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Abstract

In this note we prove the unconditional stability of the Foschini-Miljanic algorithm. Our results show that the Foschini-Miljanic
algorithm is unconditionally stable (convergent) even in the presence of bounded time-varying communication delays, and in
the presence of topology changes. The implication of our results may be important for the design of Code Division Multiple
Access (CDMA) based wireless networks.
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1 Introduction

This study concentrates on distributed power control
in Code Division Multiple Access (CDMA) based wire-
less communication networks. Some CDMAbased power
control algorithms aim to assign power to wireless nodes
in a distributed fashion, while guaranteeing a certain
Quality of Service (QoS). In real communication sys-
tems, especially ad-hoc networks, distributed algorithms
require communication among the nodes. But process-
ing time (coding and decoding), propagation delays and
waiting for availability of channels for transmission all in-
troduce delays into the network. Additionally, the nodes
may be mobile, entering or leaving the network, causing
the network topology to change constantly. Hence, any
stability analysis of distributed algorithms for such re-
alistic situations should consider time-delays in the net-
work and changing network topologies.

The authors in [3] proposed a power control algorithm,
the now well known Foschini-Miljanic (FM) algorithm,
that provides distributed on-line power control of wire-
less networks with user-specific Signal-to-Interference-
and-Noise-Ratio (SINR) requirements. Furthermore,
this algorithm yields the minimum transmitter powers
that satisfy these requirements.

Email addresses:
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themis@ucy.ac.cy (Themistoklis Charalambous),
florian@knorn.org (Florian Knorn).

It was shown in [1] this algorithm is globally asymp-
totically stable for arbitrarily large but constant time-
delays. On the other hand, the effects of changing net-
work topologies were studied in [2], where it was de-
rived that the stability condition is purely determinis-
tic and equivalent to the joint spectral radius of the set
of switching matrices being less than one. In this work,
making use of recent advancements in positive linear sys-
tems [7,8,9], we consider both the effects of time-varying
delays and changing network topologies. For that we
provide a new theoretical result concerning the stabil-
ity of such systems, which we then use to show that the
Foschini-Miljanic algorithm is globally asymptotically
stable even under those harder, more realistic conditions.
Our results are of practical importance when designing
wireless networks in changing environments, as is typi-
cally the case for CDMA networks.

The remainder of the paper is structured as follows:
After some notational conventions, we provide in Sec-
tion 2 some mathematical preliminaries including our
main theoretical contribution (Theorem 1). The next
two sections describe the channel model used as well as
the FM algorithm. In Section 5, Theorem 1 is used to de-
rive two stability conditions (Theorems 3 and 4) for the
FM algorithm. Finally, two examples as well as conclud-
ing remarks are given in Sections 6 and 7, respectively.

Notation The set of real numbers is denoted by R
and the positive orthant of the n-dimensional Euclidean
space by Rn+. The zero vector or matrix (of appropriate
dimension) is denoted by 0; the identity matrix by I. A
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matrix A ∈ Rn×n is called Hurwitz if its spectrum lies
in the left open half-plane; Metzler if all its off-diagonal
elements are non-negative; its spectral radius is denoted
by ρ(A). A � B (A ≺ B) is the element-wise (strict)
inequality between matrices or vectors A and B. A is
non-negative (positive) if and only if A � 0 (A � 0).

2 Mathematical preliminaries

In what follows, we give some useful results on positive
systems that are needed to prove our later results. First,
consider the following linear system withm different de-
layed states whose time-delays are time-varying:

ẋ(t) = Ax(t) +
∑m
k=1Bkx(t− τk(t)), t ≥ 0 (1a)

x(t) = ϕ(t) � 0, t ∈ [−τ̄ , 0] (1b)

where x(t) ∈ Rn, x(t) � 0, A ∈ Rn×n is a Metzler
matrix, Bk ∈ Rn×n are non-negative matrices for all
k = 1, . . . ,m,ϕ(·) is a locally Lebesgue integrable vector
function and the delays τk(t) are assumed to satisfy:

Assumption 1 The time-varying time-delays given by
τk(t) are Lebesgue measurable in t and bounded, satisfy-
ing 0 ≤ τk(t) ≤ τ̄k ≤ τ̄ for all t ≥ 0 and each k, and
where τ̄ = max{τ̄k}.

