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Abstract. The problem of phase behaviour of solutions of globular proteins
is approached by means of a Hard Core Yukawa fluid model with short-ranged
attractions. We have determined the phase behaviour of this model system for
different well widths, using a variety of high quality methods. The essential
phase behaviour of systems with short-ranged attractions is reproduced. The
typical phase behaviour of solutions of globular proteins is well represented by
the Hard Core Yukawa fluid with short-ranged attractions. The formation of
amorphous precipitates in protein crystal growth experiments is identified on our
model phase diagram with the formation of an attractive glass. As the range of
attraction is decreased, the formation of an attractive glass state dominates the
phase behaviour in the meta-stable regime above the critical point. We show how
the addition of a long-ranged attraction, in the Two-Yukawa model, has the effect
of eliminating the formation of attractive glass, while preserving the equilibrium
features of the short-ranged attractive system. This opens the possibility of using
attractive long-range interactions to avoid the formation of an attractive glass
state.

1. Introduction

In recent years, rapid developments in Molecular Biology now mean that one can
synthesise any protein relatively cheaply and easily. However, although the sequence
of such a protein - natural or synthetic - can be determined (or in the case of synthesis
pre-determined), obtaining the structure of it’s native or folded state is a far less
trivial matter. It has been shown by various techniques including NMR studies that
the crystallised protein has in general the same structure as the solute protein [1].

At present the most common technique for this investigation is X-Ray
Crystallography of the folded protein. At present, the structures of less than 10% of
known proteins have been determined. The bottleneck in this process is the difficulty
of producing good quality crystals of proteins in their native state. We attempt to
model globular proteins, apparently the simplest case.

One of the most difficult aspects of this field is the many varied experimental
observations associated with attempts, successful or otherwise, to crystallise proteins.
These include the presence of a ”cloud-point” which is meta-stable with respect to the
equilibrium solubility curve [2], Hofmeister’s empirical series to determine which metal
ion to use in ’salting out’ crystals [3, 4], enhancement of crystallisation by addition
of different molecular weight polymers [5, 6, 7], a strong tendency to form amorphous



Interactions in systems with short-range attractions and applications to protein crystallisation2

gel-like solid structures, often at surprisingly low density, which can inhibit [8] or
prevent crystal growth [2].

A system consisting of relatively large solute particles dissolved in a solvent
behaves analogously to a monatomic substance (eg. a noble gas). There are distinctive
phases of very low concentration (gas) and very high concentration (liquid) with
fluid-like structure, as well as a solid regular array (crystalline) phase. Liquid-gas
coexistence and a critical point as well as solid-liquid coexistence are observed. The
simplest such system is the so-called “hard-sphere” system, consisting of rigid particles
which only interact with each other on contact. Here, only two phases are observed:
crystal and fluid. Only one distinct fluid phase exists. This reflects the driving force
for liquid-gas phase separation. If one considers a similar system with an added
attraction at high temperature, the same homogeneous fluid exists. As one lowers the
temperature however, the attractive force becomes more important. A situation then
occurs where the lowest free energy for the system may be the gas phase driven by
optimisation of the entropy (for low densities), exclusively the liquid phase driven by
optimisation of enthalpy of attractions (for high densities), or a two phase liquid-gas
coexistence that optimises the free energy by separately maximising the entropy (gas)
and minimising the enthalpy (liquid) contributions to the free energy. The critical
point is the first sign of incipient coexistence, a single point on the temperature-density
phase diagram where the liquid and gas phases have identical chemical potential and
pressure.

In the case of and proteins, X-Ray scattering experiments have shown that the
range of the attraction is small relative to the size of the particle (for lysozyme on the
order of 8% [9]). Such short-ranged attractive systems, which we will discuss here,
display markedly different characteristics to the usual gas (dilute-solution), liquid
(concentrated solution) and crystal systems.

With this in mind, we propose a simple model of hard spheres interacting through
a short ranged Yukawa potential, which can reproduce the main features of typical
protein phase diagrams [10]. We and others have recently shown that one of the most
prominent features of short-ranged attractive systems, independent of the details of
the potential, is attractive glass formation [11, 12, 13, 14]. Glasses (solids with a
liquid-like structure) have traditionally formed at high density driven purely by close
packed repulsions. This state we call the “repulsive glass”. However, when the inter-
particle attractive potential is narrow (as it is in our model) a new type of “attractive
glass” may form at lower density. The lifetime of the attractive glass is typically such
that crystal growth may not occur over experimental time-scales.

