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Abstract

Using a result linking convexity and irreducibility of matrix sets it is

shown that the generalized spectral radius of a compact set of matrices

is a strictly increasing function of the set in a very natural sense. As an

application some consequences of this property in the area of time-varying

stability radii are discussed. In particular, using the implicit function

theorem sufficient conditions for Lipschitz continuity are derived. An

example is presented of a linearly increasing family of matrix polytopes

for which the proximal subgradient of the generalized spectral radius at a

certain polytope contains 0, so that the implicit function theorem is not

applicable in all cases.
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1 Introduction

The generalized or joint spectral radius describes the exponential growth rate
of a linear inclusion given by a (compact) set of matrices, or equivalently the
growth rate of the possible products of matrices of that set. The topic has
attracted the attention of numerous researchers in recent years partly due to
the wide range of applications where this number characterizes some quantity
of interest. For reasons of space we do not give an overview of the relevant
literature and on the history of the results on the generalized spectral radius,
referring to [1, 2] instead.

In a recent paper [1] it was shown that the generalized spectral radius is
strictly increasing on the set of compact matrices in a sense that will be made
precise in a moment. Unfortunately, the result was incomplete in that some
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particular cases were excluded by the assumptions. Also the proof was quite
involved and had every appearance of being too complicated for the statement.

In this paper we complete the proof of the previous paper by showing that the
cases that were left open previously actually do not exist at all. The argument
we give for this also allows for a significant reduction of the complexity of the
proof of strict monotonicity so that we present this easier proof as well. We
also discuss implications of the result for the theory of time-varying stability
radii. Some of these involve assumptions about the proximal subgradient of the
generalized spectral radius and we conclude the paper with an example showing
that these assumptions are not always satisfied.

The basic setup of the problem we are interested in can be described as
follows. Given a nonempty, compact set of matrices M ⊂ K

n×n, where K = R, C
we consider the discrete linear inclusion

x(t + 1) ∈ {Ax(t) | A ∈ M} . (1)

A solution of (1) is a sequence {x(t)}t∈N, such that for every t ∈ N there is an
A(t) ∈ M with x(t + 1) = A(t)x(t). The quantity we want to investigate is the
exponential growth rate of this system, which is frequently called generalized
spectral radius, joint spectral radius of the matrix set M or maximal Lyapunov
exponent of (1). In order to define these different versions of the same number
we define first the sets of products of length t

St := {A(t − 1) · · ·A(0) | A(s) ∈ M , s = 0, . . . , t − 1} ,

and the semigroup given by

S :=
∞
⋃

t=0

St .

Let r(A) denote the spectral radius of A and let ‖ · ‖ be some operator norm on
K

n×n. Define for t ∈ N

ρt(M) := sup{r(St)
1/t | St ∈ St} , ρ̂t(M) := sup{‖St‖1/t | St ∈ St} . (2)

The joint spectral radius, respectively the generalized spectral radius are now
defined as

ρ(M) := lim sup
t→∞

ρt(M) , ρ̂(M) := lim
t→∞

ρ̂t(M) .

The maximal Lyapunov exponent of (1) can be defined as

κ(M) := max lim sup
t→∞

1

t
log ‖x(t)‖ ,

where the maximum is taken over all solutions x(t) of (1), and where we use
the convention log 0 = −∞. By now, it is well known [3, 2], that

ρ(M) = ρ̂(M) = eκ(M) ,

and we denote this quantity by ρ(M) in the sequel.
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A basic observation is that the analysis of linear inclusions becomes much
easier, if we restrict ourselves to the case of irreducible sets. Recall that M ⊂
K

n×n is called irreducible, if only the trivial subspaces {0} and K
n are invariant

under all matrices A ∈ M. Otherwise M is called reducible. It is clear, that
the semigroup S is irreducible if and only if the set M is.

It is easy to see, that if the set M is reducible, then the set may be brought
simultaneously to upper block triangular form, where the blocks on the diag-
onal are irreducible or 0. The generalized spectral radius is then given by the
maximum of the generalized spectral radii of the blocks on the diagonal.

In the irreducible case the following theorem is extremely useful.

