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Abstract

In this paper we study communication networks that employ drop-tail
queueing and Additive-Increase Multiplicative-Decrease (AIMD) congestion
control algorithms. We show that the theory of nonnegative matrices may
be employed to model such networks. In particular, we show that important
network properties such as: (i) fairness; (ii) rate of convergence; and (iii)
throughput; can be characterised by certain non-negative matrices that arise
in the study of AIMD networks. We demonstrate that these results can be
used to develop tools for analysing the behaviour of AIMD communication
networks. The accuracy of the models is demonstrated by means of several
NS-studies.

1 Introduction

In this paper we describe a design oriented modelling approach that captures the
essential features of networks of AIMD sources that employ drop-tail queues. The
novelty of our approach lies in the fact that we are able to use the theory of non-
negative matrices and hybrid systems to build mathematical models of commu-
nication networks that capture the dynamic interaction between competing flows.
This approach is based upon a number of simple observations: (i) communication
networks employing congestion control systems are feedback systems; (ii) commu-
nication systems exhibit event driven phenomena and may therefore be viewed as
classical hybrid systems; and (iii) network states (queue length, window size, etc.)
take only non-negative values. We show that it is possible to relate important net-
work properties to the characteristics of the non-negative matrices that arise in the
study of such communication networks. In particular, we will demonstrate that
(i) bandwidth allocation amongst flows, (ii) rate of network convergence, and (iii)
network throughput can all be related to properties of sets of non-negative matrices.

This paper is structured as follows. In Section 2 we develop a positive systems
network model that captures the essential features of communication networks em-
ploying drop-tail queuing andAIMD congestion control algorithms. An exact model
is presented for the case where all network sources share a uniform round-trip-time
(RTT) and packet drops are synchronised. We then show how this model may be
extended to the case of sources with differing RTT’s and where packet drops need
not be synchronised. This approach gives rise to a model of AIMD networks in
which the network dynamics are described by a finite set of non-negative matrices.
The main results of this paper are presented in Section 3. To ease exposition these
results, which concern the short and long term behaviour of AIMD networks, are
simply stated in this section. The use of these results to analyse network behaviour
is illustrated by means of a number of case studies in Section 4. Finally, in Sec-
tion 6 we present the proofs of the mathematical results as well as a number of
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intermediate derivations.

2 Nonnegative matrices and communication net-

works

A communication network consists of a number of sources and sinks connected
together via links and routers. In this paper we assume that these links can be
modelled as a constant propagation delay together with a queue, that the queue is
operating according to a drop-tail discipline, and that all of the sources are oper-
ating a Additive-Increase Multiplicative Decrease (AIMD) -like congestion control
algorithm. AIMD congestion control operates a window based congestion control
strategy. Each source maintains an internal variable cwndi (the window size) which
tracks the number of sent unacknowledged packets that can be in transit at any
time, i.e. the number of packets in flight. On safe receipt of data packets the des-
tination sends acknowledgement (ACK) packets to inform the source. When the
window size is exhausted, the source must wait for an ACK before sending a new
packet. Congestion control is achieved by dynamically adapting the window size
according to an additive-increase multiplicative-decrease law. Roughly speaking,
the basic idea is for a source to probe the network for spare capacity by increasing
the rate at which packets are inserted into the network, and to rapidly decrease the
number of packets transmitted through the network when congestion is detected
through the loss of data packets. In more detail, the source increments cwndi(t) by
a fixed amount αi upon receipt of each ACK. On detecting packet loss, the vari-
able cwndi(t) is reduced in multiplicative fashion to βicwndi(t). We shall see that
the AIMD paradigm with drop-tail queuing gives rise to networks whose dynamics
can be accurately modelled as a positive linear system. While we are ultimately
interested in general communication networks, for reasons of exposition it is useful
to begin our discussion with a description of networks in which packet drops are
synchronised (i.e. every source sees a drop at each congestion event). We show that
many of the properties of communication networks that are of interest to network
designers can be characterised by properties of a square matrix whose dimension is
equal to the number of sources in the network. The approach is then extended to a
model of unsynchronised networks. Even though the mathematical details are more
involved, many of the qualitative characteristics of synchronised networks carry over
to the non-synchronised case if interpreted in a stochastic fashion.

2.1 Synchronised communication networks

We begin our discussion by considering communication networks for which the fol-
lowing assumptions are valid: (i) at congestion every source experiences a packet
drop; and (ii) each source has the same round-trip-time (RTT)1. In this case an
exact model of the network dynamics may be found as follows [1]. Let wi(k) de-
note the congestion window size of source i immediately before the k’th network
congestion event is detected by the source. Over the k’th congestion epoch three
important events can be discerned: ta(k), tb(k) and tc(k); as depicted in Figure 1.
The time ta(k) denotes the instant at which the number of unacknowledged packets
in flight equals βiwi(k) where βi is the multiplicative decrease factor associated with
the i′th flow (recall that after each congestion event the i’th sources decreases its
number of packets in flight by a factor of 1 − βi); tb(k) is the time at which the

1One RTT is the time between sending a packet and receiving the corresponding acknowledge-
ment when there are no packet drops.
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Figure 1: Evolution of window size

bottleneck queue is full; and tc(k) is the time at which packet drop is detected by
the sources, where time is measured in units of RTT2. It follows from the definition
of the AIMD algorithm that the window evolution is completely defined over all
time instants by knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k)
of each congestion epoch. We therefore only need to investigate the behaviour of
these quantities.

We assume that each source is informed of congestion one RTT after the queue at
the bottleneck link becomes full; that is tc(k) − tb(k) = 1. Also,

wi(k) ≥ 0,

n
∑

i=1

wi(k) = P +

n
∑

i=1

αi, ∀k > 0, (1)

where P is the maximum number of packets which can be in transit in the network
at any time; P is usually equal to qmax + BTd where qmax is the maximum queue
length of the congested link, B is the service rate of the congested link in packets
per second and Td is the round-trip time when the queue is empty. At the (k+1)th
congestion event

wi(k + 1) = βiwi(k) + αi[tc(k) − ta(k)]. (2)

It therefore follows from (1) and (2) that

tc(k) − ta(k) =
1

∑n
i=1 αi

[P −
n
∑

i=1

βiwi(k)] + 1. (3)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi

∑n
j=1 αj

[

n
∑

j=1

(1 − βj)wj(k)], (4)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (5)

2Note that measuring time in units of RTT results in a linear rate of increase for each of the
congestion window variables between congestion events.
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where WT (k) = [w1(k), · · · , wn(k)], and

A =











β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn











+
1

∑n
j=1 αj









α1

α2

· · ·
αn









[

1 − β1 1 − β2 · · · 1 − βn

]

.(6)

and the initial condition W (0) is subject to the constraint (1).

The matrix A is a positive matrix (all the entries are positive real numbers) and
it follows that the synchronised network (5) is a positive linear system [2]. Many
results are known for positive matrices and we exploit some of these to characterise
the properties of synchronised communication networks. In particular, from the
viewpoint of designing communication networks the following properties are impor-
tant: (i) network fairness; (ii) network convergence and responsiveness; and (iii)
network throughput. While there are many interpretations of network fairness, in
this paper we concentrate on window fairness. Roughly speaking, window or pipe
fairness refers to a steady state situation where n sources operating AIMD algo-
rithms have an equal number of packets P/n in flight at each congestion event;
convergence refers to the existence of a unique fixed point to which the network dy-
namics converge; responsiveness refers to the rate at which the network converges
to the fixed point; and throughput efficiency refers to the objective that the network
operates at close to the bottleneck-link capacity. It is shown in [3, 4] that these
properties can be deduced from the network matrix A. We briefly summarise here
the relevant results in these papers.

