
Social Testing: A Framework to support adoption of
continuous delivery by Small Medium Enterprises.

Jonathan Dunne
Hamilton Institute

Maynooth University
Email: jonathan.dunne.2015@mumail.com

David Malone
Hamilton Institute

Maynooth University
Email: david.malone@nuim.ie

Jason Flood
Institute of Technology

Blanchardstown
Email: jason.flood@itb.ie

Abstract—Continuous delivery (CD) represents a challenge for
software test teams, because of the continuous introduction of
new features and feedback from customers. We consider testing
in a framework where users are encouraged to report defects
through social or other incentive schemes. Using an enterprise
dataset, we address the question of which types of defects can
best be found in the field, allowing in-house test resources to be
refocused. Validation of these touch points ultimately interweaves
both customer and business needs. The proposed framework is
one which can help small to medium software businesses, which
typically have limited resources to test and release software via
CD.

I. INTRODUCTION

Small to medium enterprises (SME’s) are the backbone of
the European economy representing 79% of all employment
with an annual turnover in excess of 440 billion Euro [1].
The European customer is maturing technologically and now
demands more from their interaction with products and ser-
vices. This has placed an additional challenge on the SME to
provide products and services in a rapid and connected way.
Nine out of ten SME’s in Europe have less than ten employees
[1] which makes it difficult for an SME to find the necessary
additional capacity to cater for the new European customer.
CD is seen as one approach that can be readily adopted
by the SME to help reduce the software delivery life cycle.
CD promotes faster delivery of software components, features
and fixes [2]. With an accelerated delivery of product/service
improvements, SME’s want to keep pace with large enterprise
solution providers. In the race to provide solutions in a
dynamic agile way, large enterprises have the resources to
exploit CD. These same enterprises can also leverage fully
mature software test teams to ensure a succession of stable
releases for the consumer and reduce the risk of subsequent
brand damage due to releasing a poor quality product or
service. The adoption of CD is non-trivial. Recent work has
been conducted to outline the key challenges faced by software
companies. These include: development of features rather than
components and the development of an automated test harness
to support testing [3]. An SME cannot compete at this level.

In this paper, we describe a framework, which the SME can
leverage to best utilise their limited in-house test resources
while utilising their greatest test asset: the customer. The core
idea of this framework is for the in-house test teams to focus
on high value test areas, while incentivising the customer to

find low impact field defects. This paper contains a study of
software defect data from a large enterprise dataset. Through
this study of customer defect data we show which types of
defects the customer is useful at finding. By leveraging the
customer’s skill at finding certain categories of defects, we
argue that incentivising the customer to find a particular class
of defect, can aid the SME to deliver higher quality software
by diverting in-house test resources to high value areas such
as performance and systems testing.

For cloud-based systems where multi-tenancy is employed,
defect data could be shared socially between customers to
better understand component usage patterns and fault prone
functionality. The rest of the paper is structured in five Sec-
tions; Section II gives some description of study background
and related works. Section III describes the enterprise dataset.
Section IV discusses the analysis and method and it is followed
by section V which explains the result. Finally, the conclusion
and future work is described in Section VI.

II. BACKGROUND AND RELATED RESEARCH

A. Continuous Delivery

CD is an approach to software development that allows
software companies to develop, test and release software in
short, discrete delivery cycles. Releasing software with a low
number of changes allows the rapid validation and release of a
software product. CD Employs two methodologies; continuous
test automation (CA) — the practice of employing an auto-
mated test script to validate delivered code and continuous
integration (CI) — the practice of merging developer streams
into a consolidated mainline, which allows software to be
developed and tested to a high standard (due to the low level
of code churn), and facilitates a swift release cycle. CD is
used as part of a new wave of development, test, deployment
and release strategies for Cloud based software services. Key
evangelists for CD include Facebook, Google and Netflix [4].

B. Bug Bounty Programs

A bug bounty program is a scheme whereby software
companies offer a reward to users that find defects within
their software. The benefit to software companies is that it
incentivises users to find defects (typically security vulnera-
bilities) before they are exploited by the general user base [5].
The bugcrowd website contains a list of current bug bounties

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         49

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015



offered by software companies. Currently 116 companies are
listed as having some form of reward and/or gift system
for user found vulnerabilities [6]. Bug bounty schemes are
not limited to start-up companies or open source projects.
Some high profile software companies which participate in
bug bounty schemes include Facebook, Google and Microsoft.

