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Abstract—Availability and reliability are often important fea-  guidelines for selection of the appropriate threshold eslu
tures of key software appliances such as firewalls, web semge not available, and expected to be strongly dependent on the
etc. In this paper we seek to go beyond the simple heartbeat g ific configuration of an appliance, it is clear that fanso

monitoring that is widely used for failover control. We do this . .. . . )
by integrating more fine grained measurements that are ready 'MPOrtant guantities simple thresholds are inappropribite

available on most platforms to detect possible faults or thenset €xample, during normal operation CPU utilisation may reach
of failures. In particular, we evaluate the use of adaptive Kliman 100 % and simple thresholding is of little use.

Filtering for automated CPU usage prediction that is then ued  While in this context it is natural to consider the use of time
to detect abnormal behaviour. Examples from experimental ésts history information to support more discriminating infece,
are given. : . .
solutions are subject to a number of key constraints. These
include: (i) any inference algorithm must have a small com-
putational/memory footprint and admit real-time openati@i)
Software appliances (e.g. firewalls, web servers) are ofteg suited to unsupervised operation (i. e. without the need f
viewed as “mission critical” and thus required to have higlhanual tuning and other intervention) and (iii) robust egtou
availability and reliability. Use of redundancy and fa#ov to operate in a wide range of environments (although thegang
between devices has been the subject of considerableattents constrained by the fact that an appliance carries outitelim
with simple heartbeat monitoring used for failover controhumber of tasks). On the plus side, we have access to plenty
However this primarily targets hardware failure and moref data and measurements are error free (no measurement
detailed software monitoring of operation within an indival noise). Moreover, a potentially important feature is trasé
appliance is much less well developed. positives need not carry a prohibitive cost. For examplhef
Current best practice in software monitoring makes use aétion taken is to log detailed debug information on detegcti
basic event logging. However, the resulting logs are tyfsicaan anomaly, to allow later debugging, false positives carry
presented in fairly raw form to human operators and, duelatively low cost (namely, only increased storage) comga
to the sheer volume of even basic event log data, this datih false negatives.
is often largely disregarded. That is, in practice faults ar In this paper we propose a Kalman Filter based framework
typically detected as a result of a degradation in service far software appliance monitoring. This builds on early ex-
user complaints, with the log data then used primarily fqsloratory work reported in [1]. We investigate a number of
diagnosis after the fact. This is highly inefficient on a n&nb modelling options and propose use of a novel non-parametric
of levels. Firstly, pro-active detection of faults (as oppd model structure that is both simpler to implement and signif
to waiting for user complaints) can yield improved qualitycantly easier to tune than other approaches. Our appraach i
of service. Secondly, although operators are already s@dmuited to online processing of data and efficient implemen-
with log data, in fact this is only a very small subset of theation (low memory and CPU burden). Its effectiveness for
data which can be readily measured. Software appliances astomated detection of fault conditions is demonstratéagus
already instrumented to provide far more detailed measuraeasurements from an experimental testbed under a range of
ments than are provided by basic event logging. For exampdperating conditions and a variety of real faults.
fine grained time histories of CPU and memory utlisation, file
system behaviour etc. are all available but unused (beyond Il. RELATED WORK
perhaps MRTG graphing of coarse 5 minute average data)Fault, anomaly or deviation detection is a classical redear
The potential wins from using this additional data, in aiddit topic and a great wealth of results has been obtained over the
to early detection of fault conditions, include accelematof years. See for example survey papers such as [2], [3], [i], [5
debugging and software fixes. At present, it can be extremé#}, [7]. Existing techniques differ mainly in the represation
time consuming (weeks or months) to track back from eveat model of the “normal behaviour”. This can be, for exam-
logs to the source of errors. ple, strings or logic-based profiles, artificial neural natis,
Many software appliances do provide manual setting ofustering information, event transition probabilitisgtistical
threshold values for a few variables, with exceptions &iggl distributions, or stochastic models. Time series modeishs
when a threshold is exceeded. However, anecdotal evideaseARMA models or Kalman Filters are used for example in
suggests that this functionality is rarely used. Not onlg af8], [9], [10], [11]. Once residuals are generated, thathis t

I. INTRODUCTION
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wherex;, are then hidden statesy; is the observed variable
(e.g. CPU load)u; are them inputs (e.g. based on the
sysl og) and n; resp.v; are zero mean Gaussian process
resp. measurement noise with covariances

E{neg, i} =Qd =gl dp, E{v,vi}=rdu (3)

where I is the identity matrix of appropriate dimensions and
0x; 1S the Kronecker delta.