A dynamical system is said to be positive if its state
trajectories remain in the positive orthant for all t ≥ 0
(provided that the initial condition is positive). Thanks
to A being Metzler and the Bk being non-negative, the
system above is indeed positive, see [10].

Lemma 1 Let xa(t) resp. xb(t), t ≥ 0, be the solution
trajectories of the system (1) under the initial conditions
ϕa(t) resp. ϕb(t) for t ∈ [−τ̄ , 0]. Then ϕa(t) � ϕb(t)
implies xa(t) � xb(t), t ≥ 0.

Proof This can be shown by considering ϕ(t) :=
ϕa(t)−ϕb(t) � 0 as an initial condition of (1) and util-
ising its linearity and the positivity properties. 2

Now, closely related to (1) is the following system based
on constant delays, namely the upper bounds τ̄k:

ẏ(t) = Ay(t) +
∑m
k=1Bky(t− τ̄k), t ≥ 0 (2a)

y(t) = ψ(t) � 0, t ∈ [−τ̄ , 0] (2b)

Lemma 2 [4] System (2) is asymptotically stable if and
only if there exists a vector c � 0 satisfying

cT (A+
∑m
k=1Bk) ≺ 0 (3)

It is well known that condition (3) holds if and only if
the matrix (A+

∑m
k=1Bk) is Hurwitz, see [6]. The next

lemma gives a useful monotonicity property of (2) if its
initial condition is constant and a multiple of a vector
c � 0 satisfying (3):

Lemma 3 [9] Consider system (2). Suppose that there
exists a positive vector c � 0 satisfying (3) and that
the initial condition is the constant function ψ(t) ≡ c
for t ∈ [−τ̄ , 0]. Then the solution y(t) to (2) is strictly
monotonically decreasing, that is ẏ(t) ≺ 0 for all t ≥ 0,
and it converges asymptotically to zero.

The last lemma guarantees an ordering between the so-
lutions of systems (1) and (2), provided they use the
same matrices A and Bk and the same constant initial
condition based on a vector c � 0 satisfying (3).

Lemma 4 [10] Suppose that there exists a vector c � 0
satisfying (3), and that the initial conditions for system
(1) resp. (2) are ϕ(t) ≡ c resp. ψ(t) ≡ c, t ∈ [−τ̄ , 0].
Then, for all t ≥ 0, it holds that x(t) � y(t), where x(t)
resp. y(t) are solutions to (1) resp. (2).

We can now present a useful result on switched positive
systems with time-varying time-delays. Given M con-
stituent subsystems or modes, we make the common as-
sumption that the switching instants are defined in all
the real time axes and that infk(tk+1 − tk) > 0, where
tk+1 and tk are two consecutive switching instants, so
that the switching rule has no accumulation points.

The following theorem states that the existence of a com-
mon linear co-positive Lyapunov function v(x) = cTx,
c � 0, for all un-delayed modes of the system is sufficient
to guarantee the asymptotic stability of the system for
bounded time-varying delays and arbitrary switching.

Theorem 1 Consider the switched positive system with
time-varying time-delays for t ≥ 0

ẋ(t) = Aσ(t)x(t) +
∑m
k=1Bk,σ(t)x(t− τk(t)) (4a)

x(t) = ϕ(t) � 0, t ∈ [−τ̄ , 0] (4b)

where x(t) ∈ Rn+, x(t) � 0, σ : R→ {1, . . . ,M} is some
(piecewise constant and left-continuous) switching signal
(defined in all the real time axes and with infk(tk+1 −
tk) > 0, where tk+1 and tk are two consecutive switching
instants), Ai ∈ Rn×n are Metzler and Bk,i ∈ Rn×n
are non-negative matrices, i = 1, . . . ,M , and the delays
τk(t) are assumed to satisfy Assumption 1. If there exists
a vector c � 0 such that

cT (Ai +
∑m
k=1Bk,i) ≺ 0, ∀i = 1, . . . ,M (5)

then system (4) is asymptotically stable.

