% GET_EIGEN_BLOCK_A Obtain the eigen decomposition of the Hermitian % matrix, R, for the generating function such that % % R=[-T I] % [ I 0] % % where T is the positive-definite Toeplitz-like Block matrix % % [G,J,rowcol] = GET_EIGEN_BLOCK_A(M,hyp) % % Inputs: M : Time-series Inputs of Gaussian process, size nx1 % hyp : hyperparameters of the covariance function [g v] % % Outouts: G = Generates the Generating function (matrix) % J = J-unitary matrix, J=[I 0;0 -I] % rowcol = block-position % % Note that the covariance function used, is the usual convention, of % % C(Z|a,g,v) = exp(-0.5*g*[Zi-Zj]^2) + v % % % (C) Gaussian Process Schur Toolbox 1.0 % (C) Copyright 2005-2007, Keith Neo % http://www.hamilton.ie function [G,J,rowcol]=get_eigen_block_a(M,hyp) [g_row,e_dec,g_toe]=eigen_tool(); rowcol=g_row(M); n=size(M,1); rk=size(rowcol,2); A=zeros(rk); B=zeros(2*n,rk); B(1:n,1)=-g_toe(M,hyp,1); B(n+1,1)=1; for k=2:rk p=rowcol(k); tmp1=g_toe(M,hyp,p); tmp3=g_toe(M,hyp,p-1); tmp2=[0;tmp3(1:end-1,:)]; B(1:n,k)=tmp2-tmp1; end tmp0=zeros(2*n,rk); for h=1:rk p=rowcol(h); A(h,:)=B(p,:); tmp0(p,h)=1; end [G,J]=e_dec(A,B,tmp0);