Theorem 2.1 [1, 4] Let A be defined as in Equation (6). Then A is a column
stochastic matrix with Perron eigenvector xT

p = [ α1

1−β1

, ..., αn

1−βn
] and whose eigen-

values are real and positive. Further, the network converges to a unique stationary
point Wss = Θxp, where Θ is a positive constant such that the constraint (1) is
satisfied; limk→∞ W (k) = Wss; and the rate of convergence of the network to Wss

is bounded by the second largest eigenvalue of A.

The following facts may be deduced from the above theorem.

(i) Fairness: Window fairness is achieved when the Perron eigenvector xp is a
scalar multiple of the vector [1, ..., 1]; that is, when the ratio αi

1−βi
does not

depend on i. Further, since it follows for conventional TCP-flows ( α = 1, β =
1/2) that α = 2(1 − β), any new protocol operating an AIMD variant that
satisfies αi = 2(1−βi) will be TCP-friendly - i.e. fair with legacy TCP flows.

(ii) Network responsiveness: The magnitude of the second largest eigenvalue
λn−1 of the matrix A bounds the convergence properties of the entire network.
It is shown in [4] that all the eigenvalues of A are real and positive and lie in
the interval [β1, 1], where the βi are ordered as 0 < β1 ≤ β2 ≤ .... ≤ βn−1 ≤
βn < 1. In particular, the second largest eigenvalue is bounded by βn−1 ≤
λn−1 ≤ βn. Consequently, fast convergence to the equilibrium state (the
Perron eigenvector) is guaranteed if the largest backoff factor in the network
is small. Further, we show in [4] that the network rise-time when measured in
number of congestion epochs is bounded by nr = log(0.95)/ log(λn−1). In the
special case when βi = 0.5 for all i, nr ≈ 4; see for example Figure 3. Note
that nr gives the number of congestion epochs until the network dynamics
have converged to 95 % of the final network state: the actual time to reach
this state depends on the duration of the congestion epochs which is ultimately
dependent on the αi.
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Figure 2: Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10Mb bot-
tleneck link, 100ms delay, queue 40 packets.)

(iii) Network throughput : At a congestion event the network bottleneck is op-
erating at link capacity and the total data throughput through the bottleneck
link is given by

R(k)− =

∑n
i wi(k)

Td + qmax

B

(7)

where B is the link capacity, qmax is the bottleneck buffer size, Td is the
round-trip-time when the bottleneck queue is empty and Td + qmax/B is the
round-trip time when the queue is full. After backoff, the data throughput is
given by

R(k)+ =

∑n
i βiwi(k)

Td
(8)

under the assumption that the bottleneck buffer empties. It is evident that if
the sources backoff too much, data throughput will suffer as the queue remains
empty for a period of time and the link operates below its maximum rate. A
simple method to ensure maximum throughput is to equate both rates, which
may be achieved by the following choice of the βi:

βi =
Td

Td + qmax

B

=
RTTmin

RTTmax
. (9)

(iv) Maintaining fairness : Note that setting βi = RTTmin

RTTmax
requires a corre-

sponding adjustment of αi if it is not to result in unfairness. Both net-
work fairness and TCP-friendliness are ensured by adjusting αi according
to αi = 2(1 − βi).

2.2 Models of unsynchronised network

The preceding discussion illustrates the relationship between important network
properties and the eigensystem of a positive matrix. Unfortunately, the assumptions
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Figure 3: NS packet-level simulation (αi = 1, βi = 0.5, dumb-bell with 10Mbs
bottleneck bandwidth, 100ms propagation delay, 40 packet queue).

under which these results are derived, namely of source synchronisation and uniform
RTT, are quite restrictive (although they may, for example, be valid in many long-
distance networks [5]). It is therefore of great interest to extend our approach
to more general network conditions. To distinguish variables, we will from now on
denote the nominal parameters of the sources used in the previous section by αs

i , β
s
i ,

i = 1, . . . , n.

Consider the general case of a number of sources competing for shared bandwidth in
a generic dumbbell topology (where sources may have different round-trip times and
drops need not be synchronised). The evolution of the cwnd of a typical source as a
function of time, over the k′th congestion epoch, is depicted in Figure 4. As before
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Figure 4: Evolution of window size over a congestion epoch. T (k) is the length of
the congestion epoch in seconds.

a number of important events may be discerned, where we now measure time in
seconds, rather than units of RTT . Denote by tai(k) the time at which the number
of packets in flight belonging to source i is equal to βs

i wi(k); tq(k) is the time at
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which the bottleneck queue begins to fill3; tb(k) is the time at which the bottleneck
queue is full; and tci(k) is the time at which the i’th source is informed of congestion.
In this case the evolution of the i’th congestion window variable does not evolve
linearly with time after tq seconds due to the effect of the bottleneck queue filling
and the resulting variation in RTT; namely, the RTT of the i’th source increases
according to RTTi(t) = Tdi

+q(t)/B after tq, where Tdi
is the RTT of source i when

the bottleneck queue is empty and 0 ≤ q(t) ≤ qmax denotes the number of packets
in the queue. Note also that we do not assume that every source experiences a drop
when congestion occurs. For example, a situation is depicted in Figure 4 where the
i’th source experiences congestion at the end of the epoch whereas the j’th source
does not.

Given these general features it is clear that the modelling task is more involved than
in the synchronised case. Nonetheless, it is possible to relate wi(k) and wi(k + 1)
using a similar approach to the synchronised case by accounting for the effect of
non-uniform RTT’s and unsynchronised packet drops as follows.

(i) Unsynchronised source drops : Consider again the situation depicted in Figure
4. Here, the i’th source experiences congestion at the end of the epoch whereas the
j’th source does not. This corresponds to the i’th source reducing its congestion
window by the factor βs

i after the k+1’th congestion event, and the j’th source not
adjusting its window size at the congestion event. We therefore allow the back-off
factor of the i’th source to take one of two values at the k’th congestion event.

βi(k) ∈ {βs
i , 1} , (10)

corresponding to whether the source experiences a packet loss or not.

(ii) Non-uniform RTT : Due to the variation in round trip time, the congestion
window of a flow does not evolve linearly with time over a congestion epoch. Nev-
ertheless, we may relate wi(k) and wi(k + 1) linearly by defining an average rate
αi(k) depending on the k’th congestion epoch:

αi(k) :=
wi(k + 1) − βi(k)w(k)

T (k)
, (11)

where T (k) is the duration of the k’th epoch measured in seconds. Equivalently we
have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) . (12)

In the case when qmax << BTdi
, i = 1, . . . , n, the average αi are (almost) inde-

pendent of k and given by αi(k) ≈ αs
i /Tdi

for all k ∈ N, i = 1, . . . , n. The situation
when

αi ≈
αs

i

Tdi

, i = 1, . . . , n (13)

is of considerable practical importance and such networks are the principal concern
of this paper. This corresponds to the case of a network whose bottleneck buffer
is small compared with the delay-bandwidth product for all sources utilising the
congested link. Such conditions prevail on a variety of networks; for example net-
works with large delay-bandwidth products, and networks where large jitter and/or
latency cannot be tolerated. Note however that the model is not restricted to such
situations; see Comment 4.1 below. In view of (10) and (12) a convenient represen-
tation of the network dynamics is obtained as follows. At congestion the bottleneck

3In the case when the queue does not empty following a congestion event tq(k) = tai(k).
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link is operating at its capacity B, i.e.,

n
∑

i=1

wi(k) − αi

RTTi,max
= B, (14)

where RTTi,max is the RTT experienced by the i’th flow when the bottleneck queue
is full. Note, that RTTi,max is independent of k. Setting γi := (RTTi,max)−1 we
have that

n
∑

i=1

γiwi(k) = B +
n
∑

i=1

γiαi . (15)

By interpreting (15) at k +1 and inserting (12) for wi(k + 1) it follows furthermore
that

n
∑

i=1

γiβi(k)wi(k) + γiαiT (k) = B +
n
∑

i=1

γiαi . (16)

