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Applications of Linear Co-positive Lyapunov
Functions for Switched Linear Positive Systems

Florian Knorn, Oliver Mason, and Robert Shorten

Abstract In this paper we review necessary and sufficient conditions for the exis-
tence of a common linear co-positive Lyapunov function for switched linear positive
systems. Both the state dependent and arbitrary switching cases are considered and
a number of applications are presented.

1 Introduction

Positive systems, that is systems in which each state can only take positive values,
play a key role in many and diverse areas such as economics [11, 16], biology [1, 9],
communication networks [4, 17], decentralised control [21] or synchronisation /
consensus problems [10]. Although these as well as switchedsystems have been the
focus of many recent studies in the control engineering and mathematics literature
— to name but a few [2, 3, 12, 20] — there are still many open questions relating to
the stability of systems that fall into both categories: switched positive systems.

Proving stability for switched systems involves determining a Lyapunov function
that is common to all constituent subsystems, [18]. In that context, work discussed in
[14, 15] provides necessary and sufficient conditions for the existence of a particular
type of Lyapunov function, namely a linear co-positive Lyapunov function (LCLF).
It is the aim of this paper to review these results and provideexamples of their use.

Our brief paper is structured as follows. In Section 2 we present a number of
examples from various applications to motivate the problem. We then summarise
conditions for the existence of a common LCLF for switched systems evolving in
the entire positive orthant, as well as when the positive orthant is partitioned into
cones. Finally, in Section 4 we apply these results to the examples given at the
beginning.
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Notation and mathematical preliminaries

Throughout,R (resp.R+) denotes the field of real (resp. positive) numbers,R
n

is then-dimensional Euclidean space andRn×n the space ofn× n matrices with
real entries. A closed, pointed convex coneC is a subset ofRn if and only if
αx+ β y ∈ C for anyx,y ∈ C and non-negative scalarsα,β .

Matrices or vectors are said to be positive (resp. non-negative) if all of their en-
tries are positive (resp. non-negative); this is written asA ≻ 0 (resp.A � 0), where0
is the zero-matrix of appropriate dimension. A matrixA is said to beHurwitz if all
its eigenvalues lie in the open left half of the complex plane. A matrix is said to be
Metzler if all its off-diagonal entries are non-negative.

We useΣA to denote the linear time-invariant (LTI) systemẋ = Ax. Such a system
is calledpositive if, for a positive initial condition, all its states remain in the positive
orthant throughout time. A classic result shows that this will be the case if and
only if A is a Metzler matrix, [3]. Similarly, a switched linear positive system is a
dynamical system of the forṁx = As(t)x, for x(0) = x0 wheres : R→ {1, . . . ,N}
is the so-calledswitching signal and{A1, . . . ,AN} are the system matrices of the
constituent systems, which are Metzler matrices. See [5, 18] for more details on
systems of this type. Below we will just writėx = A(t)x for such a system.

Finally, the functionV (x) = vTx is said to be alinear co-positive Lyapunov func-
tion (LCLF) for the positive LTI systemΣA if and only if V (x) > 0 andV̇ (x) < 0
for all x � 0 andx 6= 0, or, equivalently,v ≻ 0 andvTA ≺ 0.

2 Motivating examples

To motivate our results we shall first present a few situations to which they can be
applied.

1) Classes of switched time-delay systems
Consider the class ofn-dimensional linear positive systems with time-delayτ ≥ 0,
similar to those considered by Haddadet al. in [6], but where both the system and
the delay matrices may be switching over time:

ẋ(t) = A(t)x(t)+ Ad(t)x(t − τ), x(θ ) = φ(θ ), −τ ≤ θ ≤ 0 (1)

where we assume that the system matrixA(t) ∈
{

A1, . . . ,AN
}

is Metzler, the delay
matrixAd(t) ∈

{
Ad1, . . . ,AdM

}
is non-negative,

[
A(t)+Ad(t)

]
is Metzler and Hur-

witz for all t ≥ 0, and whereφ : [−τ,0]→R
n is a continuous, vector valued function

specifying the initial condition of the system. How can stability of the system for
arbitrary switching and delays be shown?