It is mainly the choice of structure for the matricés B
and vectorh™ that distinguishes the different models that we
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Stepk For any model of the form (2), the predictign,;, of
the signaly,.1 given measurements afy,...,yr can be

Figure 1. Measured CPU usage as a function of time. " . :
calculated using a Kalman Filter. In more detail, we have

, - N Ty = Fopp + Buy (4a)
difference between predicted and measured values, salist T
significance tests, such ag or generalized log-likelihood P = FPy F- +Q (4b)
ratios are used to decide whether the observed behaviour is Ukt1)k = hTa“;k+1|k (4c)
“abnormal” or not. Ehralk = Yk — Jht1lk (4d)

In the context of software appliances and computer systems, R o _
statistical evaluations of variable distributions haverbesed, Where .1, are predictions of the hidden model state,
[12], [13], [14], [15], [16]. Most of this work, however, mak Py 1), is the predicted (oa priori) covariance matrix of the
use of static models rather than time series models. Amoigte: and
the fe\(v publications that c0n§ider time s_eries mode!s aqdaeSo Epk = i1 + Kiprjp—1 (5a)
et al. in [17], [18] who consider detecting anomalies in the

: , : P, = (I — K, ,hY) Py, 5b
system wide traffic state of an enterprise or ISP network and i = P Mkh )Pt (5b)
[19] who use, among other techniques, discrete time Markov Ko, — Bkt (5¢)

. k|k RTP h
Chain and ARMA models. T+ k|k—1

IIl. PREDICTIVE MODELLING Here, Ky, is calle(_j the Kalman Filter gain. Looking at
(4b), (5a) and (5c¢) in more detail, we can see how process

Our aim is to develop simple predictive models of key Soffs,ise 1, “and measurement noisg influence the predicted
ware appliance signals in order to capture baseline behavi%

signal of importance on all appliances. An example timﬂa]e new

history of measured CPU utilisation on a software appliaacey, s 0y is large, the state error covariance matrix in (4b) (and

;hown In Flgure 1.1t can .be.seen that some tasks @@1 hence the filter gain) will be “large”, giving measurements
jobs) are carried out periodically, creating regular spike more weight

CPU utilisation. The work load varies randomly, howeved an
this is reflected in the variation in CPU load. Our basic idea - Form-free model
therefore to model the signal of interest (i.e. CPU utilizaf Given a periodic signal, an intuitive approach to predigtin
Y, at time k as consisting of a periodic componef)t, an the behaviour of a new cycle is to take, for each sample within
event-driven componetd, and additive noise componef, the cycle, the average over the corresponding samples from
(to cover unmodelled or unexpected signal deviations).t Therevious cycles. In essence this is the idea underlying the
is, so-calledform-freemodelling approach. It is called form-free

Yk = Cr + &k + Dy, (1) because it makes few assumptions about the structure of the

While we consider a number of different modelling ap(_jata, aside from the fact that it is periodic. Instead the ehod

proaches, all fall within the class of linear time series eled wc;(rks d(;rectlty n tgrms .?f the_(rj‘neasuretrr;lent_i..ll'lt'hls rﬁprr;stent
with additive Gaussian noise. Statistical inference cameh 2 ey? var}; age S'?C.?.' pro:;' els ?re? exi Itl de' et d
fore be efficiently carried out in an online manner by usinﬁarne Ime being Intultive and retatively easy 1o understan

standard Kalman Filter tools [20], [21]. In more detail, w In more detail, recalling the general linear model struetur
Lo ' ! ' ?2), a form-free model is obtained by setting the input nxatri
assume the following linear state-space model

B to be zero and selecting the system matrix as [22]
{fﬂkﬂ = Fx; + Buy +ny,

2 _ {0 I,
> B
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time steps). Since this interval is slightly longer than fingt
series of spikes, over time these smaller spikes tend tedfra
relative to the larger spikes. As shown in the figure, the form
free model can accurately predict the large spikes but pago
less well at predicting the smaller spikes as they drifttieda
to the large ones. This might be addressed by choosing the
model periodn to be a value that is an integer multiple of
both 12 and 12.125, but the smallest value that satisfiessthis
n = 1164, i.e. a large increase in state dimension is required.