Recently there have been a number of famous bug bounties.
For example Donald Knuth a computer scientist and creator
of the TeX computer system [7], devised a bug bounty
program (Knuth reward checks) where the reward doubled
every year in value to a maximum of $327.68 in the form of
a cashier’s check. A second well-known bounty is related to
D.J. Bernstein who is a cryptologist and programmer of qmail
[8]. In 1997 he offered $500 to the first individual who could
publish details of security exploits within his latest release of
qmail. To date no one has found any vulnerability.

C. Other related studies

A number of studies have been conducted on customer
reported defects. None of the software studied were developed
using a CD release model.

Brooks and Robinson [9] performed a study on customer re-
ported GUI defects found on two industrial software systems.
Their work focused on the impact, location and resolution
times of customer defects. Their study compared these factors
from both in-house and customer defects. They found that in-
house testers and customers found the same types of defects.
60% of the total defects found were in the GUI while the re-
maining 40% were application defects. Finally, that customers
had to wait 170 days for defects to be fixed.

Moritz [10] conducted a study of customer defects raised
within a large industrial telecommunications software com-
ponent. Her work focused on analysis of customer defects
found over a 10-year period with a goal of understanding
how to improve future test quality. She reviewed whether
defect regression, test phase, new functionality, load testing
and environment were factors in a customer defect being
raised. Her study found first, that the in-house system test
environments and test use cases did not accurately match
customer configurations or usage conditions. Second, that
regression testing was inadequate, tests plans typically focused
on new features, which left test exposures within legacy
components. Finally, existing test methods were not suitable
in finding customer defects.

Gittens et al. [11] studied the efficiency of in house software
testing by investigating the scope and coverage of system and
regression testing. They examined a number of factors, such as
number of defects found in-house, by the customer and code
coverage. Firstly with test coverage in the range of 71 – 80%
fewer customer defects are found. Secondly that in-house tests
coverage does not always overlap with customer usage areas.
Thus there is a gap between in-house and customer product
usage. Finally that greater in-house test coverage does not
automatically translate into fewer customer defects found. The
authors demonstrated that test coverage needs to be specifically
targeted to reduce field defects.

Musa [12] developed a technique for Software Reliability
Engineered Testing (SRET), which was implemented on the
Fone Follower project at AT&T. Musa used a SRET method
to classify defects found into four levels of severity based on
their impact to the end user. Defect severity rates from prior
regression testing were then used to guide future test coverage.

Sullivan and Chillarege [13] compared the types of customer
defects found in Database Systems (DBS) and Operating
Systems (OS). Their study looked at a number of factors
including; error type, trigger and defect type. They had a
number of key findings. Firstly they found that legacy DBS and
OS had a similar number of high severity defects. Secondly,
that newer DBS had a higher rate of high severity defects.

Adams [14] conducted a study of customer defects from
nine products over a five-year period. He found that customer
defects were typically discovered shortly after the product was
released. He surmised that these defects would have taken
many person months to find had they been tested on a single
machine. He concluded that these customer defects would have
been very difficult to find using existing test methods.

Existing research focuses on the impact of customer defects
within a waterfall or agile development model. Additionally
research also focuses on the challenges from the development
side by adoption of CD. This paper will further the body of
knowledge by adding data on the challenges faced by test
teams as part of CD development and how field defect data
can be used to optimise test coverage for SME’s.

III. DATA SET

Defect studies have been shown to provide an effective
way to highlight customer usage patterns of software. Defect
studies can also aid businesses align their test coverage more
towards customer based use cases.

The study presented in this paper examines approximately
1400 field defects from a large enterprise, cloud based system.
The data was collected over a 12-month period (Jan - Dec) and
is comprised of four main components: E-mail, Collaboration,
Social and Business Support System (BSS). The systems have
been deployed within three data centres and are used by
customers globally. The software is developed in Java and runs
on Linux. Product development follows a CD model whereby
small amounts of functionality are released to the public on
a monthly basis. For each defect we have access to the full
defect report, but we particularly focus on the defect impact,
defect component, data centre location and defect type. The
following terminology will now be defined to provide clear
context. These definitions are given in the glossary of IEEE
Standards Collection in Software Engineering [15].

• Functional Testing: Testing which is focused on the
specified functional requirements and does not verify the
interactions of system functions.

• System Testing: Testing conducted on a complete inte-
grated system to evaluate the system’s compliance with
its specified requirements. System test, unlike Functional
testing, validates end-to-end system operations within the
wider environmental context. Therefore system testing

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         50

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015



should be conducted on an environment, which closely
mimic’s customer behaviour.