Using (15) again it follows that

T (k) =
1

∑n
i=1 γiαi

(

n
∑

i=1

γi(1 − βi(k))wi(k)

)

. (17)

Inserting this expression into (12) we finally obtain

wi(k + 1) = βi(k)wi(k) +
αi

∑n
j=1 γjαj





n
∑

j=1

γj(1 − βj(k))wj(k)



 . (18)

and the dynamics of the entire network of sources at the k-th congestion event,
subject to the constraint (15), are described by

W (k + 1) = A(k)W (k), A(k) ∈ {A1, ..., Am}. (19)

where

A(k) =











β1(k) 0 · · · 0
0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)











(20)

+
1

∑n
j=1 γjαj









α1

α2

· · ·
αn









[

γ1(1 − β1(k)), . . . , γn(1 − βn(k))
]

,

and where βi(k) is either 1 or βs
i . The non-negative matrices A2, .., Am are con-

structed by taking the matrix A1,

A1 =











βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n











+
1

∑n
j=1 γjαj









α1

α2

· · ·
αn









[

γ1(1 − βs
1), . . . , γn(1 − βs

n)
]

,

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices
associated with the system (19) that correspond to the different combinations of
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source drops that are possible. We denote the set of these matrices in the remainder
of the paper by A.

Finally we note that another, sometimes very useful, representation of the net-
work dynamics can be obtained by considering the evolution of scaled window
sizes at congestion; namely, by considering the evolution of WT

γ (k) = [γ1w1(k)
, γ2w2(k), ...., γnwn(k)]. Here one obtains the following description of the network
dynamics:

Wγ(k + 1) = Ā(k)Wγ(k), Ā(k) ∈ Ā = {Ā1, ..., Ām}, m = 2n − 1, (21)

where the Āi are obtained by the similarity transformation associated with the
change of variables, in particular

Ā1 =











βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n











+
1

∑n
j=1 γjαj









γ1α1

γ2α2

· · ·
γnαn









[

1 − βs
1 1 − βs

2 · · · 1 − βs
n

]

.

As before the non-negative matrices Ā2, .., Ām are constructed by taking the matrix
Ā1 and setting some, but not all, of the βs

i to 1. All of the matrices in the set Ā are
now column stochastic; for convenience we use this representation of the network
dynamics to prove the main mathematical results presented in this paper.

3 Main results

The ultimate objective of our work is to use the network model developed in Section
2 to establish design principles for the realisation ofAIMD networks. In this section
we present two results, both of which are derived from our network model in Section
2, which in a sense characterise the asymptotic behaviour of both long and short
lived flows.

Preamble to main results

It follows from (19) that W (k) = Π(k)W (0), where Π(k) = A(k)A(k − 1)....A(0).
Consequently, the behaviour of W (k), as well as the network fairness and conver-
gence properties, are governed by the properties of the matrix product Π(k). The
objective of this section is to analyse the average behaviour of Π(k) with a view to
making concrete statements about these network properties. To facilitate analytical
tractability we will make two mild simplifying assumptions.

Assumption 3.1 The probability that A(k) = Ai in (19) is independent of k and
equals ρi.

Comment 3.1 In other words Assumption 3.1 says that the probability that the
network dynamics are described by W (k + 1) = A(k)W (k), A(k) = Ai over the k’th
congestion epoch is ρi and that the random variables A(k), k ∈ N are independent
and identically distributed (i.i.d.).

Given the probabilities ρi for i ∈ {1, ..., 2n−1}, one may then define the probability
λj that source j experiences a loss event at the k’th congestion event as follows:

λj =
∑

ρi ,
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where the summation is taken over those i which correspond to a matrix in which
the j’th source sees a drop. Or to put it another way, the summation is over those
indices i for which the matrix Ai is defined with a value of βj 6= 1. Note that λj

can be thought of as a synchronisation factor - it is unity when a flow experiences
a loss at every congestion event.

Assumption 3.2 We assume that λj > 0 for all j ∈ {1, ..., n}.

Simply stated, Assumption 3.2 states that almost surely all flows must see a drop
at some time (provided that they live for a long enough time).

Comment 3.2 A consequence of the above assumptions is that the probability that
source j experiences a drop at the k’th congestion event is not independent of the
other sources. For example, if the first n − 1 sources do not see a drop then this
implies that source n must see a drop (in accordance with the usual notion of a
congestion event, we require at least one flow to see a drop at each congestion
event). Hence, the events cannot be independent.

We now present two results that characterise the expected behaviour of AIMD-
networks that satisfy Assumptions 3.1 and 3.2. The first characterises the ensemble
average behaviour of flows, while the second characterises the time average be-
haviour.

Result 1. Ensemble average behaviour of TCP-flows

Theorem 3.1 Consider the stochastic system defined in the preamble. Let Π(k)
be the random matrix product arising from the evolution of the first k steps of this
system:

Π(k) = A(k)A(k − 1)....A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (

m
∑

i=1

ρiAi)
k; (22)

and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (23)

where the vector xp is given by xT
p = Θ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ), yT
p =

(γ1, ...., γn). Here Θ ∈ R is chosen such that equation (15) is satisfied if wi is
replaced by xpi = Θαi/(λi(1 − βi)).

Comment 3.3 Theorem 3.1 characterises the ensemble average behaviour of the
congestion variable vector W (k). The congestion variable vector of a network of
flows starting from initial condition W (0) and evolving for k congestion epochs is
given by W (k) = Π(k)W (0). The average window vector over many repetitions is
given by E(Π(k))W (0). Theorem 3.1 provides an expression for calculating this
average in terms of the network parameters and the probabilities ρi. Furthermore,
we have that as k becomes large E(Π(k))W (0) tends asymptotically to xpy

T
p W (0).

The rate of convergence of E(Π(k))W (0) to this limiting value is bounded by the
second largest eigenvalue of the matrix

∑m
n=1 ρiAi.
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Comment 3.4 Theorem 3.1 is concerned with the expected behaviour of the source
congestion windows at the k’th congestion epoch. For k sufficiently large the ex-
pected throughput before backoff can be approximated as

∑n
i=1

αi

λi(1−βi)RTTi,max
. The

expected worst case throughput after backoff (which occurs when the queue is on av-
erage empty after backoff) is approximately

∑n
i=1

αi

λi(1−βi)RTTi,min
. An immediate

consequence of this observation is that the bottleneck link is guaranteed to be oper-
ating at capacity (on average) for k large enough if βi =

RTTi,min

RTTi,max
.

Result 2. Time average behaviour of flows

We now present the following theorem which is concerned with networks charac-
terised by long-lived flows.

Theorem 3.2 Consider the stochastic system defined in the preamble and let

W (k) :=
1

k + 1

k
∑

i=0

W (i) =

(

1

k + 1

k
∑

i=0

Π(i)

)

W (0),

and where

Π(k) = A(k)A(k − 1)....A(0).

Then, with probability one

lim
k→∞

W (k) = xpy
T
p W (0) =





n
∑

j=1

γjwj(0)



xp, (24)

where the vectors xp and yp are as defined in Theorem 3.1.

Comment 3.5 Theorem 3.2 states that the time-average vector of window sizes
almost surely converges asymptotically to a scalar multiple of xp. Hence, xp deter-
mines the time-averaged relative number of unacknowledged packets in the network
from each source at each congestion event.

Comment 3.6 In view of Comment 3.4, it again follows that asymptotically, the
time-averaged throughput through the bottleneck link will approach the capacity B
for k sufficiently large if βi =

RTTi,min

RTTi,max
.

Comment 3.7 In the spirit of Theorem 3.1 one may also consider the expectation
of W (k): E(W (k)). Denoting E(A) =

∑m
i=1 ρiAi it follows from our assumptions

that

E(W (k)) =
1

k + 1
(E(A)k + E(A)k+1 + ... + E(A))W (0) (25)

= M(k)W (0), (26)

where the matrix M(k) is column stochastic matrix, and whose second largest eigen-
value is given by

λ2(k) =
1

k + 1

λk+1
2 − λ2

λ2 − 1
(27)

where λ2 is the second largest eigenvalue of E(A). Further, E(W (k)) tends asymp-
totically to xp as λ2(k) tends to 0.