To address these issues, in the following sections we aug-
ment the form-free model with an event-driven element te cre
ate a new hybrid type of model that combines the advantages
Figure 2. lllustrating application of form-free predi@ivnodel. The solid of the form-free approach with the low state dimension of
line corresponds to the predictions, the + markers show teasored data, event-driven approaches.
and the circled markers on the bottom indicate two diffetgpes of events.

B. Event-driven model
Before proceeding to consider hybrid models, we briefly

whereZ,, is then dimensional cyclic-permutation matrix andintroduce purelevent-drivermodels. In contrast to form-free
0 is the zero matrix (vector) of appropriate dimensions.  models, they do not require any periodicity in the signal of

In this setting, the stater;, can be interpreted as a vectointerest. Instead, the requirement is for a model input that
storing the running average of samples over a period fat0  signals when an event has occurred and triggers a certain CPU
it is initialised with the firstn measurements). The systemutilisation profile. The CPU utilisation profile can be stre
matrix F' rotates (permutes) the state vector by one elemegither in the form of parametric or form-free submodels.
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at each time step, and we have that,,, = F"x;, = x i.e. 1) Parametric event submodeBuppose that there are
the state evolves in a cyclic manner with periedWe can different types of events to be modelled. We associate input
recover each sample by setting the output vector to ug,; With the ith type of event and set;, ; = v; when event

T occurs at time step and zero otherwise. The value ¢f can
h* = (1 U 0) (M) be adjusted to provide flexibility to capture relevant featu
where k™ hasn entries. Figure 2 illustrates use of such of the event. The CPU utilisation profile associated with the

form-free model to predict CPU utilisation. ith type of event may then be generated as the output of the

The measurement and process noise covariances in ?i?am'c system
determine, rough!y spkeaking, the number_of cycle? that the Tpi1i = ATk + Biugi, Yk = CiTy (8)
running average is taken over. By averaging over fewer cy- . . _
cles we can adapt our predictions more rapidly to changi&é}hjreemé“gs;snthzrj;tgtevr?t&r t?]r;dsme Igns?tggﬁiwz E uir;da first
conditions, but this comes at the price of increased ernods a ld 4 gn p ‘ : P
uncertainty in the predictions. Conversely, by averagiagro order dynamic system
more cycles we can reduce errors but at the cost of slower Thtls = Qi + Ukis Yhki = Tk (9)

adaptation. . .
In the f f h the si f the stat of wherexy ; is now a scalar. The parameter determines the
1 e form-iree approach the size of Ihe stale vealpr: o, pe of the output profile, and by adjusting the magnityde

tst::.alc-_:‘s W'lt(h thde n_umt()je_r of ;a;?]ples taketn ov?r 6: Ql_eh”Od Fthe input the height of the pulse generated can be coettoll
IS IS a K€y design driver In the présent context. The malnz) Form-free event submodeEvent profiles can also be

difficulty arises when a period involves a mix of time-scale, ored in a form-free manner. The idea here is to “play back”

€.g. ifthe perlpd of a signal rl15f'24 ho!”s but V\I'e W?nt to m(;)ds stored profile whenever an associated event occurs. If the
events occurring at a much finer time scale of seconds ape consists of; consecutive points, the dimension of the

rmnutes. Note that such situations are likely to be commai, e vector,.; would ben; as well, and the submodel would
since there may be regular events at, for example, 5 min '

intervals or less plus daily and weekly events (e. g. backups

. . A i = AkiTr, i = ChriTp, 10
Furthermore, this approach cannot be used if the perigdicit Tht, ki, Yk, ki, (10)
of the signal changes over time. Here, if the eveni occurs atk = &/, we have
A related issue can also arise .when .two (or more)_types Z,, fork="k,. .. K +n—1,
of events occur periodically, but with periods that arelig BE=\T otherwise (11)
different. This is also illustrated in Figure 2. There arguiar i

spikes in CPU utilisation every 12 time steps — correspogdiand Cy, ; of the form in (7) fork = &/,... k" + n; — 1, zero
to tasks processed every 60s as 5s time steps are ustderise. The actual profile, if available, can be storechin t
However it can be seen that there are also smaller spike#ial condition of the state vector, or the filter can “find i
occurring at a slightly different interval (roughly ever2.125 by adapting the states, over time, from the measurements.