Theorem 1. [4, 1] If M is compact and irreducible, then there exists a norm
v on K

n, such that

(i) for all x ∈ K
n, A ∈ M it holds that

v(Ax) ≤ ρ(M)v(x) ,

(ii) for all x ∈ K
n there exists an A ∈ M such that

v(Ax) = ρ(M)v(x) .

For an irreducible set of matrices M we call a norm v a Barabanov norm
(with respect to M), if it satisfies the assertions (i) and (ii) of Theorem 1.

In order to characterize irreducibility the following easy lemma, that has
been noted by several authors, is useful in the sequel.

Lemma 2. [4] Let S ⊂ K
n×n be a semigroup, then the following statements

are equivalent.

(i) S is reducible,

(ii) there exist vectors x, l ∈ K
n \ {0} such that

〈l, Sx〉 = 0 , for all S ∈ S .

Our main tool in the proof of monotonicity properties of the generalized
spectral radius is the following observation, that gives an interesting link be-
tween irreducibility of a convex set and the behavior of the spectral radius on
the generated semigroup.

Proposition 3. Let K = R, C and n > 1. Let M ⊂ K
n×n be a convex set

containing more than one point. If the semigroup S generated by M satisfies

σ(S) ⊂ {0} ∪ {z ∈ C | |z| = 1} , ∀S ∈ S(M) , (3)

then M is reducible.
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Remark 4. If the assumption of convexity is dropped in the previous Propo-
sition 3 the assertion is false, as can be seen by examples given in [5], where
irreducible semigroups of matrices satisfying (3) are presented. The assumption
that M should contain more than one point is made to exclude the case that
, K = R, n = 2 and M contains just one rotation matrix. In this case (3) is
satisfied and M is irreducible. Otherwise, if n > 1 and K = C or if n > 2 and
K = R singleton matrix sets are of course always reducible.

Proof. If M is reducible there is nothing to show. So let us assume that
M is irreducible. It is well known that this implies in particular, that not all
the matrices S ∈ S are nilpotent, see [2].

For S ∈ S denote by PS the reducing projection of S corresponding to the
eigenvalues of modulus 1; that is, P 2

S = PS , PSS = SPS and ImPS is the sum of
the generalized eigenspaces corresponding to the eigenvalues of modulus 1. Note
that rankPS is constant on M due to the convexity of M, because if there were
A,B ∈ M with rankPA < rankPB , then by continuity of the spectrum some
convex combination λA + (1 − λ)B, λ ∈ (0, 1) has an eigenvalue of modulus
different from 0 and 1 which is excluded by the assumption. Then of course
rankPA = rankPA2 and as S2 is pathwise connected, we obtain that rankPS is
constant on M∪S2. By induction rankPS is constant on S. As not all S ∈ S
are nilpotent, we obtain that rankPS ≥ 1 for all S ∈ S.

In particular, r(S) = 1 for all S ∈ S and using the definition of ρ̄ we see
that ρ(M) = 1. Thus by irreducibility and Theorem 1 there is a norm v on K

n,
so that for the induced operator norm we have

v(S) = 1 , ∀S ∈ S(M) . (4)

In the remainder of the proof we frequently make use of the fact, that by [5,
Lemma 2.1] r(S) = 1 = v(S) for all S ∈ S implies, that the restriction of S to
Im PS is diagonalizable for all S ∈ clS.

Pick an arbitrary A ∈ M and assume that it is in Jordan canonical form so
that

A =

[

A11 0
0 N

]

, (5)

where σ(A11) ⊂ {z ∈ C | |z| = 1} and N is a nilpotent matrix. Also A11 ∈
K

n1×n1 has no defective eigenvalues by [5, Lemma 2.1]. Pick an arbitrary T ∈ S
different from A and partition it into the same block structure

T =

[

T11 T12

T21 T22

]

. (6)

Then for AkT ∈ S, k ∈ N and for k ≥ n we obtain

AkT =

[

Ak
11T11 Ak

11T12

0 0

]

, (7)

and so σ(Ak
11T11) ⊂ {z ∈ C | |z| = 1}, k ≥ n as by the previous remark the

multiplicity of the eigenvalues different from zero has to add up to a constant.
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As for a certain sequence nk → ∞ we have Ank

11 → I, we see in particular, that
σ(T11) ⊂ {z ∈ C | |z| = 1} and so also

1 = |det(T11)| .