11
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Figure 5: Dumbbell topology.

4 Model Validation

The mathematical results derived in Section 3 are surprisingly simple when one
considers the potential mathematical complexity of the unsynchronised network
model (19). The simplicity of these results is a direct consequence of Assumptions
3.1 and 3.2. The objective of this section is therefore twofold; (i) to validate the
unsynchronised model (19) in a general context; and (ii) to validate the analytical
predictions of the model and thereby confirm that the aforementioned assumptions
are appropriate in practical situations.

4.1 Two Unsynchronised Flows

We first consider the behaviour of two TCP flows in the dumbbell topology shown
in Figure 5. Our analytic results are based upon two fundamental assumptions: (i)
that the dynamics of the evolution of the source congestion windows can be accu-
rately modelled by equation (19); and (ii) the allocation of packet drops amongst
the sources at congestion can be described by random variables. We consider each
of these assumptions in turn.

(i) Accuracy of dynamics model : A comparison of the predictions of the model
(19) against the output of a packet-level NS simulation is depicted in Figure 6.
Here, the pattern of packet drops observed in the simulation is used to select the
appropriate matrix A(k) from the set A at each congestion event when evaluating
(19). As can be seen, the model output is very accurate. Also plotted in Figure
7 is the evolution of the linear combination

∑n
i=1 γiwi where the γi are defined in

Equation (15). It can be seen that
∑n

i=1 γiwi has the same value at each congestion
event thereby validating the constraint (15) used in the model.

(ii) Validity of random drop model : It is well known that networks of TCP flows
with drop-tail queues can exhibit a rich variety of deterministic drop-behaviours
[6]. However, most real networks carry at least a small amount web traffic. In
Figure 8 we plot NS simulation results showing the mean congestion window as the
level of background web traffic is varied (background information on the web traffic
generator in NS is described in [7]). To illustrate the impact of small amounts
of web traffic, these results are given for a network condition where phase effects
are particularly pronounced. While the agreement between the simulation and our
random matrix model is poor with no web traffic, even a very small volume of
web traffic appears to be enough to disrupt the coherent structure associated with
phase effects and other complex phenomena previously observed in simulations of
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Figure 6: Predictions of the network model compared with packet-level NS simula-
tion results. Key: ◦ flow 1 (model), ♦ flow 2 (model), - flow 1 (NS), – flow 2 (NS).
Network parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; T1=42ms;
no background web traffic.
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Figure 7: Evolution of
∑n

i=1 γiwi. The peaks correspond to congestion events.
Network parameters: B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; T1=42ms;
no background web traffic.
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Figure 8: Variation of mean wi(k) with level of background web traffic in dumb-
bell topology of Figure 5. Key: +NS simulation result; · mathematical model
(19); ◦ Theorem 3.2. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms; T1=42ms.

unsynchronised networks.

From the packet-based simulation results we can determine the proportion of con-
gestion events corresponding to both flows simultaneously seeing a packet drop,
flow 1 seeing a drop only, and flow 2 seeing a drop only. Using these estimates of
the probabilities ρi, the mean congestion window can be estimated using expression
(23) from Theorem 3.2. The resulting estimates are shown in Figure 9, and are also
presented in tabular form in Table 1. It can be seen that there is close agreement
between the packet-level simulation results and the predictions obtained using (23).
The actual convergence of the simulation data to the mean values is depicted in
Figure 10.

Also shown in Figure 9 are the analytic predictions for the case where each source has
an equal probability of backing off when congestion occurs: namely, when λi = 1

n ∀i.
The corresponding ratio of the elements of the average congestion window vector is
the same as that under the assumption of source synchronisation (it is important
to note that patterns of packet drop other than synchronised drops can lead to the
same distribution as long as the proportion of backoff events experienced by the two
flows is the same). Observe that the resulting predictions are an accurate estimate
of the mean congestion window size and that as the level of web traffic increases
the mean window size approaches that in the synchronised case (see Figure 8).

Before proceeding we also present results from several other two-flow networks in
Figures 11 and 12. As can be seen from the figures, the predictions of Theorem 3.2
and the NS-simulations are consistently in close agreement.

The foregoing results are for networks with two competing TCP sources. We note
briefly that we have also validated our results against packet-level simulations for
networks of up to five flows. As in the two flow case and the simulation and
analytical predictions are in close agreement (to the same degree of accuracy); full
details of these experiments are presented in [8].

14



0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
1
 (ms)

no
rm

al
is

ed
 c

w
nd

 s
iz

e

flow 2 

flow 1 

Figure 9: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=20ms, T0=102ms; approximately 0.5% bidirec-
tional background web traffic.

Comment 4.1 Predictions based upon the model (19) rely on knowledge of the rate
αi at which each of the sources increases its window size. In the case of networks
with small queue sizes, Equation (13) gives a good approximation of these rates.
However, this approximation neglects the curvature in the cwnd evolution induced
by time-varying round-trip time and can therefore be expected to become less accurate
as the queue provisioning increases. We emphasize that the loss of predictive power
is due to the validity of the approximation (13) and not the fidelity of the network
model (19); a more accurate estimate of αi would lead to better model performance.
Techniques for approximating αi when the queue is not small have already been
explored in [9].

Comment 4.2 The model (19) also neglects the fact that the number of packets
in flight for TCP flows is quantised: namely, restricted to integer values, owing to
the packet based nature of the traffic. Hence, the accuracy of the model (19) can be
expected to degrade under network conditions where the peak window size wi of a
flow is small.

4.2 Many Unsynchronised Flows

The foregoing results are for networks with two competing TCP sources. We note
briefly that we have also validated our results against packet-level simulations for
networks of up to five flows. As in the two flow case, and the simulation and
analytical predictions are in close agreement; a sample of the results that we have
collected is depicted in Figures 13-14. Further examples of networks with many
flows can be found in [8].
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Figure 10: Convergence of the empirical mean of the window size to asymptotic
values shown in Figure 9.NS simulation results; network parameters: B=100Mb,
qmax=80 packets, T̄=20ms, T0=102ms.
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Figure 11: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=20ms, T0=2ms; approximately 0.5% bidirectional
background web traffic.
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Figure 12: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy of Figure 5. Key: +NS simulation result; · mathematical model (19); ◦
Theorem 3.2; solid lines correspond to synchronised case. Network parameters:
B=100Mb, qmax=80 packets, T̄=100ms, T0=102ms; approximately 0.5% bidirec-
tional background web traffic.
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Figure 13: Variation of mean wi(k) with propagation delay T1 in dumbbell topol-
ogy with three TCP flows. Key: +NS simulation result; · mathematical model
(19); ◦, ⋄, 2 Theorem 3.2 flows 1, 2 and 3 respectively; solid lines correspond to
synchronised case. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms, T2=62ms; approximately 0.5% bidirectional background web traffic.
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T1 (ms) Flow 1 Flow 2
NS Simulation Model Theorem 3.2 NS Simulation Model Theorem 3.2

2.0 0.1924 0.1908 0.1895 0.8076 0.8092 0.8105
12.0 0.2762 0.2757 0.2736 0.7238 0.7243 0.7264
22.0 0.3253 0.3235 0.3237 0.6747 0.6765 0.6763
42.0 0.3691 0.3654 0.3651 0.6309 0.6346 0.6349
62.0 0.4226 0.4230 0.4239 0.5774 0.5770 0.5761
82.0 0.4599 0.4605 0.4600 0.5401 0.5395 0.5400
102.0 0.4866 0.4901 0.4943 0.5134 0.5099 0.5057
122.0 0.5156 0.5071 0.5082 0.4844 0.4929 0.4918
142.0 0.5461 0.5406 0.5378 0.4539 0.4594 0.4622
162.0 0.5877 0.5813 0.5825 0.4123 0.4187 0.4175
252.0 0.6652 0.6627 0.6609 0.3348 0.3373 0.3391

Table 1: Tabular data for Figure 9. T1 is the fixed delay associated with source
1 that is depicted in Figure 5. The first column for each flow gives the actual
average window size as predicted by the NS simulator; the second column gives
the predictions of the model (19); and the third column gives the long-time average
predictions of Theorem 3.2.

