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Existence and Uniqueness of Fair Rate
Allocations in Lossy Wireless Networks

Vijay G. Subramanian, Ken R. Duffy and Douglas J. Leith

Abstract—To extend established concepts of fair resource
allocation in wired networks to wireless networks, wired
model assumptions must be adapted to be relevant for
wireless networks as for example, in wireless networks losses
due to environmental conditions may occur even in the
absence of queueing congestion. Thus fundamental questions
of the existence and uniqueness of fair rate allocations must
be reconsidered. We treat wireless networks characterized
by lossy channels, spatial channel reuse, multiple routes
and multiple frequencies. We establish the existence and
uniqueness of utility fair and max-min fair solutions and
that, as loss rates decrease, fair allocations converge to the
loss-less ones.

Index Terms—Lossy Networks; Utility Fairness; Max-
Min Fairness; Location of Bottlenecks; Convergence of Fair
Solutions

I. INTRODUCTION

There is considerable interest in achieving fair re-
source allocation in multi-hop wireless networks. Most
contemporary work focuses on identifying algorithms that
enable the discovery of max-min fair solutions, e.g. [1]–
[6]. Some of this work treats wireless-network specific
features such as frequency reuse at non-interfering dis-
tances. However, with the notable exception of [9], the
only works that we are aware of that explicitly treat the
lossy nature of wireless networks, such as [7], [8], do so
by assuming that losses are sufficiently small that they
can be ignored at each hop and tallied at the receiver
when calculating utility. This is equivalent to assuming
losses only occur at the receiver and we refer to it as the
last-link loss approximation. Here we consider the case
where losses can occur at any (and every) link and this
is reflected in the output of each link. We show that this
can yield significantly different fairness solutions to those
given by the last-link loss approximation.

There are two ways one could extend notions of the
utility of a flow to wireless networks. One is to make
each flow’s utility be a function of the bandwidth it
receives at each link. The other, which we adopt, is
to define the utility of a flow to be a function of its
goodput at the receiver, so that a flow gets no utility for
data lost in transit. This ties in naturally with max-min
fairness, where it is clear that fair solutions should be
determined by their receive-rate. Starting from this view-
point, the mathematical framework we introduce enables
us to establish the fundamental questions of existence and
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uniqueness of utility fair and max-min fair solutions for
lossy networks that have multiple routes, resource reuse
at non-interfering distances and multiple transmit/receive
antennas. We prove that as loss rates converge to zero,
the utility fair and max-min fair solutions converge to
their loss-less equivalents. A by-product of our formu-
lation enables us to deduce that with the last-link loss
approximation utility fair and max-min fair solutions
also converge to their loss-less equivalents. This helps to
justify that approximation in the presence of low levels
of loss, but we also demonstrate by example that it can
lead to inaccurate solutions.

We introduce a generalized notion of bottleneck links
and prove that max-min fair solutions can be characterized
by (and characterize) each flow’s bottlenecked links, but
introduce an example that demonstrates bottlenecked links
do not necessarily converge as loss rates tend to zero
even though the corresponding max-min fair solutions do.
Through examples, we show how the framework can be
used to study the nature of fair solutions in WiFi mesh
networks with lossy links and illustrate new phenomena
in the fair solutions that occur in wireless networks.

II. MODEL ASSUMPTIONS

Concepts of fair allocation of bandwidth in wired net-
works date back to at least the early 1980s. A summary of
early developments can be found in [10], where the focus
was originally on max-min fairness. The introduction of
the notion of proportional fairness [11], which is equiva-
lent to maximizing the sum of a concave utility function
of the goodput of each flow, was a major development.
While max-min fairness cannot be placed directly in that
framework, it arises as the limit of a sequence of the
widely adopted (w,α) fair solutions [12]. Fundamental
assumptions in wired network frameworks include: (1)
flows are modeled as fluid; (2) each link has a fixed
capacity that can be allocated arbitrarily between flows;
(3) the output of a link is unchanged before becoming the
input to another link or departing the network; and (4)
the medium is point-to-point with no interaction between
distinct links. Some of these are appropriate for wireless
networks, but others need to be reconsidered. We adopt
(1) and (2), but - roughly speaking - adapt (3) and (4)
to: (3’) links can be lossy (for each link a proportion
of every flow passing through it is lost); and (4’) links
may have joint constraints. (3’) corresponds to losses due
to environmental conditions and (4’) includes multiple-
access channels and primary interference constraints. We
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define the goodput of a flow to be the rate received at its
destination and the goodput of the network to be the sum
of the goodputs of all flows.