Furthermore, we see that T11 is diagonalizable by applying [5, Lemma 2.1]
again. As T ∈ S was arbitrary this argument applies to all products of the
form ((1 − λ)A + λB)S, where B ∈ M, S ∈ S are arbitrary, and λ ∈ [0, 1].
We partition B and S in the same way as A. Then the upper left block of
((1 − λ)A + λB)S is given by

((1 − λ)A11 + λB11)S11 + λB12S21 . (8)

As we have seen, that the modulus of the determinant of this expression is
always equal to 1, we obtain that the polynomial

p(λ) := det(A11S11 + λ(B11S11 + B12S21 − A11S11))

has a constant modulus on the interval [0, 1] and is therefore constant. Then
the following polynomial is also constant

p̃(λ) := det(A−1
11 )p(λ) det(S−1

11 ) = det(I + λ(A−1
11 (B11 + B12S21S

−1
11 ) − I)) ,

which implies that for every B ∈ M, S ∈ S the matrix

N1(B,S) := A−1
11 (B11 + B12S21S

−1
11 ) − I (9)

is nilpotent. (We suppress the dependence of N1(B,S) on A, as this matrix is
fixed in our argument).

In particular, if we set S = I in the previous calculation, that is if we set
S11 = I and S21 = 0, then we have B11 = A11(I + N1(B, I)), where N1(B, I) is
a nilpotent matrix. Using again the sequence {nk} from above we obtain from
Ank

11 → I that Ank−1
11 B11 → I + N1(B, I). As every Ank−1

11 B11 is the upper left
block of an element of S of the form (7), it follows that I +N1(B, I) is the upper
left block of an element of clS of the form (7). This implies that N1(B, I) = 0
using [5, Lemma 2.1]. As N1(B, I) = 0 and B ∈ M was arbitrary all matrices
in M are of the form

[

A11 B12

B21 B22

]

.

In particular, as M is not a singleton set, this shows that 1 ≤ n1 < n. Further-
more, it follows, that the upper left block of (λA + (1− λ)B)S, which we wrote
down in (8), is actually given by

A11S11 + λB12S21 .

Again this shows, that An
11S11+λAn−1

11 B12S21 is the upper left block of an upper
block triangular matrix and by multiplying with powers of An

11S11 we obtain
that

(An
11S11)

m + λ(An
11S11)

m−1An−1
11 B12S21
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is the upper left block of an upper block triangular T ∈ S. Note that from (7)
we see that An

11S11 is diagonalizable and has its spectrum in the unit circle.
Thus for a suitable subsequence of {(An

11S11)
m}m∈N the previous expression

converges to

I + λ(An
11S11)

−1An−1
11 B12S21 = I + λS−1

11 A−1
11 B12S21 . (10)

As this matrix occurs as an upper left block we may argue as before: First of
all S−1

11 A−1
11 B12S21 is nilpotent as the modulus of the determinant of (10) is

independent of λ and furthermore

S−1
11 A−1

11 B12S21 = 0 (11)

by yet another application of [5, Lemma 2.1]. Now (11) implies that B12S21 = 0
for all B ∈ M, S ∈ S. This implies that

[

0 B12

]

Se1 = 0

for all B ∈ M, S ∈ S. This shows, that either B12 = 0 for all B ∈ M, in which
case M is reducible, or by taking a nonzero row of B12 that S is reducible by
Lemma 2. This contradicts the assumption, that M is irreducible.

2 Strict Monotonicity

In this section we first give a simple proof of a strict monotonicity property of
the generalized spectral radius on the set of compact matrices. The statement
is essentially the same as in [1], but here we are able to give a shorter proof
that also covers cases that were left open in [1]. It should be noted, that the
corresponding statement for the continuous time case is false, as shown by a
counterexample in [6].

In order to formulate the statement recall, that the relative interior of a
convex set K is the interior of K in the relative topology of the smallest affine
subspace containing K. The relative interior of K is denoted by riK, see [7] for
further details. We denote the convex hull of a set M ⊂ K

m by conv M .

Theorem 5. Let K = R, C. Consider two compact sets M1 6= M2 ⊂ K
n×n

and assume that M2 is irreducible. If

M1 ⊂ ri convM2 , (12)

then
ρ(M1) < ρ(M2) .

