = 2δ/T

and T =
√

6z/δ. Note that T < 1 only if 6z < δ and therefore the optimal path is

ψ∗(t) = δt − δ

√

δ

6z

t2

2
for t ∈ [0, T ] if z < δ/6. (16)

If T = 1, then we have that c := ψ◦(1) ≥ 0 and
∫ 1
0 ψ

◦(t) dt = z, giving σ2λ∗ = 2(c + δ) and
c = 3/2(z − δ/6). Note that c ≥ 0 only if 6z ≥ δ and therefore the optimal path is

ψ∗(t) = 3

(

z +
δ

2

)(

t− t2

2

)

− δt for t ∈ [0, 1] if z ≥ δ/6. (17)

Evaluating
∫ T
0 I(ψ̇∗(t)) dt, for ψ∗(t) defined in equations (16) and (17), we obtain the rate

function IW (z) presented in equation (2), Proposition 2, which can be found in Section 1.

With δ = 1 and σ2 = 1, the rate function defined in equation (2) is plotted on the left in
Figure 4. It is concave for z ≤ 1/6 and then convex for z ≥ 1/6. Thus it is not possible that
this LDP could be proved, or its rate function identified, by Gärtner-Ellis style methods that
rely on convexity. The transition at z = 1/6 occurs when the most likely paths change from
returning to 0 within the interval to paths that end with a non-zero position. This explains
the dramatic change in shape of the rate function at that point.

Two most likely fluid RRW paths given that Wn ≈ nz for are shown on the right in Figure 4.
The higher path has z = 1/3, while the lower path has z = 1/7. Note that, for the lower
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 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

IW̄ (z)

z

Figure 4: Coercive rate function example: i.i.d. Gaussian increments. On the left hand side is I
W

(z) versus

z. Shown on the right hand side are most likely RRW paths, ψ∗(t) ≈ n−1W⌊nt⌋, given that Wn ≈ nz.

path, all paths of this shape that start in the interval [0, 1 −
√

6z] are most likely paths to
the deviation. That is, there is no single most likely path, just a most likely shape that can
occur anywhere within in [0, 1].

M/D/1 queue-lengths. A second coercive example, albeit one that requires numerics for
its ultimate solution, is when X is i.i.d., with X0 having Poisson distribution with rate α and
mean −δ = α − µ (µ ∈ N), P{X0 = k} = e−ααk+µ/(k + µ)! for k = −µ,−µ+ 1, . . .. In this
setting, the RRW defined in equation (1) corresponds to the queue-length of an M/D/1 queue
with batch µ services, where the queue-length is observed at customer departures. That is,
at each service the minimum of the current queue-length and µ customers are processed in a
single batch. Between services, a Poisson(α) number of customers arrive to the queue.

The conditions of Mogul’skii’s Theorem are met with θ↓ = θ↑ = +∞ and the local rate
function is

I(x) = α− (x+ µ) + (x+ µ) log

(

x+ µ

α

)

if x > −µ

and I(x) = ∞ if x ≤ −µ. The sample path rate function IX is only finite at absolutely
continuous functions.

Again, without loss of generality assume that T0 = 0 and define T = T1. For a given z > 0,
for each T ∈ (0, 1] we first identify paths ψ◦ that satisfy ∇I(ψ̇◦(t)) = λ∗(T − t) in [0, T ] and
ψ̇◦(T ) = −δ, which leads to candidate optimal paths of the following form:

ψ̇◦(t) = αe−λ
∗(t−T ) − µ.

Integrating, we have that

ψ◦(t) =
α

λ∗
eλ

∗T
(

1 − e−λ
∗t
)

− µt.

If T < 1, using the constraint ψ◦(T ) = 0 gives the following equation for λ∗ in terms of T

α

λ∗

(

eλ
∗T − 1

)

− µT = 0.
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If T = 1 and c := ψ◦(1) we have the following equation for λ∗ in terms of c:

α

λ∗

(

eλ
∗ − 1

)

− µ− c = 0.