III. EXISTENCE, UNIQUENESS AND CONVERGENCE OF
FAIR SOLUTIONS

Utility fairness. Using the notation in [13], we represent
a network by a directed multigraph ~G = (N , ~E) with
nodes N and edges ~E , and with a set P = {1, 2, · · · , P}
representing data flows. Nodes represent stations and an
edge exists from node a to node b if a can send data to b.
Let N , E and P denote the cardinality of the sets N , ~E
and P . Associated with each flow p is a source node s(p),
a destination node d(p), and a single fixed route consisting
of edges r(p) from ~E connecting s(p) to d(p) without a
cycle. Multiple routes are more likely to occur in wireless
networks than in wired networks due to the possibility of
many non-overlapping frequencies/channels being used in
a single physical space. There is no technical difficulty
in having multiple flows taking distinct routes between a
source and destination pair and this can be incorporated
by defining the goodput of a single super-flow to be the
sum of the goodputs over sub-flows. For every edge e

along route r′ : P 7→ 2~E\∅, where 2~E is the power-set of ~E
and ∅ is the empty set, define the proximity g(r′, e) of the
edge to the destination by the number of edges (including
itself) to the end node of route r′. For edges that do not
belong to route r′ define g(r′, e) := ∞. Define a route
r′-based order ≤r′ on the set of edges that make up route
r′: for two links e and f in r′ if g(r′, e) ≤ g(r′, f), define
e ≤r′ f .

Let the maximum link-rate of each edge e ∈ ~E be
ce > 0 and define C to be the E × E matrix with
diagonal entries Ce,e = ce and Ce,e′ = 0 if e 6= e′.
To treat (3’), each edge represents a (possibly) lossy
link that drops a certain fraction of the traffic being
transmitted by each flow that traverses it. For each edge
e define qe ∈ (0, 1] to be the network-layer throughput,
i.e. the fraction of traffic that is not dropped at edge
e, and define q to be the corresponding E × 1 vector.
The rate successfully received from edge e is at most
qece. Define the E×P connectivity/routing matrix A(q)
whose (e, p)th element is Ae,p = 1/

∏
f∈~E:f≤r(p) e qf if

e ∈ r(p) and 0 if e /∈ r(p). If flow p has goodput
1, then its input to edge e is rate Ae,p. The non-zero
elements of A(q) are at least 1 because of the lossy
nature of the links, whereas for loss-less networks the
elements of A take values in {0, 1} (e.g. [10], [12], [14]).
The last-link loss approximation is modeled by replacing
A(q) with a matrix A′(q) whose (e, p)th element is
A′(q)e,p = maxe′∈r(p) Ae′,p. The maximum over edges
e′ of Ae′,p identifies the greatest loss on the route of flow
p in the lossy network. The routing matrix A′, based on
the last-link loss approximation, has the effect that all
losses occur at each flow’s last link and nowhere else on
its route.

As we have started with a directed multigraph, the

routing matrix corresponds to all links operating indepen-
dently (e.g. full duplex). To encompass the (4’) assump-
tion and model shared wireless links between multiple
nodes, we introduce a conflict matrix B = [IT , JT ]T

where T denotes transpose, I is the E × E identity
and J is a ζ × E matrix with {0, 1} entries where
ζ ∈ {0, . . . , 2E − E − 1}, so that B is a (E + ζ) × E
matrix. I matrix is the individual conflict matrix and gives
each link its individual capacity constraint. J is the joint
conflict matrix: if the links ei1 , . . . , eiK

do not operate
independently, then we insert a row in J with entries 1 at
each eik

and 0 at all other positions. Due to the insertion
of this row, these links will experience a joint constraint
such as a shared wireless resource. There are at most
2E−E−1 rows in the joint conflict matrix as it includes
all subsets of the links apart from the E individual link
constraints and the empty-set. We say that a flow p is
involved in a conflict i ∈ {1, . . . , E + ζ} and write p ∈ i
if for at least one e ∈ r(pi) we have that Bi,e = 1. As we
will see in Section IV, the joint conflict matrix enables us
to treat situations such as in WiFi networks where a single
wireless resource is shared by two or more distinct nodes,
while retaining an individual loss rate and distinct link rate
for each pair of stations. We also introduce an (E+ζ)×1
degrees of freedom vector D with non-negative entries
that will represent either MIMO gains or the availability
of multiple radio resources at each conflict.