model parameterd\;, B;, C;) whereas the form-free model
essentially stores the average of the last few instances of a
event in the state vectae, ; and so can automatically adapt
to changes.
Remark:In the event-driven approach, when two events oc-
cur simultaneously their CPU profiles are combined additive
It is this that makes the model linear, and makes statistical
inference straightforward. However, in practice we knoatth
, the CPU utilisation has a hard “saturation” constraint, agm
T Lo @ 4o @ o @ dp @ 1o @ I ?t canr_lot e_x_ceed 100% (or. go below 0%). We_ not.e that this
o issue is mitigated when using a coarse sampling interval for
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CPU load (in percent)

CPU utilisation. For example, in our tests we sample CPU

Figure 3. lllustrating predictions using pure event-dnivemnodel. Shaded utilisation at 5s intervals. The sampled values are not the
region marks the one standard-deviation confidence iriterva instantaneous CPU utilisation at the sample time, but raliee
average CPU utilisation over the 5s interval (CPU utilizati

is recorded by a counter, and the average value is just the
3) Overall model: Combining the individual event sub-difference in counter values at sample instants, dividethby
models we obtain a system of the form (2), with statgterval duration). Unless the CPU utilisation remains@a %

i = (z3, ... =z,); and system and input matricesfor the full 5s interval, the average utilisation will remdess
having the block diagonal form than 100 %.

A, 0 - 0 B, 0 --- O C. Hybrid Model
P 0 A -~ 0 B— 0 B, -~ 0 The pure form-free model of Subsection IlI-A is simple

: : . : : : . : and flexible but is only suited to periodic signals and the
0 - - A, o0 --- --- B,,| state dimension can become large when there are a mix of
(1 time-scales. The pure event-driven model of SubsectioB IlI
and output vector can accommodate non-periodic events and a mix of time-
scales with ease, but requires an input trigger for all wlév
h' = (Cl Cy .o Cm) (13) events plus the state d?mension scr:alles i%lg proportion to the
Note that any mixture of parametric and form-free eveftumber of events. We therefore propose a hybrid approach
submodels can be used as appropriate. that plays to the strengths of both approaches and tries to
An example result from the pure input model approa@yoid their weaknesses. Namely, regular periodic compsnen
is shown in Figure 3. The occurrence of the three eventsgk the signal of interest are modelled using a form-free
marked by, respectivel(D), @ and(®). It can be seen than the@pproach and irregular events, or events at a different-time
event-driven model accurately captures the CPU utilisatio scale from the main periodic components, are modelled using
Since the event-driven model responds directly to observa@ event-driven approach. The resulting hybrid model Fias
events it can readily accommodate events that happen od3dnatrices of block diagonal form similar to (12), with each
range of time-scales e.g. an event occurring every 5 minut§ck corresponding either to a form-free periodic modehas
and an event occurring once every 24 hours are essentiaiosection Ill-A or an event submodel (which in turn might be
treated in the same way, only the inpyt, changes. However, parametric as in IlI-B1 or form-free as in 11I-B2), and outpu
the event-driven model does require appropriate inputssan Vectorh™ as in (13).
implicitly requires that the occurrence of all relevantmgcan
be detected. This issue is illustrated, for example, in FEd
— aroundk = 1120 there is an increase in CPU utilisatio
that is not associated with any of the three events modellen‘& ) : :
Further, it can be seen that this purely event-driven afgbro well as the noise and measurement covariar@esnd r in
requires that individual models be defined that store thélero 4b) and (5).
associated with each event. The number of states in the Input gain adaptation

m.odel_therefore. §ca|es with the.n_uml?er of events, alt_h()thFollowing a classical extended Kalman Filter approach, e. g
this might be mitigated by combining inputs i. ., effeclive goq 53] we addn states (one for each input) to our linear
reusing event models. For simple types of stored profilesgsul state space model (2)

etc.), the number of states in the individual event models is
typically higher in the form-free case than when a parametri (-’Bk+1) _ (ka + B(Ok)uk) + ("k)
model is used. However, while the parametric form is more Or+1 O Ck
compact, it has only very limited ability to adapt to changes

p y very y p g u = (KT 0) (w:) 4o

IV. AUTOMATED MODEL TUNING

To achieve automated operation we need to extend the
alman Filter to recursively adapt the input gains in (8) as