• Performance Testing: In software engineering Perfor-
mance testing is performed to determine how a system
performs in terms of responsiveness and stability under
a particular workload.

• Field defects: Refers to all defects found by customers
using the software product post-release.

This study aims to answer a number of questions. First, How
do field defects impact the customers overall user experience?
Second, what components are likely to yield field defects?
Third, what data centres are likely to yield more field defects?
Finally what types of defects do customers typically find? In
order to answer these four questions, this study is broken down
into the following attributes: defect impact, defect component,
data centre location and defect type.

A. Defect Impact

A loss of functionality at either a system or client level is
categorised as critical, major or minor. A critical defect can be
defined as a defect where there is a loss of core functionality
from either a server side component or from a client side
perspective. A major defect can be defined as a defect where
there is some loss of functionality but the loss is not system
wide nor does the loss affect all end users. A minor severity
defect can be defined as a defect with no loss of data, but
some form of unexpected behaviour has occurred. Other ways
in which the impact of the defect can be expressed is by
the number of customers, who experience the same type of
problem. Finally, it should be noted that defects of a similar
type can vary in impact depending on whether they were raised
as an in-house or field defect.

B. Defect Component

Understanding the location of field defects at a component
level, gives an awareness of how customers use the product
and more importantly what types of defects they are useful at
finding. For example, in house test teams may design a set of
tests, which will find a certain class of defect. Field defects
can provide test teams with insight as to potential gaps in their
coverage. Depending on the nature of these test gaps and the
size of the test organisation, they may be difficult to close. For
this study we categorised our software components as follows:
e-mail, collaboration, social and BSS.

C. Data Centre Location

Understanding the location of field defects at a data centre
level can highlight whether a specific data centre or high usage
is a factor in the number of field defects raised. There are three
data centres in our dataset: data centre A (High usage), data
centre B (Low usage) and data centre C (Medium usage).

D. Defect Type

We consider three defect types: Functional, Performance
and System. A functional issue may relate to behaviour
observed directly by the customer, for example a component

0%	  

20%	  

40%	  

60%	  

80%	  

Cri+cal	   Major	   Minor	  

Cri+cal	  

Major	  

Minor	  

Fig. 1. % Field defects by severity

TABLE I

Severity Critical Major Minor
% of Total 2.9% 27.5% 69.5%

feature when used may either fail nor work entirely as ex-
pected. Performance defects fall into two main categories,
client side and server side. For client side issues, an end user
may experience an unresponsive or slow UI. Additionally a
server side performance defect may be related to a sudden
burst of user activity, which has undesirable performance
impact for the entire system. System defects generally relate to
a class of problem where either an end-to-end system workflow
has failed. Or by virtue of having multiple concurrent users
using the system at a given point in time has caused a feature
or process to fail.

E. Limitations of dataset

The dataset has a number of practical limitations, which
are now discussed. Defect severity can vary depending on
the support engineer filing the bug report or the customer
logging the field defect. This subjectivity can lead to a different
severity rating being assigned to the same type of defect.

While the field defect tracking application has a granular
system to aid the classification by functional location, there are
challenges in locating the parent area of a defect particularly
when the defect displays errors in multiple subsystems. The
authors reviewed the severity and the functional location of
each defect. The goal was to ensure that each defect in terms
of severity and categorisation remained constant.

The defects that form part of this study are from a large
enterprise cloud system. The defects are applicable to the
domain of email, collaboration, social and BSS.

IV. RESULTS

We now explore the attributes of field defects observed.

A. Defect Impact

Fig.1 shows the percentage of the total defects broken down
by severity. Minor defects are the most common with critical
defects being the least common.

Field defects were classified by impact, which are shown
graphically in Fig. 1 and textually in TABLE I. These show the
percentage of all defects of each severity type. The majority of

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         51

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015



0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

BSS	   Collabora0on	   Email	   Social	  

Cri0cal	  

Major	  

Minor	  

Fig. 2. % Field defects by component and severity

TABLE II

Severity Critical Major Minor Total
BSS 0.5% 5.7% 15.2% 21.4%
Collaboration 0.4% 3.5% 7.5% 11.4%
Email 1.1% 5.2% 20.2% 26.5%
Social 1.0% 13.1% 26.5% 40.6%

defects found by the customer had a minor impact on their user
experience (approximately 70%), while approximately 28% of
users experienced a major severity defect and the remaining
defects (just under 3%) were of a critical severity.