Denote by xp ≥ 0 the goodput of flow p, i.e. the
received rate at the flow’s destination d(p), and x the cor-
responding P×1 vector. With these quantities defined, the
network places restrictions on possible goodputs through
the following constraint:

BC−1A(q)x ≤ D (goodput constraint). (1)

With I denoting the E×E identity matrix and 1 denoting
the E × 1 vector with all entries equal to 1, for a wired
network B = I and D = 1 so that each link is directional
and there are no joint conflicts. Moreover q = 1, so that
links are loss-less. The key observation for existence and
uniqueness of utility fair solutions is that even if B 6= I
and D 6= 1 and q < 1 (entry-wise), then the equation
(1) is still a linear constraint set. The set of goodput
rate vectors x that satisfy equation (1) is called the rate
region and is denoted by X (C,q) ⊂ <P . It is clear
that A(q) ≥ A(1) and that X (C,q) ⊆ X (C,1). Note
that A(q)e,p ≤ A′(q)e,p for each link e ∈ ~E and flow
p ∈ P . The consequence of this is that the rate region
for the last-link loss approximation is necessarily smaller
than that for the real lossy network. Defining a utility
function U : <P 7→ [−∞,∞) of the goodput x, the fair
allocation is an optimizer in the solution of the following
optimization problem:

sup
x∈X (C,q)

U(x). (2)

The following proposition follows from the linearity of
the constraints in equation (1) [15].
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Proposition 1 (Existence and uniqueness of Utility Fair
solutions). If U is a strictly concave function, then the
optimization in (2) has a unique optimizer.

We relate the arguments in the solution of the opti-
mization (2) for q ≤ 1 to the loss-less case by proving
a continuity property of the optimal solutions to (2) as
q approaches 1. This is a consequence of showing that
a stronger property holds: a type of set convergence [15]
for the regions X (C,q). Define the Pompeiu-Hausdorff
distance [15] between two non-empty closed sets D,E ⊂
<P as d∞(D,E) := supx∈<P |dD(x) − dE(x)|, where
dD(x) := infy∈D d(y,x) and d(·, ·) is the usual Eu-
clidean metric on <P . This metric is a well established
measure of distance between closed sets and is widely
used in the consideration of the convergence of opti-
mization problems. The following theorem establishes our
convergence result for utility fair solution. Its proof can
be found in the Appendix.

Theorem 1 (Convergence of utility fair solutions). Con-
sider a sequence of link loss rates {1 − q

(k)
e }∞k=1 such

that limk→∞ q
(k)
e = 1 for each link e ∈ ~E . Then

the rate regions in the lossy networks converge to
the rate region in the corresponding loss-less network,
limk→∞ d∞(X (C,q(k)),X (C,1)) = 0 and utility fair
solutions converge to the corresponding loss-less utility
fair solutions.

This theorem also holds with the last-link loss approx-
imation in force. However, in Section IV we present an
example where loss rates are not small that will illustrate
the failure of the last-link loss approximation.

