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We extend a previously studied lattice model of particles with infinite repulsions to the case of finite-energy
interactions. The phase diagram is studied using grand canonical Monte Carlo simulation. Simulations of
dynamical phenomena are made using the canonical ensemble. We find interesting order-disorder transitions in
the equilibrium phase diagram and identify several anomalous regimes of diffusivity. These phenomena may be
relevant to the case of strong orientational bonding near freezing.
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Dynamical arrestf1–6g is a ubiquitous phenomenon in
nature, with many manifestations. Well-known examples in-
clude conventional glassesf7–9g, but in modern condensed-
matter studies the range of systems where the issues have
become relevant is remarkable. Thus, dynamical arrest is
now believed to be a useful description for gellationf10–15g,
“solidification”, glassificationf7,8,16,17g, jammingf18–20g,
and the ergodic-to-non-ergodic transition. Recent work tends
to indicate that scientists increasingly see these phenomena
as manifestations of a single underlying set of principles
f12,18,20–22g.

Numerous attempts have been made to study simple mod-
els to develop ideas of dynamical arrestf9,23–31g. Two ap-
proaches have been prominent in recent years, exemplified
by the Kob-Andersen kinetically constrained modelsf32,33g
and Hamiltonian-type models such as that introduced by
Biroli and MézardsBMd. This model, introduced in Ref.f3g,
permits particles of any given typei to have a number of
neighbors less than or equal to a prescribed number,ci. If ci
is equal to the coordination number of the lattice, we have a
lattice-gas model; elsewhere the model is believed to be an
attempt to represent packing constraintsf1,3,34g. The rela-
tionship between these two different kinetic models has
never been fully explored, although there has been a ten-
dency to conclude that they are quite similar in spirit.

In this paper we extend the concept of a Hamiltonian
model to include “soft” repulsions, rather than simply hard
constraints. Thus, we now stipulate thatci neighbors of a
given type have zero energy and additional particles have a
repulsive energyesid sin our case chosen to beV0d. Clearly,
as we pass to the limit of infinite repulsions we expect to
recover the original BM model. In what will follow the
reader may assume that this is indeed the case, although that
limit is not explicitly shown. Here we focus on this generali-
zation and in particular two of its applications. First, it gives
additional insights into the mechanisms involved in the dy-
namical arrest of such models, and second, such models may
be applicable to systems with oriented bonding effects.

In the work discussed below, we have calculated phase
diagrams using the grand canonical Monte Carlo method.
The initial configurations of these models are obtained by
slowly annealing in the repulsions from a random lattice-gas
configuration. Since we form crystals for a large portion of
the phase diagram, such annealing procedures may some-

times have to be optimized over long periods of time. Phase-
transition curves are typically determined from system sizes
of L=12, although in some cases larger sizes have been used
to study particular transitions. After annealing, equilibration
times oft=2000 Monte Carlo sweepssMCSd and averaging
times of 100 000 MCS have been used. Again, some specific
areas of the phase diagram have been studied with averaging
times of several millions sweeps.

The dynamical studies, from which we calculate the
mean-squared distance traveledskr2ld and consequently the
single-particle diffusion constantsDd, are based on a single-
step canonical Monte Carlo approach. In this method, ran-
dom movements are proposed and the conventional Me-
tropolis procedure is used to choose successful moves. We
have checked that both the known lattice gasf35g and BM
limits are faithfully reproduced.

In Fig. 1 we present results for the simplest single com-
ponent systemsc=3d model. The phase diagram for this sys-
tem is quite striking. A “crystalline” region is bounded by
first-order transitions on the low-density side by the gas and
on the high-density side by the fluid. Apart from the special
densityr= 2

3 where the crystal is perfectly packed, the crys-
talline state contains many defects, and with the present level
of simulation and theory it is not possible to establish that it
possesses true long-ranged order. Hence we have referred to
this state as “crystal.” The first-order phase-transition curves
from gas and fluid to the crystal terminate at high tempera-
ture with a regime in which the crystal passes to the fluid.
The restricted resolution of simulation prohibits us from de-
ciding if this is a short curve of weak first-order phase tran-
sitions, or a single point of second-orderscriticald transitions.
We consider, on quite general grounds, that either is possible.
In the inset to Fig. 1 we show the heat capacity as one
crossessby lowering temperatured the transition near the
“critical” region sbm=6.0d. The density difference between
gas or fluid appears to be nearly continuous, as illustrated in
the two-phase regions of the phase diagram. If indeed the
transition were to be continuous, the topology of the phase
diagram and form of the heat capacity suggest that it would
be al-like transitionf36g.

The apex of the envelope of phase transitions appears to
occur precisely at that density at which the crystal is per-
fectly packedsr= 2

3
d. At higher or lower densitysand tem-

peratures lower than this apexd the crystal has either an ex-
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cess or deficit of particles leading to vacancies. This point is
illustrated in Fig. 2. The low-density crystalf2sadg has extra
vacancies in the particle-filled layers, whereas the high-
density crystalf2sbdg has extra particles in the “empty” lay-
ers. The defect density therefore vanishes on approach to this
special point, at densityr= 2

3. Furthermore, at this highest
temperature thesfreed energetic cost of these defects is van-
ishing. It is therefore unclear whether the true order param-
eter of the transition is the Fourier transform of the periodic
density of the crystalsas would be usualf37,38gd or the
defect density. This is connected to the uncertainty in the
nature of that transition.