Proof Consider system (4) with its initial condition
ϕ(t). If there exists a positive vector c � 0 such that
(5) is satisfied, it is always possible to pick a positive
constant γ > 0 so that ϕ(t) ≺ γc for all t ∈ [−τ̄ , 0].
Naturally, γc will still satisfy condition (5).

Denote by x(ϕ(t))(t) the solution of system (4) with ini-
tial condition ϕ(t), t ∈ [−τ̄ , 0] with whichever initial
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mode σ(0) ∈ {1, . . . ,M} active. Further, let y(ψ(t)) be
the solution of system (2) starting from the constant ini-
tial condition ψ(t) ≡ γc, t ∈ [−τ̄ , 0].

Since, by construction, ϕ(t) ≺ ψ(t), we can apply
Lemma 1 to find that before the first switching instant
x(ϕ(t))(t) � x(ψ(t))(t). But using Lemma 4, we also get
x(ψ(t))(t) � y(ψ(t))(t) so that, in the end

x(ϕ(t))(t) � y(ψ(t))(t) (6)

Furthermore, we note that y(ψ(t))(t) is strictly mono-
tonically decreasing, thanks to Lemma 3.

Now, let tk be the switching instants, so that t1 is the
time instant when the first switching occurs (and where
the system switches to mode σ(t1) ∈ {1, . . . ,M}). We
know by the monotonicity argument above that x(t) ≺
γc for t ∈ [t1− τ̄ , t1], hence there exists some 0 < µ1 < 1
such that x(t) � µ1γc for t ∈ [t1 − τ̄ , t1]. Since µ1 is
positive, µ1γc will still satisfy condition (5).

Consider now this new initial condition for system (4):
ϕ1(t) = x(t) for t ∈ [t1 − τ̄ , t1]. Using an argument as
above it follows again that x(ϕ1(t))(t) � x(µ1γc)(t), t ∈
[t1 − τ̄ , t1], and also that x(µ1γc)(t) � y(µ1γc)(t), where
y(µ1γc)(t) is strictly monotonically decreasing. Hence,
at the next switching instant t2, we can define again a
new parameter 0 < µ2 < 1 such that x(t) � µ2µ1γc for
t ∈ [t2 − τ̄ , t2], and so on.

Therefore, whenever system (4) switches, the new active
mode starts from an initial condition that can be upper
bounded by a constant initial condition which satisfies
condition (5). So the real solution can always be upper
bounded by a strictly decreasing function starting from
that constant initial condition.

At the kth switching time we can thus write

x(t) � γ c
∏k−1
i=1 µi, t ∈ [tk − τ̄ , tk] (7)

where 0 < µi < 1 for all i = 1 . . . , k − 1. To finish the
proof, we now just need to show that

∏k−1
i=1 µi−→0 as k

grows, since this implies that the solution of system (4)
must also converge to zero.

Consider system (2) as describing the switched sys-
tem between two consecutive switching instants, during
which it is in some mode q ∈ {1, . . . ,M}. According
to Lemma 3, system (2) it is monotonically decreas-
ing if its initial condition is constant and satisfies (3).
Since this is indeed the case here (independently of the
mode q the system is in) we know that ẏ(t) ≺ 0 for all
t ≥ 0. In fact, y(t) is exponentially decreasing: To see
this, consider ỹ(t) = eεqty(t) for some sufficiently small

εq > 0. Differentiating with respect to t yields

˙̃y(t) = eεqt
(
εqy(t) + ẏ(t)

)
(8)

= (εqI +A)ỹ(t) +
∑m
k=1Bkeεq τ̄k ỹ(t− τ̄k) (9)

If there exists c � 0 such that cT(A+
∑m
k=1Bk) ≺ 0,

then one can use a limiting argument to show that, for
εq small enough, cT(εqI +A+

∑m
k=1Bkeεq τ̄k) will still

be negative. Recalling Lemma 2 this implies that ˙̃y(t) is
asymptotically stable, and thus y(t) = e−εqtỹ(t) must
be exponentially decreasing.