2) Switched positive systems with multiplicative noise
Consider the class of switched positive systems with feedback quantisation or where
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the states experience resets. In this type of system, the states on the right hand side
are scaled by a (usually time-varying) diagonal matrix:

ẋ = A(t)D(t)x, A(t) ∈
{

A1, . . . ,AN
}

where we assume thatA(t) is Metzler and Hurwitz for allt, and the diagonal ma-
trix D(t) has strictly positive and bounded diagonal entries for allt. Under which
conditions would such a system be stable?

3) Robustness of switched positive systems with channel dependent multiplica-
tive noise
An important class of positive systems is the class that arises in certain networked
control problems. Here, the system of interest has the form:

ẋ = A(t)x+
[
C[1](t)+ · · ·+ C[n](t)

]
x

where A(t) is Metzler and whereC[i](t) � 0 is an n × n matrix that describes
the communication path from the network states to theith state; namely it is
a matrix of unit rank with only one non-zero row. Usually, thenetwork inter-
connection structure varies with time betweenN different configurations, so that
A(t) ∈

{
A1, . . . ,AN

}
andC[i](t) ∈

{
C[i]

1 , . . . ,C[i]
N

}
for i = 1, . . . ,n. Again, we assume

that
[
A(t)+ C[1](t)+ · · ·+ C[n](t)

]
is also Metzler and Hurwitz for allt. What can

be said regarding asymptotic stability here?

4) Numerical example
Finally, to provide a more concrete example, assume we are given a switched linear
positive system with the following three Metzler and Hurwitz matrices

A =





−16 6 6
1 −18 2
5 3 −20



 , B =





−10 4 0
8 −10 9
4 3 −13



 , C =





−9 2 8
6 −10 4
8 0 −16



 (2)

Can we prove that it is stable under arbitrary switching?

3 Common linear co-positive Lyapunov functions

As mentioned in the introduction, work reported in [14] discusses conditions for the
existence of a common LCLF for switched linear positive systems comprised of sets
of LTI systems, where each of the constituent systems is assumed to be associated
with a convex region of the positive orthant of theRn.

Let us briefly present two results. The first, more general result concerns situa-
tions where the state space (the positive orthant) is partitioned into smaller regions,
and where only certain subsystems may be active in certain regions (this may be in-
terpreted as state dependent switching). The other result focuses on the special case
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where each of those regions is the entire positive orthant itself, that is the system
can switch to any subsystem in any given point in the state space.

3.1 Switching in partitioned positive orthant

Assume there areN closed pointed convex conesC j such that the closed positive
orthant can be written asRn

+ = ∪N
j=1C j. Moreover, assume that we are given stable

positive LTI systemsΣA j for j = 1, . . . ,N such that thejth system can only be active
for states withinC j . The following theorem then gives a necessary and sufficient
condition for the existence of a common LCLF in this set-up.

Theorem 1. Given N Metzler and Hurwitz matrices A1, . . . ,AN ∈ Rn×n and N
closed, convex pointed cones C1, . . . ,CN such that Rn

+ = ∪N
j=1C j , precisely one of

the following statements is true:

1. There is a vector v ∈ Rn
+ such that vTA jx j < 0 for all non-zero x j ∈ C j and

j = 1, . . . ,N.
2. There are vectors x j ∈ C j not all zero such that ∑N

j=1 A jx j � 0.

Proof. 2 ⇒ ¬1:1 Assume 2 holds. Then, for any positive vectorv ≻ 0 we have
vTA1x1 + · · ·+ vTANxN ≥ 0 which implies that 1 cannot hold.

¬2⇒ 1: Assume 2 does not hold, i. e. there are no vectorsx j ∈ C j not all zero
such that∑N

j=1 A jx j � 0. This means that the following intersection of convex cones
is empty:

{

∑N
j=1 A jx j : x j ∈ C j, not all zero

}

︸ ︷︷ ︸

O1

∩
{

x � 0
}

︸ ︷︷ ︸

O2

= /0.