The equilibrium phase diagram is reminiscent of many
structured fluids composed of molecules that have strong di-
rectional bonding in the solid. The “bonds”sin this case the
repulsive energy between three of the neighbors may be con-
sidered an effective attraction between the othersd are of fi-
nite energy, so that at low density or high temperature we
have a fluid, the crystal forming only when the effective
bond energy becomes sufficiently relevant. As the packing
density increases yet further, the bonds are broken and the
crystal remelts to form a fluid. In this sense the model is an
interesting simple example where ideas related to such sys-
tems may be worked out.

We now study dynamical slowing across the phase dia-
gram. For infinite repulsions there is a transient slowing
f1,3,34g that for some conditions or mixtures appears to be a

near-arrest transition. For the infinite repulsion case the onset
of this phenomenon always lies within the crystal regime and
therefore competes with crystallization. It is interesting to
ask if there is any true arrest for finite energy or higher
density. The answer we have obtained for this model is, at
first sight, a little surprising. The transient phenomenon
present at infinite repulsion is barely appreciable for any fi-
nite repulsion and in the higher-density remelted regime sig-
nificant dynamical slowingsand indeed arrestd occurs only
near the fully filled lattice limit in which the system is close
packed. Thus, even at very low temperatures, where the re-
pulsions become very large, providing the density is suffi-
ciently high that the crystal melts, there is no arrest.

However, it is interesting that the diffusivity is nonmono-
tonic in density or temperature. We have studied the diffu-
sion constants along a series of isochemical potential curves
sbm=6.0,9.0,15.0,20.0d. These are given in Fig. 1 and the
diffusion constants along these curves are given in Fig. 3. In
each case the diffusion constant rises to a maximum as the
temperature is lowered, decreasing for yet lower tempera-
tures. In the equivalent density representation it is clear that
there is a band of anomalously high diffusivity in the high-
density fluid sremeltedd regime of the phase diagram. The
reasons for this are quite interesting and are related to the
issue of defects in the crystalline state. They merit a short
discussion.

At high density, as the fluid remelts there develops a small
population of particles that cannot find a location where their

FIG. 1. The phase diagram of thec=3 system. The points
marked3 bound the single-phase “crystalline” regionC. The points
marked. bound the two-phase coexistence regions on either side
of C. The region betweenC andF is therefore a coexistence region
and is determined from the discontinuities in the density for each
constant chemical potential. However, the apex of the crystalline
phasesthat is its high-temperature limitd appears to lie on the line of
fixed densitysr= 2

3
d at which the crystal is perfectly packed. The

nature of the transition there is uncertain. To the left of this line, the
crystal fsee Fig. 2sadg has an excess of vacancy defects and is in
two-phase coexistence with a low-density isotropic fluid. To the
right of the liner= 2

3, the crystalfsee Fig. 2sbdg has excess particle
defects and is in coexistence with a high-density isotropic fluid. The
points markedL, v, x, s show lines of constant chemical poten-
tial, bm=6.0,9.0,15.0,20.0, respectively. Inset:Cv /kB vs kBT/V0

for constantbm=6.0.

FIG. 2. Samples of crystalline lattices at densities above and
below the “critical” densitysrc= 2

3
d. The black spheres represent an

occupied position on the lattice and the white ones represent a va-
cancy.sad sr=0.6424d shows hole defects within the occupied lay-
ers.sbd sr=0.6811d shows particle defects within the vacant layers.
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three-bond limit is satisfied. This is true even of the crystal,
as noted earlier. Thus, in the fluid, the density exceeds that
limit at which every bond number is satisfied. While it is true
that these particles are unfavorable with respect to energy,
they are equally unfavorable no matter where they are lo-
cated in the system. They can therefore move with ease and
become “superfast” diffusing particles. As the density in-

creases the number of such particles increases, conferring
greater mobility to the system. At yet higher density the re-
pulsive energy is overcome, the system becomes similar to
the lattice gas, and the diffusion constant decreases due to
the limited numbers of spaces into which particles can move.
This phenomenon is sufficiently general that it may be ex-
pected to occur in the remelted regimes of structured fluids.

From a more general perspective we note that there is no
significant dynamical arrest phenomenon in the dense fluid,
with the diffusion constant vanishing only at the close-
packed limitslattice gasd. We may conclude that the blocking
effects that lead to the transient near-arrest phenomena in the
infinite energy version of this model are strongly associated
with the crystalline region itself. That is, when the forces are
sufficient sand the density high enoughd to destabilize the
crystal, dynamical arrest becomes less, not more, likely.

In the future it may be important to explore more care-
fully the mechanisms of these Hamiltonian and kinetic arrest
models to see if indeed there are more substantive differ-
ences that have hitherto not been recognized.
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