Both of these are transcendental equations, but can be readily solved numerically for λ∗.
Once λ∗ is known, the constraint

z =

∫ T

0
ψ◦(t) dt =

α

λ∗
eλ

∗T

(

T − 1

λ∗

)

+
α

(λ∗)2
− µT 2

2
,

gives a transcendental equation for T or c (= ψ◦(1)) in terms of z and identifies the solution
ψ∗ which determines the rate function

IW (z) =

∫ T

0
I(ψ̇∗(t)) dt = (α− µ)T − ψ(T ) +

α

λ∗

(

eλ
∗T (λ∗T − 1) + 1

)

.

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2  0.3  0.4  0.5

IW̄ (z)

z  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

z = 0.131
z = 0.798 ψ∗(t)

t

Figure 5: Coercive rate function example: M/D/1 queue-lengths, Poisson increments. On the left hand side
is I

W
(z) versus z. Shown on the right hand side are most likely RRW paths, φ∗(t) ≈ n−1W⌊nt⌋, given that

Wn ≈ nz.

With α = 0.5 and µ = 1.0, the numerically calculated rate function is plotted on the left in
Figure 5. The transition from concave to convex again occurs when the most likely path has
both T = 1 and c :=ψ◦(1) = 0. Two example most likely paths are plotted on the right hand
side of Figure 5, which display similar features to the most likely paths as for the Gaussian
increments RRW.

4.2. Coercive rate function: paths with jumps

D/M/1 waiting times. Let X be i.i.d. with P (X0 ≥ x) = exp(−α(x + µ−1)) for x ≥
−µ−1 giving E(X0) = α−1 − µ−1 := −δ. We assume that µ < α so that δ > 0. Then
the RRW defined in equation (1) corresponds to waiting times at a stable D/M/1 queue,
where customers arrive at regular intervals of length µ−1 and experience i.i.d. exponentially
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distributed service times with mean α−1. Cramér’s Theorem holds for {xn(1)} with rate
function

I(x) =







α

(

x+
1

µ

)

− log

(

α

(

x+
1

µ

))

− 1 if x ∈ (−µ−1,∞),

∞ otherwise,

which is coercive, so that T 0
0 = T0 for the optimal path. However, θ↑ = α so that the

possibility of an initial jump in the most likely path cannot be discounted.

Again, without loss of generality, assume that T0 = 0 and define T = T1. Using ∇I(ψ̇◦(t)) =
λ∗(T − t) and the constraint ψ̇◦(T ) = −δ = 1/α− 1/µ, candidate solutions must satisfy

ψ̇◦(t) =
1

α+ λ∗(t− T )
− 1

µ
for all t ∈ (0, T )

and hence, for some initial jump ψ◦(0) = a ≥ 0,

ψ◦(t) = a+
1

λ∗
log

(

α+ λ∗(t− T )

α− λ∗T

)

− t

µ
for t ∈ [0, T ].

If T < 1, then in addition we have that ψ◦(T ) = 0, which gives the following equation:

α− λ∗T − α exp

(

λ∗
(

a− T

µ

))

= 0.

If T = 1, then we have that c := ψ◦(T ) ≥ 0, which implies that

α− λ∗ − α exp

(

λ∗
(

a− c− 1

µ

))

= 0.

Treating a (= ψ◦(0)) as given, these two transcendental equations can be readily solved for

λ∗. Finally we have the constraint that
∫ T
0 ψ◦(t) = z, so that

z = T

(

a− 1

λ∗

)

+
α

(λ∗)2
log

(

α

α− λ∗T

)

− T 2

2µ

and

aα+

∫ T

0
I(ψ̇◦(t)) dt = α

(

a+ ψ◦(T ) +
T

µ

)

− 2T +

(

α− λ∗T

λ∗

)

log

(

α

α− λ∗T

)

.

