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Wirth, Fabian

Stability of Linear Parameter Varying and Linear Switching Systems

We consider stability of families of linear time-varying systems, that are determined by a set of time-varying pa-
rameters which adhere to certain rules. The conditions are general enough to encompass on the one hand stability
questions for systems that are frequently called linear parameter varying systems in the literature and on the other
hand also linear switching systems, in which parameter variations are allowed to have discontinuities. Combinations
of these two sets of assumptions are also possible within the framework studied here.
Under the assumption of irreducibility of the sets of system matrices, we show how to construct parameter dependent
Lyapunov functions for the systems under consideration that exactly characterize the exponential growth rate. It is
clear that such Lyapunov functions do not exist in general. But every system of our class can be reduced to a finite
number of subsystems for which irreducibility holds.

1. Introduction and Preliminaries

In recent years there has been an increasing interest in time-varying linear systems with parameter variations
that vary in a prescribed set and satisfy constraints on the derivative. Especially the class of linear time varying
systems has received considerable interest, see [1],[2],[3],[6]. More recently, also linear switching systems have been
investigated where the parameter variations can have discontinuities, see e.g. [4].

In the following we define a fairly general class of linear systems with parameter variations that encompasses a
large number of the systems commonly treated in the literature. For this class we show how to construct Lyapunov
functions that characterize the exponential growth rate of the system if an irreducibility condition is satisfied.
Irreducibility is a generic condition in the space of systems.

Once the existence of such Lyapunov functions is established, they can be used to show that the largest exponential
growth rate of the system (that is, the maximal Lyapunov exponent) can be approximated by exponential growth
rates of periodic parameter variations, resp. periodic switching sequences. Furthermore, it can be shown that the
growth rate depends in a continuous manner on the systems data and that this dependence is even locally Lipschitz
continuous in neighborhoods of irreducible systems. Due to the size constraints of this paper these points are not
explained here but will be treated in a forthcoming paper, see also [6].

The system is given by the data Σ = (Θ,Θ1, h, A), where Θ ⊂ IRm denotes the space of possible parameter values,
Θ1 ⊂ IRm describes a restriction for the variations of the parameters, h ∈ [0,∞] is a dwell-time, that is, the distance
between discontinuities of the parameter variations and A is a map assigning a matrix to a parameter value. We
will always assume that the following assumptions are satisfied.

(i) h ∈ (0,∞],

(ii) Θ ⊂ IRm is a finite disjoint union of compact convex sets Ωj ⊂ IRm, j ∈ {1, . . . , k}, if h = ∞ then k = 1, i.e.
Θ is compact and convex,

(iii) Θ1 a convex compact set with 0 ∈ intΘ1,

(iv) A : Θ → IRn×n is a continuous map from the parameter space to the space of matrices.

De f i n i t i on 1. A function θ : IR+ → Θ is called an admissible parameter variation if there are times
0 < t0 < t1 < . . . < tk < . . . such that

h ≤ tk+1 − tk , for k = 0, 1, 2, . . . ,

and so that θ is absolutely continuous on the intervals [tk, tk+1), and satisfies

θ̇(t) ∈ Θ1 , a.e. t ∈ (tk, tk+1) .
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The set of admissible parameter variations is denoted by U .

We now consider the linear parameter varying system

ẋ(t) = A(θ(t))x(t) , t ≥ 0 , θ ∈ U . (1)

The evolution operator generated by (1) for a fixed parameter variation θ ∈ U is denoted by Φθ(t, s), t ≥ s ≥ 0. In
the following we want to characterize the exponential growth rate and stability of this family of systems. We have
explicitly excluded the case h = 0 in our assumption. The natural interpretation of this condition would be that all
measurable functions θ : IR+ → Θ are admissible parameter variations. This case has been treated in [5] and the
corresponding results (that are of strikingly similar nature) can be found in this reference.

Before we turn to our object of investigation, let us briefly remark that for the sake of analysis of stability the
class of systems we have just defined encompasses two system classes that have been widely studied in recent years,
namely, that of linear parameter varying systems and that of linear switching systems. This also justifies the title
of the present paper.