4.3 Limitations of modelling framework

The derived model (19) provides a framework for capturing the dynamics of certain
types of communication networks. However, while the model encompasses features
such as drop-tail queueing, flows with different round-trip times, unsynchronised loss
events and the switched nature of AIMD flows, it does not capture some features
of communication networks.

(i) The model is only valid for a network of AIMD flows that compete for band-
width at a single common bottleneck router with drop-tail queue, i.e. the
so-called dumbbell topology.

(ii) The model does not include the effects of slow start and TCP timeouts (al-
though these can easily be introduced into the model through the introduction
of more matrices into the set A).

(iii) In the simulation results presented, consideration is confined to situations
where the queue size is small compared to the bandwidth-delay product but
this is to streamline the presentation and is not an inherent constraint of the
modelling approach. There is also no assumption in the model that the queue
empties following a congestion event.

(iv) While not intrinsic to the matrix product model itself, key assumptions for
the asymptotic analysis presented are that (i) the pattern of losses at each
congestion event is random and independent of the congestion epoch (we do
not assume that the losses seen by a flow are independent of the losses seen
by other competing flows), and (ii) each flow almost surely experiences a loss
event provided that it sufficiently long-lived.

(v) The time average results necessarily apply to long-lived flows only but our
ensemble average results apply to flows of any duration.

Perhaps the most significant limitation of our model is that the probabilities of
the different patterns of losses are assumed to be known beforehand (or can be
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Figure 14: Variation of mean wi(k) with propagation delay T1 in dumbbell topology
with five TCP flows. Network parameters: B=100Mb, qmax=80 packets, T̄=20ms,
T0=102ms, T2=62ms; approximately 0.5% bidirectional background web traffic.

measured) and are not predicted by the model. This certainly reduces the predictive
power of the model. However, our objective in developing the model was not only
to understand the dynamics of AIMD networks, but also to provide a basis for
the design of such networks. When viewed in this context, the probabilities ρi

play an important role in controlling the network dynamics, and as they can be
controlled by the bottleneck router, are an important design parameter available to
the network designer. Our model provides an analytic basis for understanding the
effect of various dropping strategies of the network dynamics, and for incorporating
this aspect of network dynamics into the network design procedure.

5 Related work

An extensive literature exists relating to the modelling of TCP traffic. The well-
known square-root formula of Padhye et. al. [10] provides an approximate expres-
sion for the congestion window achieved by a TCP flow. The statistical indepen-
dence assumptions in this model however neglect interactions between competing
flows (e.g. the frequency of loss events is generally not independent of the values of
the AIMD increase and decrease parameters of competing flows). Many of the more
recent results are based on so-called fluid approaches and focus on active queueing
disciplines, see for example [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 20] . Funda-
mental difficulties exist in applying fluid models to networks with drop-tail queues.
Recently several authors have developed new types of hybrid systems model suited
to drop-tail networks: most notably by Hespanha [22] and Baccelli and Hong [23].
We note that the model derived in [23] is similar to the model presented here. In
particular, under mild assumptions, the sets of solutions of the model in [23] and of
our model coincide, so that the results of that reference are immediately applicable
to the model presented here. However, the model derived by Baccelli and Hong is
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both affine and the homogeneous (linear) part is characterised by general matrices
(namely, not by non-negative matrices), whereas in this paper we develop a linear,
non-negative matrix model. The properties of linearity (no affine term) and non-
negativity play a key role in the tractability of our model, both in respect of the
analysis of its dynamic characteristics and of its equilibrium properties.

6 Mathematical derivations

Theorem 3.1 and Theorem 3.2 follow from several interesting properties of the set
of matrices A = {A1, ..., Am}. Roughly speaking, these results may be classified as
being algebraic or stochastic in nature. The purpose of this section is to elucidate
these properties and to use them to prove the results given in Section 3.

It was noted before that the matrices in the set A are not column stochastic. How-
ever, the matrices in this set are simultaneously similar to a set of column stochastic
matrices under the transformation Γ = diag[γ1, ..., γn]. For A ∈ A, determined by
a choice of parameters β1(A), . . . , βn(A) we have

ΓAΓ−1

=











β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)











+
1

∑n
j=1 γjαj









γ1α1

γ2α2

· · ·
γnαn









[

(1 − β1(A)), · · · , (1 − βn(A))
]

,

and setting α̂j := γjαj , j = 1, . . . , n we have

=











β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)











+
1

∑n
j=1 α̂j









α̂1

α̂2

· · ·
α̂n









[

(1 − β1(A)), · · · , (1 − βn(A))
]

.

It is easy to see that the transformed matrices are column stochastic. We shall ex-
ploit this observation in the sequel as column stochastic matrices are easier to deal
with than nonstochastic ones. In view of this fact we note that a Perron eigenvector
of ΓA1Γ

−1 is given by x̄T
p = ( α̂1

λ1(1−β1)
, α̂2

λ2(1−β2)
, ..., α̂n

λn(1−βn) ), and that the corre-

sponding Perron eigenvector of A1 is xT
p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ). In the

sequel we will derive results that are expressed in terms of x̄p. These correspond to
the dynamics of the system (21) and refer to the stochastic properties of the vector
W γ(k). The corresponding results for the system (19) are directly deduced from
these results by similarity.

6.1 Algebraic properties of the set A

We will from now on assume without loss of generality that the matrices in the
set A are column stochastic, which corresponds to the case γ1 = . . . = γn = 1.
Should this not be the case we can always apply the transformation Γ to obtain
this property, which just amounts to a rescaling of the αi. In the derivation of the
main results of this paper we make frequent use of the fact that the matrices in
the set A, and products of matrices in this set, are nonnegative and in particular
column stochastic. This observation implies the existence of an n − 1 dimensional
subspace that is invariant under A. We will also see that the matrices in this
set can be simultaneously transformed into block triangular form with an n − 1
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dimensional symmetric block. Given these observations, we will then show under
mild assumptions that the distance of a matrix product of length k, constructed
from matrices in A, from the set of rank-1 matrices converges asymptotically to
zero as k increases.

Lemma 6.1 There exists an n − 1 dimensional subspace invariant under A.

Proof. The row vector v := [1, ..., 1] is a left eigenvector of all of the matrices in
the set A as they are column stochastic. This implies that the n − 1 dimensional
subspace orthogonal to v is invariant under A, [24].

Lemma 6.2 Consider the set of matrices A. There exists a real non-singular trans-
formation T such that for all A ∈ A we have

T−1AT =

[

S B
0 1

]

, (28)

where S ∈ R(n−1)×(n−1) is symmetric, so that in particular the eigenvalues of S are
real and of absolute value ≤ 1.

Proof. We denote α =
[

α1 . . . αn

]T
and cα := (

∑n
j=1 αj)

−1. Let A = Λ +

cααβT ∈ A, where Λ is the diagonal matrix with entries equal to 1 or βs
i and β is

the corresponding vector with entries 0 or 1 − βs
i . Consider the diagonal matrix

D =













1√
α1

0 . . . 0

0 1√
α2

0 0

... 0
. . . 0

0 0 · · · 1√
αn













. (29)

Then DAD−1 is a non-negative matrix with a left eigenvector given by zp = vD−1,
(with v defined in the proof of the previous lemma). Further, it follows that, DAD−1

= Λ + DcααβT D−1 and by inspection Dα = zp.