Naturally, the attractive glass only forms at low temperatures, where the thermal
energy of the particles is small compared to the attractive well. One point is that, in
addition, such a glass forms more easily when the range of the potential narrows.
However, proteins denature at even moderately high temperature, so a pertinent
question is whether one can reach a high enough temperature to avoid the glass without
denaturing the protein.

We first discuss the methods we have used to compute the phase diagrams. We
then calculate the equilibrium phase diagrams for different well widths and overlay
the glass lines, showing at what temperature and density the glass forms. We aim
to identify the different widths of attraction for which protein crystallisation may be
feasible.
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2. Methods

The Hard Core Yukawa fluid is described by the following inter-particle potential

o0 r<o
W)= 4 s, (1)

The parameter b determines the range of the interaction- larger b values correspond
to shorter ranges of attraction. The parameter Ay defines the energy scale. In this
paper we set the particle diameter o = 1 and Ag = 1, so that the range b is in units
of hard core diameter and the temperature is in units of energy.

We computed the phase diagram for the Hard Core Yukawa fluid using a variety
of methods. We use a self consistent approximation described below to calculate the
properties of the liquid, gas and fluid phases, and perturbation theory for the crystal
phase, locating the phase boundaries by imposing the standard conditions on the
chemical potential p and pressure P,

Msolid = M fluid (2)
Pyoria = Priuia (3)

The glass lines, as calculated from Mode Coupling Theory, are overlaid on
the phase diagram. We now briefly describe the methods of the Self Consistent
approximation, perturbation theory and Mode Coupling Theory.

2.1. Self Consistent Ornstein Zernike Approzimation (SCOZA)

The Ornstein-Zernike (OZ) equation for the pair correlation function h(r) is

h(r) = e(r) + p/dr'C(Ir —r )A(lr']) (4)

where g(r) = h(r)+1 is the radial distribution function and ¢(r) the direct correlation
function [15].

The Self Consistent Ornstein-Zernike Approximation (SCOZA) is designed
to provide a closure to the OZ equation. Various approximations exist (eg.
mean spherical approximation, Percus-Yevick approximation, hyper-netted chain
approximation etc.) which relate the direct correlation function ¢(r) to the potential
with one or more state dependant parameters that can be adjusted to satisfy various
exact thermodynamic relations [16].

The Self Consistent approximation alluded to here uses a Yukawa function to
account for the contribution to the direct correlation function ¢(r) due to the hard-
core repulsion. Two thermodynamic conditions are imposed: one requires that the
compressibility and the virial route to the thermodynamics lead to the same system
properties- namely the Carnahan-Starling equation of state for the hard-sphere fluid;
the other condition requires that the energy and compressibility routes yield the same
result. These two conditions provide a means to calculate the thermodynamics in
a self-consistent manner. Using the Yukawa interaction potential we can establish
relations that allow us to compute all the thermodynamic properties of the system
[16, 17].

The application of SCOZA to an attractive hard-core Yukawa fluid provides a
semi-analytic calculation of the thermodynamic properties of the fluid, liquid and
gas states that arise in systems interacting through short-range forces [16]. SCOZA
has been applied to Yukawa systems with relatively large values of the range of the



Interactions in systems with short-range attractions and applications to protein crystallisationd

potential, with a satisfactory reproduction of the liquid-vapour binodal curves and a
good description of the critical point region. The accuracy of SCOZA is maintained at
high density and low temperature, in contrast to other methods. In fact, the agreement
of SCOZA for narrower wells with recent Gibbs Ensemble Monte-Carlo simulations
[18] are very good [19], giving us confidence in the accuracy of the phase diagrams
calculated by the SCOZA method for the well widths that we present.

2.2. Perturbation Theory

Perturbation Theory is employed to calculate the phase behaviour of the crystalline
phase following the lead of Gast et al. [20, 21]. At the simplest level this theory
makes the assumption that one can divide the free energy of the system up into
the contribution caused by the hard core part of the potential and a perturbation
composed of an attractive tail as follows,

v(r) = vo(r) + var(r) (5)

The hard core being the greatest contribution to the potential is the zero order
or “reference” free energy. The attractive tail is the perturbation. This amounts to
a series of corrections to the reference where each subsequent term in the series is
hopefully smaller than the previous one. Unfortunately even to calculate the second
order term in this expansion is extremely demanding. However, Barker and Henderson
[22] have developed a very accurate approximation to the second order term which we
have used:

BE B8 1 52 [vuutrgoryie - 22 (6—P) [ viats(r)ar 6

The free energy of the reference system is calculated by thermodynamic
integration in the packing fraction using an equation of state for the hard-sphere
FCC solid proposed by Hall [23].