Proof. Assume the assertion is false, so that ρ(M1) = ρ(M2) = 1 can
be assumed without loss of generality. Also we will assume, that M1,M2

are convex, as ρ(M) = ρ(convM), [4]. Finally, we may assume that M1

is irreducible, for if this is not the case, then we may take a slightly bigger
irreducible M′

1 ⊃ M1, while ensuring that (12) is still satisfied for M′
1.

6



As M1 is convex and irreducible there exists a Barabanov norm v1 with
respect to M1 by Theorem 1. Hence v1(S) ≤ 1 for all S ∈ S(M1). If v1(S) = 1
for all S ∈ S(M1) then by [5, Theorem 2.5] we have that (3) holds for all
S ∈ S(M1), which by Proposition 3 contradicts convexity and irreducibility
of M1. Thus there exists an S ∈ S(M1) with v1(S) < 1, which we now
consider to be fixed. Fix x ∈ K

n with v1(x) = 1. Factorizing S = Ak · · ·A0,
Aj ∈ M1, j = 0, . . . , k there is some l ∈ {0, . . . , k}, such that

v1(
l−1
∏

j=0

Ajx) = 1 and v1(
l
∏

j=0

Ajx) < 1 .

Denoting y = Al−1 · · ·A0x it follows, that v1(y) = 1, v1(Aly) < 1. By definition
of Barabanov norms, however, there is some B ∈ M1, such that v1(By) = 1.
As v1(By) = 1 and v1(Aly) < 1, it follows by the triangle inequality, that for
all ε > 0 we have

v1(By + ε(B − Al)y) ≥ 1 + ε(1 − v(Aly)) > 1 .

Now by (12) we have B + ε(B − Al) ∈ M2 for some ε > 0 small enough.
Thus for some C ∈ M2 we have v1(Cy) > 1, and so we obtain the inequality
v1(CAl−1 · · ·A0x) > 1. Using a standard compactness argument it follows, that
there exists a constant c > 1, such that for every x ∈ K

n with v1(x) = 1, there
is an T ∈ S(M2) satisfying

v1(Tx) > cv1(x) .

By induction we obtain an unbounded solution of the discrete inclusion defined
by M2. Using Theorem 1 (i) this contradicts ρ(M2) = 1, as M2 is irreducible.
This completes the proof.

3 Stability radii

Using the results of the previous sections we can discuss some properties of
time-varying stability radii. We generalize several results from [6]. Stability
radii quantify robustness of a stable system with respect to a given class of un-
certainties. The problem arises whenever due to incomplete modelling, neglect
of dynamics or measurement uncertainty the model can be expected to behave
differently than the process of interest. In this case it is of interest to know,
whether a stability result for the model has implications for the real system
assuming that bounds on the uncertainty can be given. Here we only treat the
case of stability radii with respect to time-varying perturbations.

Assume we are given a nominal discrete-time system

x(t + 1) = A0x(t) , (13)

which is exponentially stable, i.e. r(A0) < 1. We assume that structure matrices
A1, . . . , Am are given, which may be used to include some knowledge of the
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nature of the uncertainty into the model, and consider the perturbed system

x(t + 1) =

(

A0 +

m
∑

i=1

di(t)Ai

)

x(t) , t ∈ N . (14)

Here the perturbations d(t) = (d1(t), . . . , dm(t)) are unknown. Bounds on the
size of the perturbation are given by a convex set D ⊂ K

m, with 0 ∈ int D.
Then the set αD, α > 0 represents the set of perturbations with respect to an
uncertainty level α.

Note that the uncertain system (14) can be reformulated as a linear inclu-
sion of the form (1), where given the finite collection A0, . . . , Am ∈ K

n×n, the
compact, convex set D ⊂ R

m with 0 ∈ intD and a real parameter α ≥ 0 we
define

M(A0, . . . , Am, α) :=

{

A0 +

m
∑

i=1

diAi

∣

∣

∣

∣

∣

d ∈ αD

}

,

and consider x(t + 1) ∈ {Ax(t) | A ∈ M(A0, . . . , Am, α)}. If the matrices Ai

are fixed, we denote the generating set by M(α) and the corresponding growth
rate by ρ(α) for the sake of succinctness. The dependence of the set on D is
suppressed, because we do not intend to vary D.