Max-min fairness. A vector x̄(C,q) is max-min fair
on the set X (C,q) if and only if for all x ∈ X (C,q)
there exists p ∈ P such that xp > x̄p =⇒ ∃o ∈
P \ {p} such that xo < x̄o ≤ x̄p [10]. Max-min fairness
does not correspond to the solution of (2) for any utility
function, but arises as the limit of particular utility fair
solutions. The (w,α) fair solution [12] uses the family of
utility functions given for w > 0, α ≥ 0 and x > 0 by

Uw,α(x) =

{
wx1−α/(1− α) if α 6= 1;
w log(x) if α = 1

(3)

where we define Uw,α(0) := 0 if α ∈ [0, 1) and
Uw,α(0) := −∞ if α ≥ 1. For this family of strictly
increasing utility functions we denote the unique max-
imizer of equation (2) as x∗(w,α,C,q), where w =
(w1, . . . , wP )T and α = (α1, . . . , αP )T . Lemma 3 in
[12] proves that max-min fair solutions arise as the
limiting solution as α → ∞. As our network goodput
constraints (1) are still linear, we can apply that lemma to
see that the solutions x∗(1, α1,C,q) converge to x̄(C,q)
as α →∞.

Proposition 2 (Existence and uniqueness of Max-Min
Fair solutions). With goodput constraints given by equa-
tion (1), there exists a unique max-min fair solution.

This max-min fair solution is unique by Theorem 1

of [14]. The following establishes that max-min fair
solutions have the same convergence property as error
rates tend to zero as utility fairness.

Corollary 1 (Convergence of max-min fair solutions). As
loss-rates tend to zero, max-min fair solutions converge
to the loss-less max-min fair solution.

As with Proposition 1 and Theorem 1, Proposition
2 and Corollary 1 continue to hold with the last-link
approximation in lieu of the full lossy links formulation.
This corollary is surprising as the original definition of
max-min fairness [10] is in terms of bottlenecked links.
For a sequence of networks with decreasing loss rates, in
the next section we give examples where the location of
these bottlenecked links do not converge, even though the
max-min fair solutions do. First, however, we identify a
suitable generalized definition of bottlenecked links that
is appropriate in the present framework.

In the loss-less case, max-min fairness can, equiva-
lently, be defined in terms of bottlenecked links [10]:
given a feasible goodput rate vector x ∈ X (C,q), a link
e is a bottlenecked link with respect to x for a flow p
with link e along its route if

∑
p∈P:e∈r(p) xp = ce and

xp ≥ xp′ for all flows p′ with link e along their routes.
A feasible goodput rate vector x ∈ X (C,q) is then max-
min fair if and only if each flow has a bottlenecked link
with respect to x (e.g. [10] pg. 527). This definition yields
a procedure called the water-filling algorithm to identify
the max-min fair solution. The algorithm operates as fol-
lows: starting from the all zero goodput rate vector every
flow’s rate is increased until a first set of link constraints
become active, i.e., bottlenecked for the flows that pass
through these links. Only the rates of flows not passing
through the bottlenecked are increased further until an-
other set of link constraints become active/bottlenecked.
This procedure is repeated until all the flows pass through
at least one bottlenecked link. The loss-less water-filling
algorithm always identifies the max-min fair solution due
to the coordinate convexity of the goodput rate region
[14].

With lossy links we need to generalize the definition
of a bottleneck link given above since each flow has a
(potentially) different rate at the ingress and egress of each
link along the routes that it traverses. Given a feasible
goodput rate vector x ∈ X (C,q), we say that a conflict
i ∈ {1, . . . , E + ζ} is a bottlenecked conflict with respect
to x for a flow p with at least one link in that conflict if
(BC−1A(q)x)i = Di and xp ≥ xp′ for all flows p′

at least one link in conflict i. That is, a conflict is a
bottleneck conflict for a flow if the capacity constraint
is met at that conflict and if no other flow involved in
that conflict has higher goodput. The following Theorem,
whose proof can be found in the Appendix, proves that
bottlenecked conflicts provide a characterization of max-
min fair solutions for networks with lossy links.

Theorem 2 (Bottlenecked conflict representation of lossy
max-min fair solutions). For a network with or without
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lossy links, a feasible goodput rate vector x ∈ X (C,q) is
max-min fair if and only if each flow has a bottlenecked
conflict with respect to x.

Due to Theorem 2 and the coordinate convexity of the
goodput rate region, the obvious generalization of the
water-filling algorithm necessarily identifies the unique
lossy max-min fair solution.

IV. EXAMPLES

In the examples we assume that all flows have the
same (w,α) = (1, 1) utility function (3), commonly
called proportional fairness. Max-min fair solutions were
obtained by the generalized water-filling procedure.