By scaling appropriately we can see that this is equivalent to:
{

∑N
j=1 A jx j : x j ∈C j,∑N

j=1‖x j‖1=1
}

︸ ︷︷ ︸

Ō1

∩
{

x � 0
}

︸ ︷︷ ︸

O2

= /0 (3)

where‖ · ‖1 denotes the L1-norm. Now,Ō1 andO2 are disjoint non-empty closed
convex sets and additionallȳO1 is bounded. Thus, we can apply Corollary 4.1.3
from [8] which guarantees the existence of a vectorv ∈Rn such that

max
y∈Ō1

vTy < inf
y∈O2

vTy (4)

As the zero vector is inO2, it follows that infy∈O2
vTy ≤ 0. However, asO2 is the

cone{x � 0} it also follows that infy∈O2
vTy ≥ 0. Thus, infy∈O2

vTy = 0. Hence,
vTy ≥ 0 for all y � 0 and thusv � 0.

1 That is, we show that if 2 is true, then 1 cannot hold.
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Moreover, from (4), we can conclude that for anyj = 1, . . . ,N and anyx j ∈ C j

with ‖x j‖1 = 1 we havevTA jx j < 0. As C j ∩
{

x � 0 : ‖x‖1 = 1
}

is compact, it
follows from continuity that by choosingε > 0 sufficiently small, we can guarantee
thatvε := v+ ε1 ≻ 0 satisfiesvT

ε A jx j < 0 for all x j ∈ C j ∩
{

x � 0 : ‖x‖1 = 1
}

and
all j = 1, . . . ,N, where1 is the vector of all ones.

Finally, it is easy to see thatvT
ε A jx j < 0 is true even without the norm require-

ment onx j. This completes the proof of the theorem. ⊓⊔

A very practical way of partitioning the state space would beto partition it us-
ing simplicial cones C j. These are cones generated by non-negative, non-singular
generating matricesQ j ∈R

n×n:

C j :=
{

x
∣
∣x = ∑n

i=1 αiq
(i)
j ,αi ≥ 0, i = 1, . . . ,n

}

(5)

where j = 1, . . . ,N and q(i)
j denotes theith column ofQ j. In that case, we may

include the cone generating matrices into the second statement of Theorem 1 to
reword it slightly to:

[...]
2. There are vectors w j � 0 not all zero s. t. ∑N

j=1B jw j � 0, with B j := A jQ j.

This new statement 2 can now be easily tested by running a feasibility check on a
suitably defined linear program, see [14] for more details.

3.2 Switching in entire positive orthant

An important special case of the previous results is when theQ j matrices are the
identity matrix, namely when we seek a common linear co-positive Lyapunov func-
tion for a finite set of linear positive systems. For that, some additional notation is
required: Let the set containing all possible mappingsσ : {1, . . . ,n} → {1, . . . ,N}
be calledSn,N , for positive integersn andN. GivenN matricesA j, these mappings
will then be used to construct matricesAσ (A1, . . . ,AN) in the following way:

Aσ
(
A1, . . . ,AN

)
:=

[

a(1)
σ(1)

a(2)
σ(2)

. . . a(n)
σ(n)

]

(6)

wherea(i)
j denotes theith column ofA j. In other words, theith columna(i)

σ of Aσ
is the ith column of one of theA1, . . . ,AN matrices, depending on the mapping
σ ∈ Sn,N chosen. We then have the following condition:

Theorem 2. Given N Hurwitz and Metzler matrices A1, . . . ,AN ∈Rn×n, the follow-
ing statements are equivalent:

1. There is a vector v ∈Rn
+ such that vTA j ≺ 0 for all j = 1, . . . ,N.

2. Aσ (A1, . . . ,AN) is Hurwitz for all σ ∈ Sn,N .

Proof. Given in [14]. ⊓⊔
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Remark. Since the submission of [14] it has come to our attention thatthis result
may also be deduced from the more general results onP-matrix sets given in [19].

Theorem 2 states thatN positive LTI systems have a common linear co-positive
Lyapunov functionV (x) = vTx if and only if theAσ (A1, . . . ,AN) matrices are Hur-
witz matrices, for allσ ∈ Sn,N . In that case, the switched system formed by these
subsystems is uniformly asymptotically stable under arbitrary switching.

Finally, note that when theA jQ j in Theorem 1 (or its reworded version) are
Metzler and Hurwitz, then the Hurwitz condition of Theorem 2can also be used to
give a solution to the state dependent switching problem.

4 Solution to motivating examples

We shall now use these results to answer the problems posed inSection 2.