We now define stability radii by

rLy(A0, (Ai)) := inf{α ≥ 0 | ρ(α) ≥ 1} ,

r̄Ly(A0, (Ai)) := inf{α ≥ 0 | ρ(α) > 1} .

The interpretation of these quantities is that rLy(A0, (Ai)) is the largest un-
certainty level below which no time-varying perturbation will destabilize the
system, whereas r̄Ly(A0, (Ai)) is the infimum of uncertainty levels for which
there are exponentially destabilizing perturbations. These two quantities and
their possible difference play a decisive role in the robustness analysis of non-
linear systems at a fixed point, see [6] for details.

It is clear, that the family M(A0, . . . , Am, α), α ≥ 0 is an increasing family of
matrices satisfying (12) for all pairs 0 < α1 < α2. Thus the map α → ρ(M(α))
is strictly increasing for all A0, . . . , Am ∈ K

n×n, if M(α) is irreducible for some
(and then for all) α > 0.

We now give a complete description of the set of systems for which the two
stability radii differ. In the formulation of this result an exceptional set will
play a role, which we now define. To this end let (A0, . . . , Am) ∈ (Kn×n)m+1

be fixed and note that we may modulo a similarity transformation assume, that
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the matrices in M(α) are of the upper block triangular form






















A0,11 +
∑m

i=1 diAi,11 A0,12 +
∑m

i=1 diAi,12 . . . A0,1d +
∑m

i=1 diAi,1d

0 A0,22 +
∑m

i=1 diAi,22 . . . A0,2d +
∑m

i=1 diAi,2d

0 0
...

...
. . .

. . .
...

0 . . . 0 A0,dd +
∑m

i=1 diAi,dd























,

(15)
where each of the diagonal blocks

Mj(α) := {A0,jj +

m
∑

i=1

diAi,jj | d ∈ αD}

is either irreducible or equal to {0} for j = 1, . . . , d. In this case 1 ≤ d ≤ n
depends uniquely on the matrices A0, . . . , Am and M(α), α > 0 is irreducible if
and only if d = 1.

With respect to the structure (15) the problematic perturbation structures
(A0, . . . , Am) ∈ (Kn×n)m+1 can be characterized by the following two properties

(i) r(A0) = 1,

(ii) whenever r(A0,jj) = 1 for some j ∈ {1, . . . , d} then α 7→ Mj(α) is con-
stant,

The exceptional set is then defined by

E :=
{

(A0, . . . , Am) ∈ (Kn×n)m+1 | items (i) and (ii) are satisfied.
}

. (16)

Theorem 6. Let (A0, . . . , Am) ∈ (Kn×n)m+1 and consider the perturbed discrete-
time system (14). Then

rLy(A0, (Ai)) = r̄Ly(A0, (Ai)) ,

if and only if (A0, . . . , Am) ∈ (Kn×n)m+1 \ E. Furthermore, E is equal to the
set discontinuities of rLy, respectively rLy.

Proof. If M(α) is irreducible for all α > 0 and α 7→ M(α) is not constant
(and therefore strictly increasing) then the map α 7→ ρ(α) is strictly increasing
on [0,∞) by Proposition 5. This implies rLy(A0, (Ai)) = r̄Ly(A0, (Ai)).

If α 7→ M(α) is constant, then of course ρ(α) is constant. Thus we have
rLy(A0, (Ai)) = r̄Ly(A0, (Ai)), except for the case in which 1 = ρ(0) = r(A0),
as then we have rLy(A0, (Ai)) = 0 < ∞ = r̄Ly(A0, (Ai)).

If M(α) is reducible for α > 0, then we may assume that M(α) is of the
form (15). Now for j = 1, . . . , d either the map α 7→ Mj(α) is constant or it is
strictly increasing hence α 7→ ρ(Mj(α)) is either constant or strictly increasing.
As we have

ρ(M(α)) = max
j=1,...,d

ρ(Mj(α))
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this implies that the map α 7→ ρ(M(α)) is constant on an interval of the form
[0, α∗) and strictly increasing on (α∗,∞), where α∗ ∈ [0,∞] is given by

min{α | ∃j ∈ {1, . . . , d}, ε > 0 : Mj(α + ε) is irreducible and

ρ(Mj(α)) = r(A0)} .