Hence, the solution of (4) is upper bounded, be-
tween each two consecutive switching instants, by
one of M functions that decrease exponentially
with a rate of at least −εq where q ∈ {1, . . . ,M}.
Now, consider the first switching instant t1: we have
x(ϕ(t0))(t) � µ1γc, t ∈ [t1 − τ̄ , t1], and, since y(t) is
exponentially decreasing, y(γc)(t) = e−εq(t1−t0)γc, with
q ∈ {1, . . . ,M}, t ∈ [t1 − τ̄ , t1]. Moreover, as already
said, x(ϕ(t0))(t) ≺ y(γc)(t), hence there always exists a
tx ∈ (t0, t1], such that µ1γc � e−εq(tx−t0)γc. Calling
λq = εq

tx−t0
t1−t0 , we can say that µ1γc � e−λq(t1−t0)γc,

with 0 < λq ≤ εq. Finally, we can write µ1 � e−λq(t1−t0).
Defining ∆ti := ti+1 − ti for each i = 0, 1, 2, . . . as the
time between two consecutive switching instants, then∏k

i=1 µi ≤
∏k
i=1 e−λσ(ti)∆ti , (10)

or, applying the natural logarithm to both sides and
taking the limit (as t grows),

limk→∞ ln
∏k
i=1 µi ≤ limk→∞

∑k
i=1−λσ(ti)∆ti = −∞

since the ∆ti are uniformly lower bounded away from
zero, and there are only finitely many positive λσ(ti).
This implies

∏k
j=1 µj −→ 0 as k grows (since µj > 0 for

all j ≥ 0). Asymptotic stability of the switched positive
system now follows from (7), which completes the proof.

2

Comment At this point we have shown that, roughly
speaking, if a common linear co-positive Lyapunov for
the switched system (4) exists, then the system will be
stable for any (bounded) time-varying time-delays, and
independently of the switching sequence. The question
now would be how to check for the existence of such
Lyapunov function, and this will be addressed now.

Theorem 4 in [7] provides a (necessary and suffi-
cient) test for the existence of a common linear co-
positive Lyapunov function. For that, define Sn,M
for positive integers n and M as the set containing
all possible mappings s : {1, . . . , n} → {1, . . . ,M}.
Given M matrices Aj , these mappings are used
to construct matrices As(A1, . . . ,AM ) of the form
As(A1, . . . ,AM ) :=

[
A

(1)
s(1) . . . A

(n)
s(n)

]
where the ith
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column A
(i)
s of As is the ith column of one of the

A1, . . . ,AM matrices, depending on s ∈ Sn,M .

Theorem 2 [7] GivenM Metzler matricesAi andm·M
non-negative matrices Bk,i, then there exists a positive
vector c � 0 such that cT (Ai +

∑m
k=1Bk,i) =: cTÃi ≺

0 ∀i = 1, . . . ,M if and only if Ãs(Ã1, . . . , ÃM ) is Hur-
witz for all s ∈ Sn,M .

3 Channel Model

We consider a network in which the links are unidirec-
tional and each node is supported by an omnidirectional
antenna. The link quality is measured by the Signal-to-
Interference-and-Noise-Ratio (SINR). Let N and R de-
note all transmitters and receivers in the network, re-
spectively. In a network with n communication pairs
(n = |N | = |R|), the channel gain on the link between
transmitter i ∈ N and receiver j ∈ R is denoted by gij
and incorporates the mean path-loss as a function of dis-
tance, shadowing and fading, as well as cross-correlations
between signature sequences. All the gij are positive
(since all nodes are equipped with omnidirectional an-
tennae) and can take values in the range (0, 1]. Without
loss of generality, we assume that the intended receiver
of transmitter i is also indexed by i. The power level
used by transmitter i is denoted by pi, and νi denotes
the variance of thermal noise at the receiver i, which is
assumed to be an additive Gaussian noise.