The perturbation terms were evaluated using an analytic form of the pair
distribution function go(r) for the hard-sphere FCC solid proposed by Kincaid and
Weiss [24]. Once we have the Helmholtz free energy we can calculate the Gibbs free
energy and hence the pressure.

For extremely narrow well widths a solid-solid transition occurs analogous to
the liquid-gas binodal. The corresponding solid-solid critical point compares with
quantitative accuracy to Monte-Carlo simulations of the Hard Core Yukawa fluid
[25, 26]. From this evidence we are confident of this method’s accuracy.

2.3. Mode Coupling Theory (MCT)

MCT describes the transition of super-cooled liquids to a non-ergodic state [27]. The
transition of the super-cooled liquid to the glass state represents a critical slowing down
of the particle motions, leading to structural arrest. A characteristic property of the
arrested state is that it has the static structure of a liquid. Apart from the parameters
describing the microscopic motion, the static structure factor S(q) is the only input
to MCT, which aims to give a complete description of the dynamical properties of the
system.

MCT has been successfully applied to the study of certain aspects of the arrest
transitions of colloidal particles [28, 29], and details of time correlation functions
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are well reproduced [30]. MCT is expected to provide a good description of the
principal phenomena of glass formation in the regions of the phase diagram we are
most interested in.

To achieve a high quality description of the arrest transition a good quality static
structure factor is required. The SCOZA method we have used provides us with
many thermodynamic properties of the system. We use the direct correlation function
¢(r) as produced by SCOZA to construct the structure factor S(g). The structure
factor calculated in this way is expected to be highly accurate. With this structure
factor input we solve the MCT equations to determine the final dynamical state of
the system.

3. Results

3.1. Yukowa b=5.0

The Yukawa b = 5.0, corresponds to an attractive range of about 12% of the particle
radius, if we consider the range at half the potential depth. The phase diagram displays
all the features of a conventional Van der Waals type phase diagram. Three distinct
phases exist, solid, liquid and gas. At high temperatures only a single fluid and the
usual solid phase exists. As the temperature is lowered past the critical point C}, two
distinct fluids become apparent, one more (liquid) and one less (gas) dense. These
two phases coexist at moderate densities. As the temperature lowers further a unique
triple point T}, is reached where all three phases solid, liquid and gas coexist.

With the usual equilibrium lines, we have shown also the MCT glass transition
line, beyond which the system may no longer reach equilibrium. For this range of
attraction, we see only the presence of a repulsive glass. The formation of this high
density repulsive glass is almost entirely temperature independent. For this well width
here is almost no attractive glass formation.

3.2. Yukawa b = 30.0

The b = 30.0 well corresponds to an attractive range of about 3% of the particle
radius. The first thing we observe is that the critical point has become meta-stable
with respect to the solubility curve. In such a situation no triple point can exist as
only two equilibrium phases are ever possible. This phase diagram, typical of short-
ranged attractions, is similar to that observed for the proteins yrr-crystallin[31] and
lysozyme[2]. We have labelled three zones I, IT and III in Figure 2 in accordance
with the ideas of Muschol and Rosenberger [2], and we believe the microscopic picture
offered underlies the corresponding zones in their schematic phase diagram. Note that
zone I is the regime where one can obtain good crystals.

On decreasing the temperature, the narrower range of attraction causes a low
density, attractive glass to form. The attractive glass line lies at a higher temperature
than the liquid-gas coexistence for a wide range of densities.

Changing the range of attraction clearly alters both the equilibrium phase
behaviour and the tendency to glass formation. To appreciate the significance of this
on the phase behaviour, consider quenching down below the solubility curve towards
the critical temperature in Figure 2. It is clear that the range of temperatures in
which equilibrium can be achieved is now limited by the presence of the attractive
glass. This situation becomes more extreme as the well is narrowed further [19]
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with the attractive glass dominating at still lower densities. If the quench goes
below this glass line, we expect to see the formation of various types of gel. These
non-equilibrium structures may be long-lived and can thus prohibit or delay crystal
formation beyond experimental time-scales. This sort of behaviour is commonly
observed in protein crystal growth experiments where amorphous precipitates interfere
with crystallisation.