1) Classes of switched time-delay systems
We can show stability under arbitrary switching and delays if two conditions are
met: (a) there is a matrix̃Ad such that

(
Ad(t)− Ãd

)
� 0 for all t, i. e. there is a

matrix Ãd that is entry-wise greater or equal thanAdi for all i = 1, . . . ,M; (b) for all
σ ∈Sn,N the matricesAσ

(
A1+Ãd , . . . , AN+Ãd

)
are Hurwitz. This can be seen by

noting that (b) guarantees (by applying Theorem 2) the existence of a vectorv ≻ 0
such thatvT

[
A(t)+ Ãd

]
≺ 0. Then, consider the following Lyapunov-Krasovskii

functional, [7, 13].

V (ψ) = vTψ(0)+ vTÃd

∫ 0

−τ
ψ(θ )dθ

for somev ≻ 0. ClearlyV (ψ) ≥ vTψ(0) ≥ a‖ψ(0)‖∞ with a = mini{vi} > 0 and
‖ · ‖∞ being the maximum modulus norm.

Next, definext := {x(t + θ ) | θ ∈ [−τ,0]} as the trajectory segment of the states
in the interval[t − τ , t ]. Then, if condition (a) is met, the directional derivative of
the above functional along the solutions of (1) will be

V̇ (xt) = vTẋ(t)+ vTÃd
[
x(t)−x(t − τ)

]

= vT
[
A(t)x(t)+ Ad(t)x(t − τ)

]
+ vTÃd

[
x(t)−x(t − τ)

]

= vT
[
A(t)+ Ãd

]

︸ ︷︷ ︸
x(t)+ vT

[
Ad(t)− Ãd

]

︸ ︷︷ ︸

�0

x(t − τ)

≤ −pT x(t)

≤ −β‖x(t)‖∞

whereβ = mini{pi} > 0. It then follows (see for instance [7]) that the switched
system is uniformly asymptotically stable.



P
re

pr
in

t
20

-A
pr

-2
00

9,
15

:2
1

Applications of Linear Co-positive Lyapunov Functions . . . 7

2) Switched positive systems with multiplicative noise
Through Theorem 2 we know that ifAσ (A1, . . . ,AN) is a Hurwitz matrix for all
σ ∈ Sn,N , then there exists a common LCLF for the system. In that case,since
D(t)x ≻ 0, the system will be stable for anyD(t).

3) Robustness of switched pos. systems with channel dep. multiplicative noise
Again, our principal result can be used to give conditions such that this sys-
tem is stable. A sufficient requirement for asymptotic stability here would be
that Aσ

(
B1, . . . ,Bq

)
is a Metzler and Hurwitz matrix for allσ ∈ Sn,q, where

q = N(n+1) andB1, . . . ,Bq are all the matrices of the form
[
Ai0 + C[1]

i1
+ · · ·+ C[n]

iN

]

with i0, . . . , iN ∈ {1, . . . ,N}.
Further, by exploiting simple properties of Metzler matrices, we will also get the

robust stability of the related system:

ẋ = A(t)x+
[
C[1](t)D[1](t)+ · · ·+ C[n](t)D[n](t)

]
x

where theD[i](t) are non-negative diagonal matrices whose diagonal entriesare
strictly positive, but with entries bounded less than one. This latter result is im-
portant as it can be used to model uncertain communication channel characteristics.

4) Numerical example
With A,B,C given as in (2), it turns out that allAσ (A,B,C) are Hurwitz matrices,
for anyσ ∈ S3,3; hence a switched linear positive system with these matrices will
be uniformly asymptotically stable under arbitrary switching. If, however, the (3,1)-
element ofC is changed from 8 to 14 — note that after the changeC is still a
Metzler and Hurwitz matrix — then the matrixA(3,2,3) =

[
c(1) b(2) c(3)

]
will have

an eigenvalueλ ≃ 1.7 which violates the Hurwitz condition.

5 Conclusion

In this paper, after presenting a few motivating examples, we have reviewed neces-
sary and sufficient conditions for the existence of a certaintype of Lyapunov func-
tion for switched linear positive systems. We then illustrated and commented on
the implications of our results. Future work will consider switched positive systems
with time delay, and we suspect that the results reviewed here will be of great value
in this future study.
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