A standard setup that is encountered in the literature on linear parameter varying (LPV) systems considers systems
of the form (1) where the parameter variations θ : IR+ → Θ are assumed to be continuously differentiable and satisfy
the requirement θ̇(t) ∈ Θ1 for all t ≥ 0. It can be shown that the exponential growth rate of the overall system does
not change if this condition is relaxed to the condition that the θ are Lipschitz continuous and satisfy the restriction
on the derivative θ̇(t) ∈ Θ1 only almost everywhere, see [6]. The latter class is contained in our setup by setting
h = ∞, so that from the point of view of analyzing stability the standard system class is contained in our setup.
Linear switching systems on the other hand are often defined by a finite set of matrices Θ := {A1, . . . , Ak} and the
admissible parameter variations are those piecewise constant functions with values in Θ that satisfy a constraint on
the distance between discontinuities. These systems are contained in our setup by choosing the Ωj to be singleton
sets.

2. Exponential growth rates and stability

We now begin our analysis of stability. For system (1) with U as set of admissible parameter variations the maximal
uniform exponential growth rate is defined by

ρ̂ := lim
t→∞

sup
θ∈U

1
t

log ‖Φθ(t, 0)‖ .

It may be shown that the limit exists by noting that the map t 7→ supθ∈U log ‖Φθ(t, 0)‖ is subadditive and using
standard results on subadditive functions. Furthermore, it is straightforward to see that

ρ̂ = inf{ρ | ∃M ≥ 1 : ‖Φθ(t, 0)‖ ≤ Meρt, for all θ ∈ U , t ≥ 0} ,

so that the following definition is a natural definition of exponential stability.

De f i n i t i on 2. System (1) with parameter variations U is called exponentially stable if ρ̂ < 0.

Now denote by t0(θ) the smallest discontinuity point of θ ∈ U . In order to investigate the systems behavior starting
from some initial value of the parameter variation we define for θ0 ∈ Θ, τ ∈ (0, h) and t ≥ 0 the set

St(θ0, τ) := {Φθ(t, 0) | θ admissible , θ(0) = θ0, and t0(θ) + τ ≥ h} ,

and also St(θ0, h) := {Φθ(t, 0) | θ admissible , θ(0) = θ0, or t0(θ) ≥ h}.

Note that for h = ∞ the sets do not depend on τ . The corresponding growth rates are given by

ρ̂(θ0, τ) := lim sup
t→∞

ρ̂t(θ0, τ) := lim sup
t→∞

sup
{

1
t

log ‖S‖ |S ∈ St(θ0, τ)
}

.

Note that t 7→ sup {log ‖S‖ |S ∈ St(θ0, τ)} is not subadditive. Still we have

L e m m a 3. For all (θ, τ) ∈ Θ× (0, h] it holds that ρ̂ = lim supt→∞ ρ̂t(θ, τ).

The previous lemma states that the exponential growth rate can be realized starting from any parameter value,
which is an easy but crucial property in the following construction of Lyapunov functions.
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3. Construction of exact parameterized Lyapunov functions

In the construction of the parameterized Lyapunov functions a further condition becomes crucial. In the following
we always assume that

the set A(Θ) ⊂ IRn×n is irreducible.

Recall that a set of matrices M⊂ IRn×n is called irreducible if only the trivial subspaces {0} and IRn are invariant
under all matrices A ∈ M. Note that in the analysis of exponential growth rates the assumption of irreducibility
can be made without loss of generality. To see this note that if the set A(Θ) is not irreducible we may by a similarity
transformation transform all matrices A(θ) into a common block-diagonal form such that the individual diagonal
blocks are irreducible. A simple application of the variation of constants formula shows that the exponential growth
rate is given as the maximum of the growth rates of the blocks on the diagonal. So that the analysis may be restricted
to the diagonal blocks.