(14)

in observed behaviour (adaptation requires adjustmentef t 0



where B(6;,) is such that the elements 6. constitute the
different input gainsy, ; at timek from the different inputs
to the corresponding states, and the new Gaussian white nois
sequence&; has a very small variance covariance matsix
as we assume the true gains to be constant values.

It is straight forward to extend the Kalman Filter equations 3z |
from Section Il with these states, noting that these states ? -

load (in percent)

do not (directly) affect the output variablg,. The newa 10
priori estimate of the state error covariance matrix of the filter s
becomes 0]
T
F Ly, F Ly Q 0
P = {O II }Pklk[o II tlo g @9 3
with Lk|k = % [F:%Mk + B(G)uk}‘ . ‘2'5" T
6=0y

B. Noise estimation

Following Jazwinskiet al. [24], [25] we used the following
method for estimating the process noise covariance (3)

Averaged log likelihood

2
62+1|k - (hTFP]é‘kFTh + T)

Gk = agdr—1+(1—0ay) h

hTh
(16 % 10 20 Y 20
Step k
WhereP,gVC is the top left block ofP,g“C corresponding to the
statesz, 0 < oy < 1 is a smoothing parameter (very close to Figure 4. Detection of software fault triggered fat= 51.

1 since, again, we assume the noise covariance to be constant)
andh(-) is the ramp function, that i8(z) = = if > 0 and
zero otherwise. The update is executed prior to (4).
In a similar fashion, we use a recursion for the measurementVe carried out measurements for three different anomalies
noiser, that is updated prior to (5) to explore the utility of the proposed modelling approach fo
anomaly detection.
=, g1+ (1—a) h (éiw,l - hTPé\kflh) (17) (i) Figure 4 shows measurements for a known bug that
causes memory usage to grow and CPU load to increase
temporarily. Following the fault ak = 51 it can be seen that
With the Kalman Filter deployed and running, one coulthe model prediction deviates significantly from the meadur
simply declare an anomaly when a new measurement ligpu utilisation and the log likelihood drops.
outside the confidence interval around its predicted vaha, (i) Figure 5 shows data from a memory overflow fault at
is g £ 07, _,, Whereo,, | = (RT Py, | h+iy). However, k — 610. This fault is generated by forcing the appliance to
this simple approach leads to a large number of false pesitivrun out of memory, crashing the main software process.
as the decision is based only on a single data point / estimate(jii) Figure 6 shows a simulated fault, generated at step
A combination of several measurements yields significantly— 940, when a static 10% CPU load is added on top of the
better (more robust) results. The likelihood of an observefeasured data.
data point can be readily calculated based on the predictegt can be seen that the proposed modelling approach allows
probability distribution provided by the Kalman Filter [24 3 clear detection of these three anomalies, while generatin
false alarms in our tests.
) (18)

VI. EXPERIMENTAL RESULTS

V. ANOMALY DETECTION

(e )= e p (-

PRIV, -0 0] = =P S VII. CONCLUSION

MO k-1 klk—1 N N .
Availability and reliability are often important features

If we now use a moving average (or low pass) filter oRey software appliances such as firewalls, web servers, etc.
the log likelihoods of past measurements, we can obtainim this paper we investigate going beyond simple heartbeat
significantly more robust anomaly indicator. Define monitoring by using more fine grained measurements that are
(19) readily available on most platforms to detect possiblet&aoit

the onset of failures.
with a suitable smoothing factar,, and set a threshold for We propose a new self-tuning, extended Kalman Filter
alarm generation in case a certain value (log likelihood) ased framework and demonstrate the effectiveness of the
undercut. proposed approach using tests of real faults generated on

2k = azzp—1 + (1 — a) Inp(yx)
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experimental testbed. Our approach is suited to online

processing of data and efficient implementation (low memory
and CPU burden).
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