For given a ≥ 0, having solved the transcendental equations, the most likely path and its
associated rate can be calculated. Optimization over a can then be performed numerically.

For example, with α = 2 and µ = 1, the rate function is plotted on the left hand side of
Figure 6. It looks similar to the earlier examples, but is asymptotically linear with slope
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ψ∗(t)

Figure 6: Coercive rate function with jumps example: D/M/1 waiting times, i.i.d. Exponential increments.
On the left hand side is I

W
(z) versus z. Shown on the right hand side are most likely RRW paths, φ∗(t) ≈

n−1W⌊nt⌋, given that Wn ≈ nz.

α. The reason for this is best explained by considering the most likely path shown on the
right hand side of Figure 6. For small z, ψ◦(0) = a = 0 and no jump occurs at the start
of the most likely path. However, once z is sufficiently large (approximately 1.67 for these
parameters), the most likely path has a jump at 0 followed by a vertically shifted version of
the largest-area most likely path that doesn’t have a jump, as illustrated in Figure 6. The
increase in the rate function for the shift of height ψ◦(0) = a (gaining area a over the interval
[0, 1]), is aα, which is why the rate function is ultimately linear with slope α.

4.3. Non-coercive rate function: rate-constrained paths

M/M/1 queue-length. Let X be a Bernoulli sequence taking values −1 and +1 with
α = P{X0 = +1} < P{X0 = −1} = 1 − α. The RRW in equation (1) corresponds to the
queue-length of an M/M/1 queue observed at arrivals and departures. We have θ↑ = θ↓ =
+∞. The increments rate function I is infinite outside [−1, 1] and is non-coercive with r̄ = 1:

I(x) =
1 + x

2
log

(

1 + x

2α

)

+
1 − x

2
log

(

1 − x

2(1 − α)

)

and r̄ = 1.

Note that IW (z) = +∞ if z > 1/2; if z = 1/2, then T 0
0 = T = 1 and ψ∗(t) = t so that

IW (z) = − log(α). Without loss of generality, let T0 = 0 and define T = T1. Assume that

T 0
0 < T . The equation ∇I(ψ̇◦(t)) = λ∗(T − t) with the boundary condition ψ̇◦(T ) = −δ =

2α − 1 gives

ψ̇◦(t) =







1 if t ∈ [0, T 0
0 ]

α exp(2λ∗(T − t)) − (1 − α)

α exp(2λ∗(T − t)) + 1 − α
if t ∈ (T 0

0 , T ].
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By integrating, we are looking at proposed solutions

ψ◦(t) =











t if t ∈ [0, T 0
0 ]

2T 0
0 − t+

1

λ∗
log

(

αe2λ
∗(T−T 0

0
) + 1 − α

αe2λ∗(T−t) + 1 − α

)

if t ∈ (T 0
0 , T ].

If T < 1, then ψ◦(T ) = 0 gives

αe2λ
∗(T−T 0

0
) − eλ

∗(T−2T 0

0
) + 1 − α = 0

and, in particular, if T 0
0 = 0, then λ∗ = log((1−α)/α)/T . While if T = 1, then c :=ψ◦(T ) ≥ 0

(c < 1) gives the following equation for λ∗

αe2λ
∗(1−T 0

0
) − eλ

∗(c+1−2T 0

0
) + 1 − α = 0. (18)

Note that this equation only has a positive solution for c ∈ (max{0, 2α− 1 + 2(1−α)T 0
0 }, 1).

The lower bound embodies the fact that the optimal path has ψ̇∗(t) ≥ 2α− 1 and therefore
c = ψ∗(1) = T 0

0 +
∫ 1
T 0

0

ψ̇∗(t) dt ≥ 2α−1+2(1−α)T 0
0 . Once λ∗ is identified, one can numerically

evaluate the integral

z =

∫ T

0
ψ◦(t) dt.