B. Defect Component

Fig. 2 shows the percentage of the total defects broken down
by component and their severity. In each component minor
defects are the most common with critical defects being the
least common.

TABLE II. Shows the percentage of all field defects broken
down by component and severity. The Social application
contained the most defects (41%), Email (27%) and BSS
(21%) had a broadly similar level of defects, and while the
collaboration application had the least percentage number of
defects found with 11%. The customer was most likely to find
a minor severity defect irrespective of component used.

C. Data Centre Location

Fig. 3 shows the percentage of the total defects broken
down by Data Centre and severity. In each data centre minor
defects are the most common with critical defects being the
least common. Previously it was noted that both centres A
and C are high and medium usage, while data centre B is
low usage. Given the level of field defects found in each data
centre this supports the logical concept that higher usage leads
to a greater number of defects.

TABLE III. Breaks down the Field defects by data centre
and by severity. 55% of all field defects found were in data

TABLE III

Data Centre Critical Major Minor Total
A 1.6% 13.6% 39.8% 55.0%
B 0.7% 5.6% 7.3% 13.6%
C 0.6% 8.3% 22.4% 31.3%

0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

45%	  

A	   B	   C	  

Cri.cal	  

Major	  

Minor	  

Fig. 3. % Field defects by data centre and severity

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

Func/onal	   Performance	   System	  

Cri/cal	  

Major	  	  

Minor	  

Fig. 4. % Field defects by test type and severity

Centre A. data centre C recorded 31% of defects, while data
Centre B recorded only 14% of defects.

D. Defect Type

Fig. 4 shows the percentage of the total defects broken
down by testing type and severity. It was expected that minor
severity would feature significantly, it’s interesting to observe
that the majority of functional defects are minor in nature.
It was observed that for defects classified as System that the
number of major and minor defects are practically the same.
Finally it was noted that the customer did not find very many
Performance defects. However of the defects that were found,
slightly more were major than minor severity.

TABLE IV shows the percentage of field defects found
according to their type. 89% of all customer issues reported
were functional in nature, a further 10% of customer defects
were related to end to end system issues, while only 1% of
defects found were related to performance of either client
interface or underlying server system.

V. DISCUSSION

Section IV provided an outline of field defects that were
studied as part of our overall dataset, including defect impact,
defect component, data centre location and defect severity. The
following section provides deeper analysis of the results. In

TABLE IV

Field Defect Type Critical Major Minor Total
Functional 2.4% 21.8% 64.3% 88.5%
Performance 0.1% 0.7% 0.4% 1.2%
System 0.5% 5.0% 4.7% 10.3%

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         52

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015



each section references will be made to each research question
asked in section III.

A. Defect Impact

To answer the question how do field defects impact the
customers overall user experience, Fig. 1 and TABLE I, clearly
show that the customer finds more minor defects than any
other type, almost 70%. This means that the customer will
come across some unexpected behaviour which does not result
in data loss during their day to day product usage. Given
that minor severity defects are found most often, the logical
conclusion is that these types of defects are found by the
customer exercising the most common component use cases.
With the level of major defects found being 28%, this also
shows that these defects were found as part of a typical
customers day to day usage, albeit to a lesser degree than
minor defects. Clearly as part of the customers typical use
case, they did encounter some form of data loss or non-trivial
unexpected behaviour. With approximately 3% of field defects
being critical, this suggests that the likelihood of a customer
experiencing a total component or some system wide failure
is a rare event. That said customers, either by themselves
or in conjunction with other users, were able to bring about
behaviour, which impacted the wider system.

Given the nature of CD, it is important to point that new
code and features are released frequently. Therefore by it’s
nature new field defects are raised on a continuous basis once
new features are delivered. If a bug bounty program were
introduced to incentivise field defect discovery, it would be
interesting to determine the increase in the velocity of field
defects from the introduction of such a scheme. Typically bug
bounties have been the preserve of security defect discovery.
By rolling out such a scheme for field defect discovery in
general, it would be valuable to both the software developer:
to focus on testing code paths which lead to higher severity
issues, while incentivising the customer to uncover lower
priority defects.

B. Defect Component

Examining defect component, gives an indication of where
customers are likely to find defects within each component.