Example 1, Bottlenecked Conflicts and Continuity of
Max-Min Fair Solutions:

Node 
A

Node 
B

Node 
C

Flow 2 Flow 3

Flow 1

Link 1, c1, q1 Link 2, c2, q2

Fig. 1. Three flow, two link bottlenecked network example. Used
to illustrate lack of convergence of bottlenecked conflicts despite the
convergence of max-min fair solutions proved in Corollary 1. Also
demonstrates the asymmetry in max-min fair solutions that is induced
by lossy links.

Consider the three flow, two link network in Figure
1, where we assume that c2 = 1. For this network, the
matrices in equation (1) are B = I and D = 1, and

A(q) =
(

1/(q1q2) 1/q1 0
1/q2 0 1/q2

)
.

Since Flows 2 and 3 pass through only one link each, they
will be bottlenecked only on those conflicts. However, the
bottlenecked conflicts for Flow 1 can change depending
on the loss rates of links 1 and 2 and the capacity of link 1.
For a max-min fair solution, define β ∈ {{1}, {2}, {1, 2}}
to be the bottlenecked conflicts for Flow 1. Then we have
that

β =


{1} if 2q1c1

1+q2
< 1;

{2} if 2q1c1
1+q2

> 1;
{1, 2} otherwise.

For the loss-less max-min fair solution with q1 = 1, q2 =
1 and c1 = 1, the bottlenecked conflicts for Flow 1 are
β = {1, 2}. Consider a sequence of loss rates converging
to 0, {q(n)

1 , q
(n)
2 } such that q

(n)
1 = q

(n)
2 = 1 − 1/n, then

β(n) is always equal to {1}. Even though the max-min fair
solutions are converging by Corollary 1, the bottlenecked
conflicts for Flow 1 are not. Similarly, if the sequence of
loss rates are q

(n)
1 = 1 − 1/n and q

(n)
2 = 1 − 3/n then

β(n) = {2} for all n and if for (even) n = 2m we have
q
(n)
1 = q

(n)
2 = 1−1/m and for (odd) n = 2m+1 we have

q
(n)
1 = 1 − 1/m and q

(n)
2 = 1 − 3/m, then sequence of

Flow 1’s bottlenecked conflicts β(n) oscillates between
{1} and {2}. Despite the convergence of max-min fair
solutions, the location of bottlenecked conflicts need not
converge.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

G
oo

dp
ut

q

Flow 1, Flow 2
Flow 3

Fig. 2. Network in Figure 1. Continuity of max-min fair solutions.

This example also demonstrates that even though the
loss-less max-min solution is symmetric in its goodputs,
the lossy max-min fair solutions need not be. With c1 = 1,
assume the link error rates are equal on all links (q = q1)
and examine the behavior of the max-min fair solutions
as q → 1. From the solutions in Figure 2 it is clear
that the max-min fair solutions are converging to the
loss-less max-min fair solution as q ↑ 1. The lossy
solutions exhibit an asymmetry not seen in the loss-less
case, whereby flow 3 is favored and gets more goodput.
It can be understood as follows: for the max-min fair
solution the input rates are chosen so that flows 1 and 2
achieve the same goodput, but as Flow 1 experiences loss
before sharing a link with flow 3, flow 3 can take up the
additional left-over capacity and so gets higher goodput.
This is a consequence of the location of the bottlenecked
conflict for Flow 1.

Example 2, Failure of the last-link loss approximation:

Node A Node B Node C

Flow 1

Link 1, c1, q1 Link 2, c2, q2

Flow 2

Fig. 3. Two flow, two link network example illustrates a failing of the
last-link loss approximation.