We now chose an orthogonal matrix M whose last column is zp/‖zp‖. Then eT
n (the

n-th unit row vector) is a left eigenvector of MT DAD−1M , and furthermore

MT DAD−1M = MT ΛM + cαMT zpβ
T D−1M .

Now as zp is a multiple of the last column of M it follows that MT zp = ‖zp‖en and
hence the entries of MT zpβ

T D−1 are nonzero only in the last row. Thus using that
eT

n is a left eigenvector we have

MT DAD−1M =

[

S B
0 1

]

, (30)

where S ∈ R(n−1)×(n−1) is equal to the upper left (n − 1)-minor of MT ΛM and
thus symmetric. The assertion follows by setting T = D−1M . The eigenvalues of S
are bounded in absolute value by 1 as the matrix A is column stochastic and thus
has spectral radius equal to 1.

We denote the the of matrices S that appear as the upper left block in (28) by S.

Corollary 6.1 Consider the system (19). Then for each S ∈ S the function
V (z((k)) = zT (k)z(k) is a quadratic Lyapunov function for the dynamic system

Σ : z(k + 1) = Sz(k) , (31)

i.e., for all solutions of Σ we have V (z(k + 1)) − V (z(k)) ≤ 0 for all k.
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Proof. The assertion follows immediately as the matrices {S1, S2, .., Sm} are sym-
metric column stochastic matrices.

There are some interesting consequences of Corollary 6.1 for products of matrices
from the set S. As these matrices are symmetric and of norm less or equal to 1
they form what is called a paracontracting set of matrices. This property is defined
by the requirement that

Sx 6= x ⇔ ‖Sx‖ < ‖x‖ , ∀x ∈ Rn−1, S ∈ S . (32)

This is true for our set S, as the matrices S ∈ S are symmetric and of spectral radius
at most 1. It is know [25], that finite sets of matrices that are paracontracting have
left convergent products, i.e., for any sequence {S(k)}k∈N in S the following limit
exists

lim
k→∞

S(k)S(k − 1) . . . S(0) . (33)

For related literature on paracontracting sets of matrices we refer to [26, 25] and
references therein.

In the following we prove results on the convergence of products of the matrices
in A to the set of column-stochastic matrices of rank 1. To this end it will be
convenient to introduce a notation that identifies each matrix A ∈ A with the
sources that do not see a drop in that congestion event. Let I ⊂ {1, 2, . . . , n} be
the index set of sources not experiencing congestion at a congestion event. (Clearly,
I = {1, 2, . . . , n} can be ignored, as this means that there is no congestion).

The matrix corresponding to an index set I is given by

AI = diag(β1(I), . . . , βn(I)) + cαα
[

1 − β1(I) . . . 1 − βn(I)
]

, (34)

where βi(I) = 1, if i ∈ I and βi(I) = βs
i otherwise and cα := (

∑n
j=1 αj)

−1. We
now recover our set of possible matrices by

A := {AI | I ( {1, 2, . . . , n}} , (35)

which results in a set of 2n − 1 matrices, as it should. Note that all A ∈ A are
column stochastic, so that they have an eigenvalue equal to 1 equal to the spectral
radius.

If I 6= ∅, i.e., if at least one source does not experience congestion, then the di-
mension of the eigenspace corresponding to 1 is equal to the number of sources
not seeing the congestion event. To see this consider first the case that the first k
sources k ∈ {1, . . . , n − 1} do not see a drop and the others do. In this case

A{1,...,k} =

[

Ik×k B
0 C

]

, (36)

where B > 0 by definition. As the matrix is column stochastic this means that all
columns of C sum to a value strictly less than one, and hence r(C) ≤ ‖C‖1 < 1 and
the claim follows for A{1,...,k}. Now an arbitrary matrix AI , I 6= ∅ may be brought
into the form (36) by permutation of the index set and we have shown the desired
property.

Note also that the eigenspace of AI associated to the eigenvalue 1 is given by

VI = span{ei | i ∈ I} , (37)

where ei denotes the i-th unit vector.
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Let us briefly discuss the eigenspaces of SI corresponding to the eigenvalue 1, which
we denote by V (SI). If I = ∅, {1}, . . .{n}, then as we have seen in (37), the
multiplicity of 1 as an eigenvalue of AI is 1, so from (28) we have that r(SI) < 1.
In this case we will (with slight abuse of notation) set V (SI) = {0}. We denote the
subspace orthogonal to [1, . . . , 1] by [1, . . . , 1]⊥. Recall from Lemma 6.1, that this
is an invariant subspace of A ∈ A. In general, we see from (37) and Lemma 6.1
that if I = {k1, k2, . . . , kl} ( {1, . . . , n} then a basis for

[

1 1 . . . 1
]⊥

∩ VI (38)

is given, e.g. by
ek1

− ek2
, ek1

− ek3
, . . . , ek1

− ekl
.

Hence the eigenspace of V (SI) is spanned by

MT D−1(ek1
− ek2

), MT D−1(ek1
− ek3

), . . . , MT D−1(ek1
− ekl

) . (39)

From this it follows that

V (SI1
) ∩ V (SI2

) = V (SI1∩I2
) , (40)

justifying our abuse of notation above. In particular, V (SI1
)∩V (SI2

) 6= {0} if and
only if I1 ∩ I2 contains at least 2 elements.

Proposition 6.1 Let {S(k)}k∈N ⊂ S be a sequence with associated index sets I(k).
The following statements are equivalent:

(i) For all z0 ∈ Rn−1 it holds that

lim
k→∞

S(k)S(k − 1) . . . S(0)z0 = 0 .

(ii) for all but one l ∈ {1, . . . , n} it holds that for each k ∈ N, there is an
k1 > k with l /∈ I(k1).

(iii) If {A1, . . . , As} ⊂ A are the matrices that appear infinitely often in the
sequence AI(k), then

Â :=
1

s

s
∑

l=1

Al

is a matrix that with the exception of at most one column has strictly positive
entries.

If in (iii) the k-th column of Â has zero entries then this column is equal to ek.

Proof. (ii)⇔(iii): Note first that the k-th column of Â is not equal to ek, if and only
if for one of the matrices Al, l = 1, . . . , m the corresponding column is not a unit
vector. The assumption on the matrix Al implies that the k-th source experiences
a drop infinitely many times. Under assumption (iii) this is true for all but at
most one column, which implies (ii). Conversely, under the assumption (ii) the k-th
source experiences a drop infinitely many times. As there are only finitely many
matrices in which the k-th column is not equal to ek one of these appears infinitely
often in the sequence of matrices and therefore in the definition of Â. This implies
(iii).

(i)⇒(ii): If (ii) does not hold, then (without loss of generality) there is a s ≥ 0
such that for all t ≥ s we have {1, 2} ⊂ I(k). This implies that for all t ≥ s the
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matrix S(k) has the eigenspace MT D−1(e1 − e2) as an eigenspace corresponding
to the eigenvalue one. Hence any z0 such that S(s) . . . S(0)z0 is a multiple of
MT D−1(e1 − e2) does not satisfy (i). Such a z0 exists as all the matrices in A are
invertible. This shows the assertion.

(ii)⇒(i): Denote z(k) := S(k − 1) . . . S(0)z0. Using paracontractivity of S and (33)
it follows that

z∞ := lim
k→∞

z(k)

exists. If z∞ = 0 there is nothing to show. Otherwise, we claim that for some k0

sufficiently large, it follows that Skz∞ = z∞ for all k ≥ k0. To this end note that
because S is finite, there exists a constant 0 < r < 1 such that for all S ∈ S we
have

Sz∞ 6= z∞ ⇒ ‖Sz∞‖ < r‖z∞‖ .

By convergence this implies for all S ∈ S and all k sufficiently large that

Sz∞ 6= z∞ ⇒ ‖Sz(k)‖ <
1 + r

2
‖z∞‖ < ‖z∞‖ .