This implies the first assertion.
For the remaining statement note that it is not difficult to see that rLy, r̄Ly

are upper respectively lower semicontinuous on (Kn×n)m+1. Thus, whenever
these two functions coincide on an open set they are continuous and furthermore
they are discontinuous where they do not coincide. The arguments are not
difficult and detailed in a similar situation in [8] so that we omit them here.

An alternative view on the previous results is, that (except for a few cases
described by E) the map α 7→ ρ(M(α)) − 1 has exactly one zero or possibly
no zero at all and that if such a zero exists, then the corresponding α is locally
a continuous function of the data A0, . . . , Am. This is very reminiscent of an
application of the implicit function theorem, and we will now use the Lipschitz
version of it to obtain further regularity properties of the stability radii.

Our considerations are based on the fact that the generalized spectral radius
is locally Lipschitz continuous on I(Kn×n), the set of irreducible, compact sets
in K

n×n, see [1]. An easy consequence of this is the following observation.

Lemma 7. The map

(A0, . . . , Am, α) 7→ ρ(A0, . . . , Am, α) := ρ

({

A0 +

m
∑

i=1

diAi

∣

∣

∣

∣

∣

d ∈ αD

})

is locally Lipschitz continuous on the set I(Kn×n) × R>0.

Proof. Note that the map

(A0, . . . , Am, α) 7→
{

A0 +

m
∑

i=1

diAi

∣

∣

∣

∣

∣

d ∈ αD

}

is Lipschitz continuous with respect to the Hausdorff metric. As the composition
of Lipschitz continuous maps is again Lipschitz continuous the claim follows from
[1, Corollary 4.2].

In order to use the implicit function theorem we need to recall a few concepts
from nonsmooth analysis for the convenience of the reader, for further details
we refer to [9, Chapter 1] and [10].

Let f : R
n → R be a continuous function. A vector ζ ∈ R

n is called a
proximal subgradient of f in x, if there are constants σ,C > 0, such that for all
y with ‖x − y‖ ≤ C we have

f(x) − f(y) + 〈ζ, y − x〉 ≤ σ‖x − y‖2 .
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The set of proximal subgradients of f in x is denoted by ∂P f(c). Using [9, The-
orem 2.6.1] the Clarke subdifferential of a locally Lipschitz continuous function
f in x, may then be defined by

∂Clf(x) := conv

{

ζ ∈ R
n

∣

∣

∣

∣

∃xk → x, ζk ∈ ∂P f(xk) : ζ = lim
k→∞

ζk

}

Note that if f : R
p → R is locally Lipschitz continuous then

∂Clf(x) = conv

{

c ∈ R
p

∣

∣

∣

∣

∃xk → x : c = lim
k→∞

▽f(xk)

}

, (17)

see [10, Theorem II.1.2], where we tacitly assume that the gradient ▽f exists
in xk if we write ▽f(xk). Recall that Lipschitz continuity of f implies that it
is differentiable almost everywhere by Rademacher’s theorem. If we consider
functions f : C

n → R then we identify C
n with R

2n in order to define proximal
subgradients.

Proposition 8. Let n,m ∈ N. Fix {A0, . . . , Am} ∈ I(Kn×n) and let

rLy(A0, (Ai)) < ∞ .

Consider the map κ : (Kn×n)m+1 × R+ → R, (B0, . . . , Bm, α) 7→ ρ(M(α)) and
denote

∂Cl,ακ(z) :=
{

c ∈ R | ∃p′ ∈ (Kn×n)m+1 : (p′, c) ∈ ∂Cl κ(z)
}

.

If
inf ∂Cl,α κ(A0, . . . , Am, rLy(A0, (Ai))) > 0 , (18)

then rLy = r̄Ly on a neighborhood of (A0, . . . , Am) ∈ (Kn×n)m+1 and on this
neighborhood rLy is locally Lipschitz continuous.

Proof. By Lemma 7 and (18) we may apply the implicit function the-
orem for Lipschitz continuous maps [10, Theorem VI.3.1] to κ in the point
(A0, . . . , Am, rLy(A0, (Ai))). This states that for every (B0, . . . , Bm) in a suit-
able open neighborhood of (A0, . . . , Am) ∈ (Kn×n)m+1 the map

α 7→ ρ(M(B0, . . . , Bm, α))

has a unique root and this root is a locally Lipschitz continuous function of
(B0, . . . , Bm). In other words, this means that on this neighborhood the func-
tions rLy and r̄Ly coincide and are locally Lipschitz continuous.