Under the assumption of irreducibility we define for (θ, τ) ∈ Θ× (0, h] the limit sets

S∞(θ, τ) := {S ∈ IRn×n | ∃tk →∞ , Sk ∈ Stk
(θ, τ) such that e−ρ̂tkSk → S }.

The previous set is vital in our construction of Lyapunov functions. We note the following properties.

L e m m a 4. (i) S∞(θ, τ) is compact, nonempty, not equal to {0} and irreducible,

(ii) the map (θ, τ) → S∞(θ, τ) is Lipschitz continuous with respect to the Hausdorff topology.

Proof. For reasons of space we only prove (ii). To this end it is sufficient to prove Lipschitz continuity in each
variable separately. So fix θ ∈ Θ and let τ1, τ2 ∈ (0, h]. We may assume without loss of generality that τ1 < τ2. Note
that in this case for all t ≥ 0 we have St(θ, τ1) ⊂ St(θ, τ2) whence also S∞(θ, τ1) ⊂ S∞(θ, τ2), so that we only have to
obtain an estimate for the converse direction. So let Sk ∈ Stk

(θ, τ2) be a sequence such that e−ρ̂tkSk → S ∈ S∞(θ, τ2).
As 0 ∈ Θ1 this implies that SkeA(θ)(τ2−τ1) ∈ Stk+τ2−τ1(θ, τ1) and e−ρ̂(tk+τ2−τ1)SkeA(θ)(τ2−τ1) → Se(A(θ)−ρ̂I)(τ2−τ1) ∈
S∞(θ, τ1). Thus for an arbitrary S ∈ S∞(θ, τ2) there is an S̃ ∈ S∞(θ, τ1) with

‖S − S̃‖ ≤ ‖S‖‖I − e(A(θ)−ρ̂I)(τ2−τ1)‖ ≤ L|τ2 − τ1| ,

for a suitable constant L (which exists by the compactness of S∞(θ, τ2) and as the matrix exponential function is
analytic). Thus we have obtained the desired Lipschitz estimate in τ . To treat the first variable, note that we only
have to prove Lipschitz continuity in the convex components Ωj of Θ. One of these we now consider to be fixed.
As 0 ∈ int Θ1 there is a constant c > 0 such that for all θ1 6= θ2 ∈ Ωj the vector c(θ2 − θ1)/‖θ2 − θ1‖ ∈ Θ1, which
implies that the map t 7→ θ1 + tc(θ2− θ1)/‖θ2− θ1‖, t ∈ [0, ‖θ2− θ1‖/c] is the initial part of an admissible parameter
variation connecting θ1 and θ2 and defining an operator R ∈ S‖θ2−θ1‖/c(θ1, τ). Hence if S ∈ Ss(θ2, τ), then it follows
that SR ∈ Ss+‖θ2−θ1‖/c(θ1, τ), so that in particular for every S ∈ S∞(θ2, τ) we have e−ρ̂‖θ2−θ1‖/cSR ∈ S∞(θ1, τ).
Now

‖S − e−ρ̂‖θ2−θ1‖/cSR‖ ≤ ‖S‖‖I − e−ρ̂‖θ2−θ1‖/cR‖ ≤ ‖S‖(exp(‖θ2 − θ1‖m/c)− 1) ,

where m := max {‖A− ρ̂I‖ |A ∈ A (Θ)}. The last inequality on the right follows from an application of Gronwall’s
lemma. Also the expression on the right clearly allows for a Lipschitz estimate, so that the proof is complete.

We note the following immediate consequence.

Co r o l l a r y 5. (i) The function vθ,τ defined in the following way is a norm on IRn

vθ,τ (x) := max
S∈S∞(θ,τ)

‖Sx‖

(ii) the map (θ, τ) → vθ,τ is Lipschitz continuous (with respect to the metric defined on the space of norms by taking
the uniform norm on the standard sphere).