On the other hand the sequence ‖z(k)‖ is decreasing, so it follows that ‖z(k)‖ ≥
‖z∞‖ for all k ∈ N. This implies that for k sufficiently large it must hold that
S(k)z∞ = z∞. This, however, means that z∞ lies in the eigenspace V (S(k)) for all
k large enough. From (40) it follows that at least two sources do not see a drop for
all k large enough.

For the statement of the next result we denote the set of column stochastic matrices
of rank 1 by R. Note that the matrices in R are of the form

η
[

1 1 . . . 1
]

,

where η is a nonnegative vector, the entries of which sum to 1. In particular,
the matrices in R are idempotent, because

[

1 1 . . . 1
]

η = 1. In the following
statement, we denote the distance of a matrix B to the set R by

dist(B,R) := min{‖B − R‖ | R ∈ R} .

Theorem 6.1 Let {A(k)}k∈N ⊂ A be a sequence with associated index sets I(k).
Then each of the statements of Proposition 6.1 is equivalent to

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 . (41)

Proof. Consider Proposition 6.1(ii). It follows from Corollary 6.1 that the system
(21) can be transformed to an equivalent system (28). This implies that for each k
the product A(k)A(k − 1) . . . A(0) is similar to

T (k) :=

[

S(k)S(k − 1) . . . S(0) ∗
0 1

]

, (42)

where we do not give the expression for the entry ∗ of the matrix as it is of no
relevance for our further discussion. By Proposition 6.1 it follows that S(k)S(k −
1) . . . S(0) → 0. As the distance of T (k) to a matrix of rank 1 is upper bounded
by ‖S(k)S(k − 1) . . . S(0)‖ this implies that the distance of A(k)A(k − 1) . . . A(0)
to the set of matrices of rank 1 converges to zero. As each of these matrices is
column stochastic any limit point of the sequence {A(k)A(k−1) . . . A(0)} is column
stochastic.
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Conversely, it is clear that the (41) implies Proposition 6.1 (i). This shows the
assertion.

The minor drawback of Proposition 6.1 is that no rate of convergence is supplied.
Indeed, the reader may convince himself that the rate of convergence may be made
arbitrarily slow by considering sequences that have repetitions of the same matrices
for longer and longer intervals as k → ∞. It is therefore useful to provide conditions
that guarantee an exponential decay. One such condition is provided in the following
proposition.

Proposition 6.2 For every a ∈ {n, n + 1, n + 2, . . .} there exists a constant ra < 1
with the following property. For any sequence of index sets I(k) such that for all
l ∈ N and all i ∈ {1, . . . , n} there is a b ∈ {la, la + 1, . . . , (l + 1)a− 1} with i /∈ I(s)
it holds that

‖S(k − 1) . . . S(k′)‖ ≤ r−2k+1
k r

(k−k′)
k , ∀k ≥ k′ ≥ 0 (43)

dist (A(k − 1) . . . A(k′),R) ≤ ‖T ‖‖T−1‖r−2k+1
k r

(k−k′)
k , ∀k ≥ k′ ≥ 0 (44)

with T defined by (28).

Proof. Fix a ∈ {n, n+1, n+2, . . .} and consider a finite sequence I(0), . . . , I(a−1)
of index sets such that for all i ∈ {1, . . . , n} there is an 0 ≤ b ≤ k − 1 with
i /∈ I(b). If we continue this sequence periodically then it clearly satisfies the
assumption of Proposition 6.1, so that for the associated sequence {S(k)}k∈N we
have limk→∞ S(k− 1)S(k− 2) . . . S(0) → 0. As the sequence of matrices is periodic
this implies that r(S(a − 1)S(a − 2) . . . S(0)) < 1. Using that for all I we have
‖SI‖ = 1 and ‖SIx‖ = ‖x‖ if and only if SIx = x the inequality on the spectral
radius implies that ‖S(k−1)S(k−2) . . . S(0)‖ ≤ ρ < 1 for some constant ρ depending
on the sequence.

By taking the maximum over all the (finitely many) sequences of length a satisfying
the drop condition and denoting it by ra, we obtain that

‖S(k − 1) . . . S(0)‖ ≤ rk/a
a ,

so that the first claim follows.

The second claim follows as the distance of A(k)A(k − 1) . . . A(0) to the set of

matrices of rank 1 is upper bounded by ‖T−1

[

S 0
0 0

]

T ‖.

Note that any actual flow on a real network has to satisfy the assumption on the
drops seen described in the previous proposition. The reason for this is that if a
flow does not see a drop it will continue to increase the amount of packages sent by
a constant rate. Eventually this leads to the case the the amount of packages sent
exceeds the capacity of the pipe if no drops are seen. But at this point the source
necessarily sees a drop. This very coarse argument shows that all realistic flows will
satisfy the assumptions of the previous proposition for some k.

6.2 Stochastic properties of the set A

We now proceed to give a number of results that relate to random products of
matrices from the set A. In this section we assume that Assumptions 1 and 2 hold.

We first note that under our assumptions that the expectation of A is a positive ma-
trix that is column stochastic with Perron eigenvector x̄T

p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ).
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We then proceed to show that the expectation of

Π(k) = A(k)A(k − 1) . . . A(0),

is also a column stochastic matrix with the same Perron eigenvector. The sec-
ond result in this section concerns the asymptotic behaviour of the expectation of
Π(k). These results immediately yield Theorem 3.1 and Theorem 3.2, using the
transformation Γ, if necessary.

The final results in this section revisit the convergence of Π(k) to the set of rank-1
idempotent matrices. We show that for all δ > 0 the probability of Π(k) being at
least a distance δ from the rank-1 idempotent matrices goes to zero as k becomes
large.

In the following we will use the notation AI = ΛI + cααβ(I)T , where ΛI denotes
the diagonal matrix in (34), cα := (

∑n
j=1 αj)

−1 and β(I) is the vector with entries
1 − βi(I).

Lemma 6.3 Assume that λi > 0 for i = 1, . . . , n then the expectation

E(A) =
∑

I
ρIAI

is positive, column stochastic, and a Perron eigenvector for it is given by

x̄T
p =

(

α1

λ1(1 − β1)
,

α2

λ2(1 − β2)
, ...,

αn

λn(1 − βn)

)

. (45)

Proof. By definition of the expectation and using (34) we have

E(A) =
∑

I
ρIAI =

∑

I
ρIΛI + cαα

∑

I
ρIβ(I)T

(46)

The i’th diagonal entry of the diagonal matrix
∑

I ρIΛI is

λiβi + (1 − λi) (47)

and the i’th entry of
∑

I ρIβ(I) is

∑

I
ρI(β(I))i = λi(1 − βi). (48)

Hence, the matrix E(A) is of the form of A1 defined in Equation (21) with the same
vector α and βi replaced by β̃i := 1− λi(1− βi) ∈ (0, 1). It follows by Theorem 2.1
that a Perron eigenvector of E(A) is given by x̄T

p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ).

Lemma 6.4 Consider the random system (19) subject to Assumptions 3.1 and 3.2.
The expectation of Π(k) is:

E(Π(k)) = E(A)k = (
∑

I
ρIAI)k. (49)

Proof. By independence we have that the expectation of the product is the product
of the expectations. This implies the equality.

Proof. (of Theorem 3.1).
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It is sufficient to show the assertion for the case γi = 1, i = 1, . . . , n. The assertion
of (22) is shown in Lemma 6.4. As E(A) is positive and column stochastic it follows
that

limE(A)k = limE(Π(k)) = zyT ,

where y, z are left, respectively right, Perron eigenvectors of E(A). As E(A) is
column stochastic we may normalize y = yT

P =
[

1 . . . 1
]

. Finally, the assertion
concerning xP follows from Lemma 6.3.