Fig. 2 and TABLE II highlight that, at a component level
approximately 41% of the field defects found were in the social
component. A further 27% found in the email component, with
21% in the BSS component with a final 11% found in the
collaboration component. While defect yields may not map
directly to application usage (Unfortunately, no application
usage metrics were available), conditional probabilities were
calculated to determine like likelihood of certain combinations
of defect attributes being found. With minor field defects
being raised most often, conditional probabilities for each
component at minor impact level were calculated. It was noted
that P(minor|email) had the highest probability with 0.762,
P(minor|BSS) with 0.709, P(minor|collab) with 0.660 and
P(minor|social) with 0.654. This tells us that the customer is

more likely to find a minor impact field defect in the email
component.

This may seem counter intuitive given that 41% of field
defects were found in social. It is concluded that given the
lower level of major impact defects found in email increases
the likelihood of a minor impact defect being found. The
logical conclusion is that the more a component is used the
more defects are likely to be found by end users. It is proposed
that for popular components (in our study email & social)
that have continuous feature releases, by incentivising the
discovery of lower impact defects by the customer, can help in-
house testing refocus their efforts on the major severity testing
across all test disciplines in their key feature/components
areas.

C. Data Centre Location

Fig. 3 and TABLE III give an insight into field defect
breakdown by data centre. As mentioned in section III, it
is known that the level of usage varies from data centre to
data centre, interestingly the customers of data centre A (High
Usage) reported the highest number of field defects with 55%
while data centre C (Medium Usage) and data centre B (Low
Usage) had 31% and 14% defects raised respectively. Clearly
there may be some form of correlation between concurrent
user population and field defects raised.

Checking conditional probabilities for each data centre for
both minor and major defects, as follows P(Minor|DC-A)
and P(Major|DC-A) gives 0.724 and 0.248 respectively. These
conditionals state that the customer is more likely to find
a minor defect within data centre A. For data centre B the
following conditionals were calculated; P(Minor|DC-B) and
P(Major|DC-B), which gives 0.537 and 0.411 respectively.
These conditionals tell a similar story to that of data centre
A, that the customer is more likely to find a minor defect
than a major one. It is conjectured that the customer use
case on data centre B is different to that of the other two
data centres. Further analysis should be employed by the
in-house test teams, to ensure their test scripts cover the
main customer use case in data centre B which generates
major impact field defects. Finally checking P(Minor|DC-
C), P(Major|DC-C) gives 0.714 and 0.265 respectively. These
conditional probabilities are very similar to those of data centre
A. Customers are almost three times as likely to encounter a
minor impact defect on data centre C than that of a major
impact field defect.

Overall it was found that that for high and medium usage
data centres the likelihood of finding minor field defects was
almost three times that of finding a major impact defect. For
the low usage data centre the probability of finding a major
impact field defect was broadly similar to that of finding
a minor impact field defect. Finally the customer was less
effective at finding high severity defects irrespective of the
data centre used.

In the context of CD, the same code is released to each
data centre; clearly customers are more likely to be impacted
differently depending on data centre. Knowing the underlying

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         53

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015



customer data centre use case is key. With knowledge of both
data centre usage and field defect data, incentivisation schemes
can be tailor-made according to data centre. One suggestion
would be a bounty to target minor field defects on high usage
data centres, while refocusing in-house resources to find more
major impact defects prior to release.

D. Defect Type
Finally in order to understand which type of field defect

that the customer typically finds, defect type was examined.
This metric may be one of the most important in terms of this
study. It helps underscore which class of defect the customer
is proficient at finding.

Fig 4 and TABLE IV clearly indicate that functional defects
are the most commonly uncovered by the customer with 89%
of all defects found being functional. Also of significance is
the severity of these defects with 64% being minor severity.
Clearly functional defects typically present themselves in the
form of user experience behaviour errors where the end user
attempted an operation and the behaviour encountered was
unexpected. It is also important to note that 10% of all issues
were system errors, typically these manifest themselves as
unexpected behaviour during active concurrent usage. One can
infer that system errors are less common than functional ones.
It may also be the case that system errors do not readily
manifest themselves to the end user in the same way as
functional defects.

Performance defects ranked the lowest in overall defects
found with only 1% of all problems being attributed to perfor-
mance defects. This data suggests that either the performance
of each component was adequately tested prior to release or
that performance defects may be harder for the end user to
measure and quantify once in the field.

Clearly from a customer’s perspective they are more likely
to find functional defects as these issues are found within
the UI, however the customer finds a greater proportion of
lower impact functional defects. Additionally the customer
was less effective at finding high severity Performance and
System field defects. From a CD/CI perspective, a balance
needs to be struck in terms of the features being released and
their likely defect type yield. For backend server features in-
house test teams can focus almost exclusively on Systems and
Performance testing. For features with rich functionality in-
house test teams can focus on use cases, which are likely to
yield critical and major defects with some additional minor
impact areas.