It is now interesting to note, that the previous result is not applicable in all
points of continuity of rLy, so that we cannot conclude local Lipschitz continuity
of rLy outside of the set E. The following example shows, that 0 ∈ ∂Cl,ακ(z) is
possible.
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Example 9. For K = R and n = 2 we consider the matrices

A0 :=

[

1/2 1/3
1/2 1/3

]

, A1 :=

[

1/2 0
−1/2 0

]

, A2 :=

[

0 1/3
0 0

]

, A3 :=

[

0 0
0 1/3

]

.

And for δ ∈ (0, 1] we define the (irreducible) set

Mδ := {A0 + αA1 + βA2 + γA3 | α ∈ [−δ, δ],−δ ≤ β, γ, and β + γ ≤ δ}

Note that for δ = 1 we have that ‖A‖1 ≤ 1 for all A ∈ M1, where ‖ · ‖1 denotes
the usual 1-norm. Hence ρ(M1) ≤ 1. On the other hand we have I2 ∈ M1,
so that ρ(M1) ≥ 1, and hence equality holds. Also this shows that ‖ · ‖1 is a
Barabanov norm for M1.

Now if we consider

A(δ) :=







1 + δ

2

2 + δ

6
1 − δ

2

2 + δ

6






,

then A(δ) ∈ Mδ for δ ∈ [0, 1]. This may be seen by setting α(δ) = δ, β(δ) =
γ(δ) = δ/2. Consequently, we have ρ(Mδ) ≥ r(A(δ)). A short calculation
reveals, that

r(A(δ)) =
5

12
+

1

3
δ +

1

12

√

25 − 8 δ − 8 δ2

and so r(A(1)) = 1 = ρ(M1). Also we have d/dδ r(A(δ))|δ=1 = 0. Using that
r(A(δ)) ≤ ρ(Mδ) < ρ(M1) = r(A(1)) for 0 < δ < 1, it is easy to see, that 0 is
a proximal subgradient of δ 7→ ρ(Mδ) in δ = 1.

Interpreting this observation in context of stability radii, this means, that
(A0, A1, A2, A3) is a good candidate for a perturbation structure, at which the
time-varying stability radius is not locally Lipschitz continuous, as the assump-
tions of Proposition 8 are violated. We will see, that this is indeed the case.

Consider the map c 7→ (cA0, cA1, cA2, cA3), for c ∈ [1, 1.2]. We denote the
stability radius rLy(cA0, cA1, cA2, cA3) =: rLy(c) for brevity. Denoting further-
more by δ(c) the smallest positive solution of r(cA(δ)) = 1 it is clear, that

rLy(c) ≤ δ(c) ,

because 1 = r(cA(δ(c))) ≤ ρ(cMδ(c)). Solving the equation r(cA(δ)) = 1 for
c ≥ 1 leads to

δ(c) =
2 − c −

√
c2 + c − 2

c
.

Summarizing this shows that rLy(1) = δ(1) = 1 and rLy(c) ≤ δ(c) for c > 1. As
δ(c) is not Lipschitz on [1, 1.2], the same is true for rLy(c). Consequently, the
function rLy : (R2×2)4 → R ∪ {∞} is not locally Lipschitz at (A0, A1, A2, A3).
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The intuition behind the construction of the previous example is the follow-
ing: Note that from the first unit vector e1 using matrices in M1 we can only
reach vectors of 1-norm equal to 1. On the other hand the sequence x(t) ≡ e1

is a solution of the linear inclusion given by M1 that realizes the exponential
growth rate and is optimal with respect to the Barabanov norm ‖ · ‖1 (in the
sense that condition (ii) of Theorem 1 is satisfied for every t). Using the varia-
tion of constants formulas for derivatives with respect to parameters of solutions
of differential equations as ”guidelines” this would suggest, that the derivative
from the left with respect to δ of the growth rate of that particular solution
is 0, because infinitesimally in one step ‖Ae1‖1 = 1, even if A is restricted to
Mδ, δ < 1. It seems plausible that the proximal subgradients of ρ can be charac-
terized by the proximal subgradients of solutions, that are always optimal with
respect to some Barabanov norm. This question remains to be investigated.
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