Proposition 6.3 Consider the random system (19) subject to Assumptions 3.1 and
3.2. Then, with probability one,

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 .

.

Proof. Under the assumptions that the λj are positive and the independence
assumptions, with probability one each source will see infinitely many drops. Now
the result follows from Theorem 6.1.

For convenience we refine the above proposition as the following lemma.

Lemma 6.5 [27] For all δ > 0, the expectation of dist(Π(k),R) exponentially tends
to zero as k → ∞, i.e. there are constants 0 ≤ µ < 1, C ≥ 1 such that

E(dist(Π(k),R)) ≤ Cµk .

Proof. The proof follows as a consequence of Proposition 6.2 and is given in [27].

6.3 Proof of Theorem 3.2

We now proceed to present an outline of the proof of main result of this paper,
Theorem 3.2. In [27] it is shown that the result can be derived from general results
on Markov e-chains. The technical preparations that this line of argumentation
requires, however, are beyond the scope of the present article. Thus in the appendix
we give a proof that relies on fairly elementary arguments in order to keep the main
ideas accessible.

Outline of proof: We are interested in the asymptotic behaviour of the average

window variable W (k),

W (k) =
1

k

k−1
∑

i=0

W (i)

=
1

k
(Π(k − 1) + ... + Π(0)) W (0)

as k tends to infinity. Our proof consists of the following main steps.

Step 1 : For a fixed k0 we partition each sufficiently long product Π(k) = Φ(k)Ψ(k),
where Φ(k) is the leading product of length k0. We know that as k0 → ∞, the
leading product approaches almost surely the set of rank one matrices, which implies
that Φ(k)Ψ(k) ≈ Φ(k) as all matrices involved are column stochastic.
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Step 2 : We thus may approximate W (k) as

W (k) =
1

k + 1
(Π(k) + ... + Π(0))W (0)

=
1

k + 1
(R(k) + ∆(k) + . . . + R(l) + ∆(l) + Π(l − 1) + ... + Π(0))W (0)

≈
1

k + 1
(R(k) + . . . + R(l) + Π(l − 1) + ... + Π(0))W (0),

where R(k), ..., R(l) are column stochastic rank-1 matrices and ∆(k), .., ∆(l) are
error terms that approach 0 as k0 → ∞.

Step 3 : Using the law of large numbers it is then seen that 1/k(R(k) + ... + R(l))
can be approximated as (

∑m
i=1 ρiAi)

l.

Step 4 : And it follows that

lim
k→∞

W (k) = xpȳ
T
p W (0),

where ȳT
p = (1, ..., 1).

7 Conclusions

In this paper we have presented and validated using packet level simulations, a
random matrix model that describes the dynamic behaviour of a network of n
AIMD flows that compete for shared bandwidth via a bottleneck router employing
drop-tail queuing. We have used this model to relate several important network
properties to properties of sets of nonnegative matrices that arise in the study of
such networks. We have also derived under simplifying assumptions a number of
analytic results that characterise the asymptotic time-average and ensemble-average
throughput of such networks.
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8 Appendix

We now present the proof of Theorem 3.2 in detail:

Proof. (of Theorem 3.2)

Recall that each product Π(k) is similar to a matrix of the form

Π(k) = T

[

S(k) B(k)
0 1

]

T−1 ,

and using this representation we may define dist(Π(k),R) := ‖S(k)‖. In particular,
this implies that for all products Π(k) and all A ∈ A we have

dist(AΠ(k),R) ≤ dist(Π(k),R) .

Consider now a fixed k0 ∈ N. For k ≥ k0 we factorise

Π(k) = Φ(k)Ψ(k) ,

where Φ(k) is the leading part of length k0, i.e.,

Φ(k) := A(k)A(k − 1) . . . A(k − k0 + 1) , and Ψ(k) := A(k − k0) . . . A(0) .

Let k ≥ k0 and write k = mk0 + l, with 0 ≤ l < k0. Then

W (k) =
1

k + 1
(Π(k) + ... + Π(0))W (0) =





1

k + 1

k0−1
∑

i=0

m
∑

j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i)



W (0) +
1

k + 1

k0+l
∑

j=0

Π(j)W (0) .
(50)
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Now by assumption and Lemma 6.4 for fixed 0 ≤ i ≤ k0 − 1 the random vari-
ables Φ(jk0 + l − i), j = 1, . . . , m are independent and identically distributed with
expectation given by

E(Π(k0)) = E(A)k0 .

We now investigate the individual inner sums for i = l. We may write

Φ(jk0) = R(jk0) + ∆(jk0) ,

where R(jk0) is the column stochastic, rank one matrix such that dist(Φ(jk0),R) =
‖R(jk0) − Φ(jk0)‖ and ∆(jk0) is an error term. With this notation we have

m
∑

j=2

Φ(jk0)Ψ(jk0) =
m
∑

j=2

[R(jk0) + ∆(jk0)] Ψ(jk0) =

m
∑

j=2

R(jk0) +

m
∑

j=2

∆(jk0)Ψ(jk0) =

m
∑

j=2

Φ(jk0) +

m
∑

j=2

∆(jk0)(Ψ(jk0) − I) .

We note for further reference that

m
∑

j=2

‖∆(jk0)(Ψ(jk0) − I)‖ ≤
m
∑

j=2

‖∆(jk0)‖C ,

with a constant C uniformly bounding ‖Π(k)− I‖ over all matrix products from A.

Denote d(k0) := E(dist(Π(k0),R)). By Lemma 6.5 we have that d(k0) → 0 as
k0 → ∞. As ‖∆(jk0)‖ = dist(Φ(jk0),R), it follows from the weak law of large
numbers, that the following quantities converge to 0 as m tends to ∞

P





1

m − 1

m
∑

j=2

(‖∆(jk0)‖ − d(k0)) ≥ ε



 , (51)

P



 ‖
1

m − 1

m
∑

j=2

Φ(jk0) − E(A)k0‖ ≥ ε



 . (52)

Consider now a fixed δ > 0 and choose k0 large enough so that d(k0)C < δ/4 then
we have for all m large enough that

P (‖
1

m − 1

m
∑

j=2

Π(jk0) − E(A)k0‖ ≥ δ)

≤ P (‖
1

m − 1

m
∑

j=2

Φ(jk0) − E(A)k0‖ +
1

m − 1

m
∑

j=2

‖∆(jk0)(Ψ(jk0) − I)‖ ≥ δ)

≤ P (‖
1

m − 1

m
∑

j=2

Φ(jk0) − E(A)k0‖ ≥
δ

2
) + P (

1

m − 1

m
∑

j=2

‖∆(jk0)‖C ≥
δ

2
) .

Using (51) and (52) it follows that for all δ > 0 and k0 such that d(k0)C < δ/4 we
have

lim
m→∞

P (‖
1

m − 1

m
∑

j=2

Π(jk0) − E(A)k0‖ > δ) = 0 . (53)
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Repeat these arguments in the same manner for the terms
∑m

j=2 Φ(jk0+l−i)Ψ(jk0+
l − i), i = 0, . . . , k0 − 1 in (50) and note that

1

k + 1

k0−1
∑

i=0

m
∑

j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i) =

m − 1

k + 1

k0−1
∑

i=0

1

m − 1

m
∑

j=2

Φ(jk0 + l − i)Ψ(jk0 + l − i) ,

and limm→∞(m− 1)/(k +1) = k0. As the remaining term in (50) converges to 0 as
k → ∞ we obtain from (50) and (53)

lim
k→∞

P (‖
1

k + 1

k
∑

j=0

Π(j) − E(A)k0‖ > k0δ) → 0 ,

provided that d(k0)C < δ/4.

Now E(A)k0 → xpy
T
p and using Lemma 6.5 k0d(k0) → 0 as k0 → ∞. Thus, in

probability, we have

lim
k→∞

1

k + 1

k
∑

j=0

Π(k) = xpy
T
p .

The claim now follows.
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