
1. State of the art

• Software appliances (e.g. firewalls, webservers, etc.) in cases “mission critical”

• Anomaly detection currently usually only covers hardware failures

• Only rudimentary software failure detection:

- software monitoring = event logging

- fault detection only through degradation in service / user complaints

• Available, fine grained information (such as CPU & memory usage) rarely used

• Thresholds to trigger alarms can be set, however

- few guidelines / heuristics for setting them

- strongly situation dependent 

- inappropriate in many situations (e.g. CPU usage may well reach 100% in 
normal operation)

2. Objective

Use of fine grained system “health” statistics and time series to create robust failure 
detection algorithms that:

• are of little computational burden / memory footprint

• allow real-time operation

• allow unsupervised operation (i.e. no manual tuning or other intervention)

• are robust enough to operate in a wide range of environments

In this poster, we present a starting point in that direction using linear dynamic 
models.

3. Linear dynamic models

We use a linear state-space multi-
input / single-output system with 
two noise components:

Figure 1: CPU usage vs. SNMP request frequency and IP traffic load. Black
dots mark data points and coloured surface is linear interpolation between
the measured data points.

speaking, modelled as the sum of sinusoids (analogously to a Fourier Series).
Here we extend consideration to a richer set of models. In particular, we con-
sider so-called form-free models as they offer a number of significant advantages
in the present context.

2.1 Modelling framework

While we consider a number of different modelling approaches, all fall within
the class of linear time series models with additive Gaussian noise. Statistical
inference can therefore be efficiently carried out in an online manner by using
standard Kalman filter tools [1, 2]. In more detail, we assume the following
linear state-space model

xk+1 = Fxk + Buk + gknk,

yk = hT xk + vk,
(1)

where xk are the n hidden states, yk is the observed variable (e.g. CPU load),
uk are the q inputs (e.g. based on the syslog) and nk resp. vk are zero mean
Gaussian process resp. observation noise with the following variances:

E{nk, nk} = Q, E{vk, vk} = R (2)

It is mainly the choice of structure for the matrices F , B and vector h that
distinguishes the different models that we consider.

For any model of the form (1), the prediction ŷk+1|k of the signal yk+1 given
measurements of y0, . . . , yk can be calculated using a Kalman filter. In more
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with 	xk: hidden state vector

	 yk: observed variable


 uk: know input vector

 (3 inputs in our application)

 nk, vk: zero mean Gaussian 

 proc. resp. sys. noise.

Fig. 1 illustrates a typical measured time history of CPU utilisation.

• Periodic component (with period 12)

• Smaller spikes “travel” relative to the “big” spikes

➡ Use mixture of form-free component (p=12 states) and

➡ input component (one first order system for each of the q=3 inputs)
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Figure 13: BGP set–up

Special matrices are I the identity matrix, 0 the zero matrix, 1 the all
ones matrix and Z is the circular permutation matrix as defined in (5). Their
dimensions, if relevant, are indicated in the index.

8 Ignore me please

F =

[

Zp 0p×q

0q×p diag(δ)

]

, B =

[

0p×q

Iq

]

, h =





1
0(p−1)×1

1q×1



 , g =

(

γk

1((p−1+q)×1

)
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where Zp is the circular permutation matrix, 0, 1 and I resp. the zero, one 

and identity matrix of indicated dimensions, δ the vector of time constants 

and γk a time dependent variable to increase process noise in case of input.

• Only few hyper parameters involved here are:

- variances of the process and system noise 

- time constants for first order systems for the inputs (may well be 0)

- the noise increasing factors γk 
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Fig. 1: Measured CPU time history

4. Estimation with proposed model

• Classical Kalman filtering / 
smoothing can be used to es-
timate the model

• Allows efficient Bayesian in-
ference for fault detection

• Relatively small computational 
burden

• Fig. 2 shows the one step 
ahead predictions of a Kalman 
filter using our model (solid 
line).

• The three input events consid-
ered are marked on the plot, as well as the confidence band (based on the esti-
mated error covariance of the output).

5. Fault detection

• Fig. 3 shows performance of 
the filter during a simulated 
software fault, starting at time 
k=1131. The fault caused an 

additional 15% CPU load on 
top of the normal load.

• Outliers are marked with a 
read circle

• A threshold based trigger may 
never have detected this 
situation since CPU spikes in 
normal operation are higher 
than during faulty operation.

6. Outstanding questions / future directions

• Nonlinear combination of events: by definition, CPU load cannot be higher than 
100%. When to events occur that cause high CPU load, the value will saturate 
and stretch over a longer period of time than each of the events would normally 
take. It is fair to assume that the area under the resulting CPU curve will be the 
same for to events occurring separately or at the same time.

• Increasing complexity: state vector can grow considerably if we consider

- larger the time-scales

- more events

- more complex CPU utilisation shapes caused by an event

- combination of events (e.g. to cope with combination of events)

• More sophisticated anomaly detection: at the moment, faults are triggered 
simply based on consecutive excursions from the predicted envelope. Better re-
sults should be obtained by using cumulative sum test, likelihood ratio base 
methods, etc. to gain better sensitivity against spurious short excursions.

• Fault classification: being able to classify a fault (i.e. beyond detecting a fault, 
also identifying it) would also be of great use in many applications, for instance in 
the development stages of a large software application

• Selection of informative variables: many variables are available for monitoring. 
The selection of the most informative subset (beyond CPU usage) has not re-
ceived much attention yet.

• Combination of variables: apart from the selection process, the combined use 
of different variables should yield better results than the use of single variables

• Active probing: passive monitoring may be augmented by active probing. For in-
stance, a process could be given a specific task and its resulting CPU use closely 
monitored to see if it behaves in line with historical data.

• Structured environment: In software appliances the number of processes run-
ning are very limited and usually fairly constant. A question remains how well 
proposed fault detection methods scale with increasing versatility of the appli-
ance / versatility of its tasks.
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Fig. 2: One step ahead predictions using the
                           proposed model
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Fig. 3: Prediction and detection of a simulated fault
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