In terms of bounties, for releases with high functional
content software developers could award triple / double and
single prizes for critical, major and minor impact field defects
respectively with the knowledge that adequate testing was
conducted in-house for critical and major use cases. Similarly
for releases with high System and Performance and low
functional features, proportional bounties may be awarded.

VI. CONCLUSION

Previous studies have shown that analysis of field defects
is a valuable exercise. Additionally that bug bounty rewards

provide an incentive to end users to improve software quality
once in the field. The purpose of this study was to examine
the role of the customer in the generation of field defects.
It was found that the customer was quite adept at finding
minor severity functional defects. The findings of this study
support previous work particularly in the gaps between in-
house software testing and general customer usage.

This work provides a more detailed study in relation to
software developed using a CD model. Adoption of CD means
continuous feature releases and continuous defects, however
feature releases can be delivered in such a away to ensure that
there is not a significant burden on in-house test teams.

In future SME’s can assess their field defect data to un-
derstand the core gap areas in relation to defect impact,
component, data centre and type. A specific test framework
can then be built to allow SME’s to focus on test areas,
which are likely to yield high impact defects, and which
may be difficult for an end user to discover. Furthermore by
providing the customer with an incentivised scheme, in the
form of bug bounties to find specific defects types will improve
overall software quality through the iterative development and
release process that is CD. In future work we shall assess the
framework behaviour in relation to in-house defect deferral
rates and the number of field defects raised.

REFERENCES

[1] Annual report on European SME’s. [Online]. Available: http:
//bit.ly/1PoGGVz

[2] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson, 2010.

[3] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘stairway
to heaven’–a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. IEEE, 2012, pp. 392–399.

[4] Best examples of companies using continuous deployment. [Online].
Available: http://bit.ly/1OZQ5SP

[5] (2015) Bug bounty program. [Online]. Available: https://en.wikipedia.
org/wiki/Bug bounty program

[6] The bug bounty list. [Online]. Available: https://bugcrowd.com/
list-of-bug-bounty-programs

[7] D. E. Knuth. Homepage. [Online]. Available: http://www-cs-faculty.
stanford.edu/∼uno/

[8] D. J. Bernstein. homepage. [Online]. Available: http://cr.yp.to/djb.html
[9] P. Brooks, B. Robinson, and A. M. Memon, “An initial characterization

of industrial graphical user interface systems,” in Software Testing
Verification and Validation, 2009. ICST’09. International Conference
on. IEEE, 2009, pp. 11–20.

[10] E. Moritz, “Case study: how analysis of customer found defects can
be used by system test to improve quality,” in Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE, 2009, pp. 123–129.

[11] M. Gittens, H. Lutfiyya, M. Bauer, D. Godwin, Y. W. Kim, and
P. Gupta, “An empirical evaluation of system and regression testing,” in
Proceedings of the 2002 conference of the Centre for Advanced Studies
on Collaborative research. IBM Press, 2002, p. 3.

[12] J. D. Musa, “Software reliability-engineered testing,” Computer, vol. 29,
no. 11, pp. 61–68, 1996.

[13] M. Sullivan and R. Chillarege, “A comparison of software defects
in database management systems and operating systems,” in Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second
International Symposium on. IEEE, 1992, pp. 475–484.

[14] E. N. Adams, “Optimizing preventive service of software products,” IBM
Journal of Research and Development, vol. 28, no. 1, pp. 2–14, 1984.

[15] I. C. S. S. E. S. Committee and I.-S. S. Board, “IEEE recommended
practice for software requirements specifications.” Institute of Electrical
and Electronics Engineers, 1998.

ISBN: 978-1-4799-1789-1 ©2015 IEEE                                                                                                         54

Proceedings of The Second International Conference on Computer Science, Computer Engineering, & Social Media, Lodz, Poland 2015

http://bit.ly/1PoGGVz
http://bit.ly/1PoGGVz
http://bit.ly/1OZQ5SP
https://en.wikipedia.org/wiki/Bug_bounty_program
https://en.wikipedia.org/wiki/Bug_bounty_program
https://bugcrowd.com/list-of-bug-bounty-programs
https://bugcrowd.com/list-of-bug-bounty-programs
http://www-cs-faculty.stanford.edu/~uno/
http://www-cs-faculty.stanford.edu/~uno/
http://cr.yp.to/djb.html