The interference power at the ith receiver consists of
both the interference caused by other transmitters in
the network

∑
j∈N−i

gjipj (where N−i denotes all the
other nodes different from i that interfere with node i’s
communications), and the thermal noise νi in node i’s
receiver. That means the SINR at the receiver i is

Γi =
giipi∑

j∈N−i
gjipj + νi

(11)

Due to the unreliability of the wireless links, it is nec-
essary to ensure Quality of Service (QoS) in terms of
SINR in wireless networks. Hence a transmission from
transmitter i to its corresponding receiver is successful
(error-free) if the SINR of the receiver is greater than or
equal to the capture ratio γi, which depends on the mod-
ulation and coding characteristics of the radio. In other
words, it is required that

giipi∑
j∈N−i

gjipj + νi
≥ γi (12)

Inequality (12) describes the QoS requirement of a com-
munication pair (i, i) while a transmission takes place.
After manipulation, (12) becomes

pi ≥ γi
(∑

j∈N−i

gji
gii
pj + νi

gii

)
(13)

In matrix form, for a network consisting of n commu-
nication pairs, this can be written as p � ΓGp + η
where we define Γ = diag(γi), pT =

(
p1 . . . pn

)
,

ηT =
(
η1 . . . ηn

)
with ηi = γiνi/gii, and (G)ij =

gji/gii if i 6= j, zero otherwise. Finally, with C := ΓG

(I−C)p � η (14)

We note thatC has positive off-diagonal elements which
implies that it is irreducible. By the Perron-Frobenius
Theorem [5] we then have that the spectral radius of C
is a simple eigenvalue, while the corresponding eigenvec-
tor is positive elementwise. A necessary and sufficient
condition for existence of a non-negative solution to in-
equality (14) for every positive vector η is that (I−C)−1

exists and is non-negative. However, (I − C)−1 � 0 if
and only if ρ(C) < 1, or, equivalently, (C−I) is Hurwitz
(since (C − I) is Metzler), see [6].

4 The Foschini-Miljanic algorithm

The Foschini-Miljanic (FM) algorithm is given by the
following distributed power update formula [3]:

dpi(t)

dt
= κi

−pi(t) + γi

 ∑
j∈N−i

gji
gii
pj(t) +

νi
gii

 (15)

where κi > 0 denote the proportionality constants and γi
denote the desired SINR. It is assumed that each node i has
only knowledge of the interference at its own receiver.

In matrix form, for a given network configuration this yields
ṗ(t) = −K(I−C)p(t) + η. Since the transmitter uses mea-
surements from its intended receiver, delays are inevitably
introduced into the system for a number of reasons such as
processing time (coding/decoding), propagation delays and
availability of the channel for transmission. Consequently,
a realistic analysis of the algorithm must consider, time-
varying delays:

dpi(t)

dt
= κi

−pi(t) + γi

 ∑
j∈N−i

gji
gii
pj
(
t− τj(t)

)
+
νi
gii


where we assume that τi(t) satisfy Assumption 1. In
matrix form this can be written as

ṗ(t) = −Kp(t) +K
(∑n

k=1Bkp
(
t− τk(t)

)
+ η

)
(16)

where K = diag(κi), (Bk)ij is zero if j = k or i 6= k, or
equal to γkgji/gkk otherwise. Note that

∑n
k=1Bk = C.