With the topology in Figure 3, set c1 = c2 = 1. We
consider the situation where losses occur on link 1, so
that q1 = q and q2 = 1. The last-link loss approximation
effectively assumes that for Flow 1 q1 = 1 and q2 = q,
while for Flow 2 q2 = 1. For this network, the matrices
in equation (1) are B = I and D = 1, the identity. The
routing matrix for the real network, A(q), and with last-
link loss approximation, A′(q) are defined by

A(q) =
(

1/q 0
1 1

)
and A′(q) =

(
1/q 0
1/q 1

)
.
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Both the max-min fair and proportionally fair solutions
can be determined explicitly for this network and they
coincide. For the real network, with A(q) the max-min
fair and proportionally fair solution is x1 = min (1/2, q)
and x2 = max (1/2, 1− q), while for the last-link loss
approximation, with A′(q), x1 = x2 = q/(1 + q). These
solutions are plotted in Figure 4. It can be seen that the
solutions converge to the loss-less ones when q → 1,
as anticipated by Theorem 1 and Corollary 1. However,
the solutions diverge for q < 1. Indeed for q < 1, the
rate region with the last-link loss approximation in force
is smaller than the real rate region, leading to a smaller
network goodput and highly divergent solutions when q <
1/2. This indicates a typical, simple situation in which
the last-link loss approximation is inappropriate in the
presence of non-zero losses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

G
oo

dp
ut

q

Both Max-min Fair and Proprionally Fair

Flow 1, link 1 lossy
Flow 2, link 1 lossy

Flow 1 and 2, last link loss approx.

Fig. 4. Network in Figure 3. Difference in max-min fair and proportion-
ally solutions based on loss at first link and last-link loss approximation.

Example 3, a WiFi network: Here we show how the
model framework can be used to model a network where
links have joint constraints, as conveyed by (4’). We
consider a WiFi network where links are coupled through
a shared wireless resource and discuss the well reported
performance anomaly of wireless networks employing the
IEEE 802.11 Distributed Co-ordination Function (DCF)
[16]. When one station has a low link rate to the Access
Point (AP), say, 1 Mbps, and others have a higher link rate
to the AP, say, 11 Mbps, then the bandwidth allocation
attained by the operation of the 802.11 DCF is such that
all flows get less than 1 Mbps. We show that this anomaly
arises as a consequence of that protocol enforcing max-
min fairness and that MIMO gains can overcome it.

Consider the network depicted in Figure 5. Although
each flow has its own link with its own loss rate, the
links are coupled by the IEEE 802.11 DCF [17]. As links
share the wireless resource the Joint Conflict Matrix J
has a single row with every entry equal to 1. The conflict
and routing matrices are:

B =


1 0 0
0 1 0
0 0 1
1 1 1

 and A(q) =

1/q1 0 0
0 1/q2 0
0 0 1/q3

 .

Coupled links

Node 
A

Node 
B

Node 
C

Flow 2 Flow 3Flow 1

Link 1, c1, q1 Link 3, c3, q3

AP

Link 2, c2, q2

Fig. 5. WiFi network with three flows on three coupled links. Illustrates
construction of conflict matrix and the enforcement of max-min fairness
by IEEE 802.11

Consider the following degrees of freedom vector that
corresponds to each station having a single receive an-
tenna, but the access point having d ∈ {1, 2, . . . } transmit
antennas: DT = (1 1 1 d).

With q1 = q2 = q3 = 1 so that links are not lossy,
d = 1 so that all stations only have one transmitter and
receiver, and C1 = C2 = 11 Mbps and C3 = 1 Mbps, the
goodput rate region must satisfy x1/11+x2/11+x3 ≤ 1.
The max-min fair solution is readily identified to be
x1 = x2 = x3 = 11/13 Mbps. While the detailed
operation of the IEEE 802.11 DCF is quite complex for
unsaturated stations [18], at a high level it gives each
station an approximately equal chance of winning the
medium for a packet transmission so that it too would
give rise to the same solution and to the reported 802.11
performance anomaly.

One solution to this anomaly is to use the TXOP
functionality of the 802.11e protocol. Alternatively, it
is sufficient to have d = 2, corresponding to a two-
transmitter MIMO gain at the access point. The new con-
straints give x1/11+x2/11+x3 ≤ 2, so that by the water-
filling algorithm, x3 = 1 Mbps and x1 = x2 = 11/2
Mbps. Thus the station with the low rate link does not
throttle the goodput of the stations with the high rate links
in the presence of MIMO gains.