For example, with α = 1/3, Figure 7 plots the numerically evaluated rate function IW (z)
versus z. The initial shape of the rate function is similar to

√
x, but, as can be seen clearly

in the graph, once z is sufficiently large that the optimal path has c > 0, the rate function
increases dramatically.

IW̄ (z)
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Figure 7: Non-coercive rate function example: M/M/1 queue-lengths, Bernoulli increments. On the left hand
side is I

W
(z) versus z. Shown on the right hand side are most likely RRW paths, φ∗(t) ≈ n−1W⌊nt⌋, given

that Wn ≈ nz.

For z < 0.0682, the optimal value of T1 is less than 1 and the numerically-identified most
likely path occurs with T 0

0 = 0. For z > 0.0682, T = 1 and the optimal path also has T 0
0 = 0
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apart from, possibly, as z → 1/2. The reason for this caveat is that the cost of a path with
T 0

0 = 0 becomes numerically indistinguishable from those with T 0
0 > 0 if z ≈ 1/2. To see this,

note that as z ↑ 1/2, c ↑ 1, so that if T 0
0 = 0, then λ∗, the solution of equation (18), tends

to 1 and the most likely path to large simulated mean has slope close to 1 for a substantial
range of t. This is illustrated in the higher paths on the right in Figure 7 corresponding to
the most likely path for the deviation z ≈ 0.45. For this path λ∗ ≈ 0.941. Note that the
slope is nearly 1 until near t = 0.85, even though technically T 0

0 = 0.

4.4. Simulations

One of the strong deductions of these sample-path arguments is the prediction of the most
likely path that gives rise to a large simulated mean. To illustrate the merits of these predic-
tions we conducted simulations of the RRW in two settings: Gaussian i.i.d. increments, and
the M/M/1 queue example introduced in Section 4.3.

In each case, the RRW was simulated for a fixed number of steps n ≥ 1, and the simulation
was repeated 2 × 108 times. Of these simulated RRWs, the one with the largest simulated
mean was recorded and compared with the theory laid out in Section 4. This theory predicts
the approximation W[t] ≈ nφ∗(t/n) for t ∈ [0, n]. The results from two experiments are
illustrated in Figure 8.

Theory:

Observed:

 0

 4

 8

 12

 16

 20

 0  10  20  30  40  50

Theory:

Observed:

 0  20  40 10  30
 0

 5

 10

 15

 20

Figure 8: RRW with i.i.d. increments. The figure shown on the left hand side shows experiments obtained
with Gaussian increments. On the right hand side are results obtained for the M/M/1 queue model in which
the increments take on values ±1. In each case, the observed path has the largest simulated mean out of
2×108 sampled paths. Also, shown in each figure is the corresponding theoretical prediction of the most likely
path, given the observed simulated mean.

In the first experiment illustrated on the left hand side, the increments of the random walk
were taken to be i.i.d. Gaussian with δ = 0.5, σ2 = 1 and the time-horizon n = 50. The
second experiment used the M/M/1 queue example found in Section 4.3 with α = 0.3 and
n = 40. In each experiment, the observed sample path is plotted along with the theoretical
prediction corresponding to the observed simulated mean. The theory’s quantitative power
in predicting the shape of the most likely path is apparent in these figures.
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5. Discussion

As a final remark, we have mentioned that our fundamental hypothesis, Assumption 1, en-
compasses the light tailed setting in the absence of long range dependence. However, by
changing the speed of the LDP, this assumption also holds for certain long range dependent
processes. For example, in continuous time it is known, e.g. [9][35][29], that fractional Brow-
nian Motion (fBM) with Hurst parameter H satisfies the LDP at speed n2(1−H) in D[0, 1].
As the nature of the speed does not enter the proof of Theorem 3, the first conclusion of that
theorem holds for these processes. However, even for the canonical example of fBM the rate
function is not of the integral form in equation (4) and thus, in the long range dependent
setting, it is hard to deduce if any general properties exist for the most likely paths to a large
simulated mean.
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