Assuming feasibility of the solution, and defining x(t) =
p∗−p(t) to describe the deviation from the desired power
levels p∗ = (I−C)−1η � 0 in order to satisfy (14), then
the stability of (16) is equivalent to and can be assessed
by study of the following system:

ẋ(t) = −Kx(t) +
∑n
k=1KBkx

(
t− τk(t)

)
(17)
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for which it is easy to see that the origin is the equi-
librium. If its initial condition is non-negative (which
can be guaranteed by starting with all zero power lev-
els) then (17) defines a positive system as the diagonal
matrix −K is Metzler and the KBk are non-negative.

5 Main results

Our main result states the following: Consider among all
network topologies the worst-case topology— that is the
one with a link assignment that causes maximum inter-
ference in all wireless receivers, that is with smallest gii
and largest gji, maximising the SINRs (11). If the corre-
sponding network regulated by the Foschini-Miljanic al-
gorithm is asymptotically stable then delays in the states
or variations in the channel gains cannot destabilise the
system. In other words, the Foschini-Miljanic algorithm
is unconditionally stable. Moreover, we provide a suffi-
cient condition for its stability under time-varying de-
lays and when the topology changes arbitrarily between
M different configurations (modes).

Note that changes in the network configuration may oc-
cur for a variety of reasons, such as moving nodes, or
change of communication pairs (i.e. a transmitter pairs
up with a different receiver). In any case, the nature of
the changes as well as the network hardware with fi-
nite processing speed will always result in times between
switches that are uniformly bounded away from zero.

We now consider two application cases in wireless net-
works where the existence of a common linear co-positive
Lyapunov function is verifiable.

5.1 Worst-case network topology

In some applications network designers can have a rea-
sonable a priori estimate of the worst-case scenario, that
is the link assignment that causes maximum interference
in all wireless receivers. But then, since this worst-case
may actually occur, any power control algorithm needs
to be designed to be stable even in this hardest of situa-
tions. However, if that is the case, as we will show now,
the system will automatically be stable for any other
network topology with less interference.

Theorem 3 Consider a set ofM different network con-
figurations represented by matrices Bk,i and let Ci =∑n
k=1Bk,i. Additionally, assuming network M corre-

sponds to the worst-case scenario, let Cw := CM so that
Cw � Ci for i = 1, . . . ,M . If the system is stable forCw,
that isAw := Cw−I is a Hurwitz matrix, then the power
control algorithm (16) is asymptotically stable under ar-
bitrary switching (defined in all the real time axes and
with infk(tk+1 − tk) > 0, where tk+1 and tk are two con-
secutive switching instants), for any time-varying delays
satisfying Assumption 1, for any initial states pi(0) ≥ 0
and for any proportionality constants, κi > 0.

Proof Suppose that the worst-case matrixAw is Hur-
witz. Then, as we mentioned above, there must exist a
vector c � 0 such that cT(Cw − I) ≺ 0. Hence, for all
other matrices satisfying Ci − I � Cw − I it follows
immediately that cT(Ci − I) ≺ 0 for all i. But since
K is a diagonal matrix with positive entries, this also
means that c̃T(−K +

∑n
k=1KBk,i) ≺ 0 for all i, where

c̃T = cTK−1 � 0. This fact together with Theorem 1
provides the assertions of the theorem. 2

5.2 General case

In some situations the possible variations in the gain
matrix may be known a priori, and thus there is a finite
number of configurations that characterise the possible
configuration of the system. In such situations, the next
theorem provides a sufficient condition for stability of the
Foschini-Miljanic algorithm under time-varying delays
and when the topology changes arbitrarily among M
different configurations.

Theorem 4 Consider a set of M different network
configurations described by matrices Ci =

∑n
k=1Bk,i,

where i = 1, . . . ,M , and let Ai := Ci − I. If the
Aσ(A1, . . . ,AM ) are Hurwitz for all s ∈ Sn,M , then the
power control algorithm (16) is asymptotically stable un-
der arbitrary switching (defined in all the real time axes
and with infk(tk+1 − tk) > 0, where tk+1 and tk are two
consecutive switching instants), for any time-varying de-
lays τk(t) satisfying Assumption 1, for any initial states
pi(0) ≥ 0, and for any proportionality constants κi > 0.