3.3. Two-Yukawa by = 30.0,b2 = 5.0

As stated previously, the protein phase diagram is extremely sensitive to the addition
of monovalent salts. The Hofmeister series describes the relative efficiency of different
ions on protein crystal growth. Protein crystallisation can also be enhanced by the
addition of various polymers such as polyethylene glycol. The addition of the polymer
is associated with depletion interactions. Both of these cases show that modifying the
range and nature of the interactions lead to important changes in the phase behaviour.
Without investigating the origin of these interactions, we chose to study a modification
of our model, by including a longer ranged attraction to our short-ranged Yukawa Hard
Core fluid [32].

Starting from our previous short-ranged b; = 30 well we added the longer-ranged
ba = 5 well

o0 r<o
vr) = P [Al N e Y @
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constraining the overall strength of attractions to be the same as the One-Yukawa
model A1 + A2 =1.

In Figure 3 we see that the phase behaviour displays interesting features of both
short and long ranged attractive systems. Like the b = 30 case the critical point
is meta-stable with respect to the solubility curve. Apart from a minor shift in the
temperature and density, the equilibrium phase behaviour of the Two-Yukawa system
is essentially the same as the One-Yukawa system.

More importantly, the attractive glass line, which dominates above the critical
temperature of the b = 30 model, is no longer present and we see only the repulsive
glass line at high density. The effect of adding a long ranged attraction is to diminish
the role of glass formation in the phase behaviour. The role of long range attractions in
lifting the meta-stable critical point out of the region where glass formation dominates
has been investigated before [32]. This is most interesting. It implies that zone I in
Figure 3 can be considerably extended by moving the glass curve.

4. Conclusions

We have presented the phase diagrams and glass lines of a model hard-core Yukawa
fluid for various ranges of attraction, which we have computed using a variety of high
quality methods. The resulting phase diagrams are consistent with simulated phase
diagrams of the Hard Core Yukawa fluid [33] and bear striking resemblance to the
reported phase diagrams of globular proteins [2, 31].

We find that when the range of attraction becomes smaller in comparison with
the particle size, the attractive glass dominates an increasingly larger region of the
phase diagram above the metastable critical point. The formation of the attractive
glass is responsible for many of the problems associated with crystallising such systems
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(proteins, colloids). By decreasing the width of the well we find that the region of the
phase diagram where crystals can grow is steadily reduced in favour of the formation
of a glassy state. This behaviour is seen in real protein crystallisation experiments
where amorphous precipitates interfere with crystal growth.

We have developed highly accurate methods for calculating the phase diagram
of short-ranged attractive systems, allowing us to identify the regions of the phase
diagram where the formation of the attractive glass can be avoided. It should now be
possible to identify the optimal conditions for crystal growth in these systems.

The Two-Yukawa model can combine multiple interactions of varying strengths,
from which we can accurately calculate phase behaviour (coexistence and glass lines).

We have studied the Two-Yukawa model as simple extension to account for long-
ranged interactions. In the Two-Yukawa model we find phase behaviour similar to
that of the short-ranged attractive system. However, attractive glass formation does
not occur. At high densities a temperature independent repulsive glass does form,
but the absence of the attractive glass at lower densities suggests a role for long-
ranged attractions in enhancing crysal growth by avoiding the formation of glass state.
The purpose of this work is to accurately model the phase behaviour of short-ranged
attractive systems, and to extend this model to investigate the role of longer-ranged
interactions, which might represent for example a depletion potential. Work is in
progress to study the Two-Yukawa model in more detail.
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Figure 1. Yukawa b = 5.0. The X denotes the fluid-solid coexistence and o
denotes the glass line
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Figure 2. Yukawa b = 30.0. The label are the same as Figure 1. Zone I is the
region where one can obtain good crystals. Zone II is the meta-stable region of
fluid-fluid phase separation and zone III corresponds to the region of attractive
glass formation. The attractive glass line has been rescaled in density from 52%

so that it agrees with the actual density of the hard sphere arrest transition at

58%.
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Figure 3. Yukawa b1 = 30.0 4 b2 = 5.0. The labels and zones are as in Figure 2.
The important difference from the b = 30.0 model is zone 11 has been considerably
extended at the expense of the attractive glass (zone III).
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