V. CONCLUSIONS

We present a natural extension of the notions of utility
fairness and max-min fairness from wired networks to
their wireless counterpart. We prove the existence and
uniqueness of solutions. We show that as loss rates
converge to zero, fair solutions in systems with loss
converge to the corresponding solution in the loss-less
network. We extend the definition of bottlenecked links
to bottlenecked conflicts and prove that max-min fairness
can be defined in terms of these bottlenecked conflicts.
Through examples, we demonstrate that even though max-
min fair solutions converge as loss rates tend to zero, the
location of bottlenecked conflicts may not.

APPENDIX

Proof of Theorem 1: Let {q(k)}∞k=1 be such that
limk→∞ q(k) = 1, which implies limk→∞ mine∈~E q

(k)
e =
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1. For every 0 < ε < 1 there exists a Kε such that
1 ≥ mine∈~E q

(k)
e ≥ (1 − ε)1/|~E| for all k ≥ Kε, which

ensures that 1 ≥ minA∈2~E\∅
∏

e∈A⊆~E q
(k)
e ≥ 1 − ε

for all k ≥ Kε. This implies that X (C(1 − ε),1) ⊆
X (C,q(k)) ⊆ X (C,1) for all k ≥ Kε.

The Pompeiu-Hausdorff distance between X (C(1 −
ε),1) and X (C,1) is (pg. 117 [15])

d∞(X (C(1− ε),1),X (C,1))
= sup

x∈X (C,1)\X (C(1−ε),1)

d∞(X (C(1− ε),1), {x})

≤ sup
x∈X (C,1)

d((1− ε)x,x) = ε sup
x∈X (C,1)

‖x‖.

Thus for all k ≥ Kε we have

d∞(X (C,q(k)),X (C,1))
≤ d∞(X (C(1− ε),1),X (C,1))
≤ ε sup

x∈X (C,1)

‖x‖.

Therefore limk→∞ d∞(X (C,q(k)),X (C,1)) = 0 prov-
ing the first part of the theorem.

Define the indicator function of a convex set D ∈ <P

to be δ(x|D) = 0 if x ∈ D and +∞ otherwise. We have
shown that δ(·|X (C,q(k))) epi-converges [15, Section
7.B] to δ(·|X (C,1)). Let γ(x) be a continuous, convex
function that is level-bounded (i.e. {γ(x) ≤ η} is a
bounded set for all η ∈ <). Then γ(x)+δ(x|X (C,q(k)))
epi-converges to γ(x)+δ(x|X (C,1)). Since each of these
functions are level-bounded from [15, Theorem 7.33]
infx γ(x) + δ(x|X (C,q(k))) converges to infx γ(x) +
δ(x|X (C,1)) and arg infx γ(x) + δ(x|X (C,q(k))) con-
verges to arg infx γ(x)+δ(x|X (C,1)). Defining γ(x) =
−U(x) if xp ≥ 0 for each p ∈ P and +∞ if x < 0, γ(x)
satisfies the conditions above, proving the second part of
the theorem.

Proof of Corollary 1: The corollary follows from inter-
changing the order of limits.

Proof of Theorem 2: The “if” direction is proved by
arriving at a contradiction. Suppose that x ∈ X (C,q) is
max-min fair and assume that there exists a flow p with no
bottlenecked conflict. It then follows that for each conflict
i ∈ {1, . . . , E+ζ} such that p ∈ i and (BC−1A(q)x)i =
Di, there must exist a flow pi 6= p ∈ i such that xpi > xp.
Therefore for every conflict i along the route of flow p
we can define the following non-zero quantity

δi =

∑
e∈r(pi), Bi,e=1

Ae,pi

ce∑
e∈r(p), Bi,e=1

Ae,p

ce

 (xpi − xp)

if (BC−1A(q)x)i = Di and

δi = (Di − (BC−1A(q)x)i)/

 ∑
e∈r(p), Bi,e=1

Ae,p

ce


otherwise. By increasing xp by δ := mini:xp∈i δi, the
minimum over all conflicts involving p, and decreasing
xpi

by xpi
− xp at every conflict j along the route of

p such that (BC−1A(q)x)j = Dj , we arrive at a new

feasible goodput rate vector where we increase the rate
of flow p without decreasing the rate of any flow p′ with
xp′ ≤ xp. This contradicts the max-min fairness of x.

The proof in the “only if” direction follows directly
from the definition of a bottlenecked conflict.
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