Proof By construction, all Ai are Metzler matrices.
Aσ(A1, . . . ,AM ) being Hurwitz for all s ∈ Sn,M is a
necessary and sufficient condition, according to Theo-
rem 2 to say that there exists a positive vector c � 0
such that cT (−I +

∑n
k=1Bk,i) ≺ 0 for all i. This again

also means that sinceK is a diagonal matrix with posi-
tive entries, then c̃T(−K +

∑n
k=1KBk,i) ≺ 0 for all i,

where c̃T = cTK−1 � 0. By Theorem 1, comparing (17)
to (4), this is sufficient to guarantee stability. 2

Comment Theorem 4 may also be formulated in
terms of feasibility of the linear programming problem to
find a vector c � 0 such that cT

[
A1 . . . AM −I

]
≺ 0,

see for instance [11,7].

6 Examples

To illustrate the theoretical results presented in Theo-
rems 3 and 4, we now consider two different models that
fulfill the two stability conditions above.

Example for Theorem 3 We first consider three net-
work configurations described by the following matrices:

C1=


0 0.35 0.45

0.12 0 0.05

0.04 0.23 0

 , C2=


0 0.15 0.15

0.40 0 0.20

0.70 0.12 0

 , C3=


0 0.37 0.45

0.40 0 0.27

0.70 0.23 0
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From Theorem 3, if the system converges for the worst-
case scenario, where the network is represented by ma-
trixCw, then the power control algorithm (16) is asymp-
totically stable for arbitrary switching of network con-
figurations better than (or the same as) the worst-case.
In this example, the spectral radius of Cw = C3 is less
than one (ρ(Cw) ' 0.814) and hence stability of the
power control algorithm (16) is guaranteed.

Figure 1 confirms this. It shows the results from a sim-
ulation run, plotting the deviations from the desired
power levels as a function of time. The system used was
based on the above matrices, where the time-varying
delays have been simulated with sinusoidal generators,
τ(t) = 2 + 2 sin(t) and the switching sequence has been
chosen randomly (and is indicated with a grey line). As
suggested earlier, the system was initialised with zero
power levels. It can be seen that indeed the deviations
disappear asymptotically.
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Figure 1. Simulation of the switched network represented by
matrices C1, C2 and C3, each consisting of three communi-
cation pairs. The plot shows the evolution of the deviation
from the desired power levels; the switching sequence σ(t)
is also shown (that is, σ(t) = 1 means the network is repre-
sented by matrix C1, and so on).

Example for Theorem 4 We now consider three
modes such that the stability condition in Theorem 4 is
fulfilled, given by the following matrices

C1=


0 0.35 0.45

0.62 0 0.05

0.44 0.23 0

, C2=


0 0.35 0.15

0.40 0 0.45

0.37 0.53 0

, C3=


0 0.32 0.55

0.42 0 0.25

0.64 0.23 0



From Theorem 4, if Cs(C1,C2,C3) have a spectral
radius less than one for all s ∈ Sn,3, then the power
control algorithm (16) is asymptotically stable un-
der arbitrary switching. In the example here, indeed,
max (ρ(Cs(C1,C2,C3))) ' 0.91 < 1 (corresponding
to the permutation s = (1, 2, 3)) and therefore, the re-
sulting system would be asymptotically stable under
arbitrary switching.

7 Conclusion

We have shown that the Foschini-Miljanic algorithm
is asymptotically stable under time-varying delays and
changing network topologies. For that, we extended the
current theory on positive systems in order to account
for switched positive systems with time-varying delays.

Future directions include the study of the conditions
for stability of constantly changing network topologies
where it is not possible to distinguish the network into
different configurations. Further, we intend to compare
our results with the stability conditions of the undelayed
Foschini-Miljanic algorithm to investigate the impact of
delays on the system.
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