We denote the continuous extension of θ from the left in t by θ(t−) := lims↑t θ(s). Also for an admissible parameter
variation θ with discontinuities at the points 0 < t0 < . . . < tk < . . . and an arbitrary time t ≥ 0 we define

t−(θ, t) := min{t−max{tk | tk < t}, h} ,

which can be interpreted as the time that has elapsed since the last discontinuity or h in case the last discontinuity
has occurred before t− h. With this notation we can formulate the main result of this paper.
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T h e o r e m 6. (i) For every parameter variation θ and x ∈ IRn it holds that

vθ(t−),t−(θ,t)(Φθ(t, 0)x) ≤ eρ̂t vθ(0),h(x) , (2)

(ii) for every x ∈ IRn, t > 0, τ ∈ (0, h] and every θ0 ∈ Θ there exists a θ ∈ U such that Φθ(t, 0) ∈ St(θ0, τ) and

vθ(t−),t−(θ,t)(Φθ(t, 0)x) = eρ̂t vθ0,τ (x) .

In particular, if τ ∈ (0, h) this implies θ(0) = θ0.

Proof. (i) Take an arbitrary parameter variation θ ∈ U , and arbitrary x ∈ IRn and t ≥ 0. Note that by
definition Φθ(s, 0) ∈ Ss(θ(0), h) for all s ≥ 0 and Φθ(t+s, t) ∈ Ss(θ(t−), t−(θ, t)), as for all discontinuities tk of θ with
tk > t we have by definition tk +t−(θ, t) ≥ h. Now choose S ∈ S∞(θ(t−), t−(θ, t)) such that vθ(t−),t−(θ,t)(Φθ(t, 0)x) =
‖SΦθ(t, 0)x‖. It is easy to see that under the concatenation conditions given above, we have e−ρ̂tSΦθ(t, 0) ∈ S∞(θ0, h)
from which we obtain by definition of vθ0,h that

vθ0,h(x) ≥ ‖e−ρ̂tSΦθ(t, 0)x‖ = e−ρ̂tvθ(t−),t−(θ,t)(Φθ(t, 0)x) ,

as desired.

(ii) Pick x ∈ IRn, t ≥ 0, τ ∈ (0, h] and θ0 ∈ Θ and choose S ∈ S∞(θ0, τ) such that vθ0,τ (x) = ‖Sx‖. By construction
there is a sequence Sk ∈ Stk

(θ0, τ) with e−ρ̂tkSk → S and tk → ∞. For all k large enough we can evaluate the
evolution operator corresponding to Sk at (t, 0) and we denote the corresponding operator by Φk(t, 0). It is easy
to see that by going over to a subsequence we may assume that Φk(t, 0) → Φ(t, 0) ∈ St(θ0, τ). We denote by θk

the parameter variations generating the Φk(t, 0) and the parameter variation generating Φ(t, 0) is by denoted by θ.
Now it follows from (i) that vθ(t−),t−(θ,t)(Φθ(t, 0)x) ≤ eρ̂t vθ(0),τ (x) (by a slight extension of the argument used in
(i)). On the other hand if we decompose

Sk = RkΦk(t, 0)

then we may assume that e−ρ̂(tk−t)Rk → R (by going over to a subsequence if necessary) and it follows that
S = e−ρ̂tRΦ(t, 0). The construction implies that R ∈ S∞(θ(t−), t−(θ, t)), so that

vθ(t−),t−(θ,t)(Φ(t, 0)x) ≥ ‖RΦ(t, 0)x‖ = eρ̂t‖Sx‖ = eρ̂tvθ0,τ .

This shows the second assertion as the last statement is obvious.

4. Conclusions

We have shown how to construct parameter dependent Lyapunov functions that are in fact norms for a wide class
of linear parameter varying systems in such a way that the norms vθ,τ characterize the growth rate of the system.

For reasons of space two interesting applications of this construction have not been presented. The existence of the
Lyapunov norms may be used to show that the exponential growth rate may be approximated considering only the
growth rates of periodic admissible parameter variations. Furthermore, they can be used to show that the exponential
growth rate depends in a continuous manner on the data and that this dependence is even locally Lipschitz around
systems that satisfy an irreducibility condition. For these statements we refer to [6] and a forthcoming paper.
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