Calculating the domain of attraction: Zubov's method and extensions

Fabio Camilli ¹ Lars Grüne ² <u>Fabian Wirth</u> ³

¹University of L'Aquila, Italy

²University of Bayreuth, Germany

³Hamilton Institute, NUI Maynooth, Ireland

SCP 2005, St. Petersburg, June 29 - July 1, 2005

Overview

イロト イヨト イヨト イヨト

- 3

Problem description

The domain of attraction

Properties of the domain of attraction

Zubov's approach

Zubov's equation

Series approximation

Robust domains of attraction

Problem statement

A robust version of Zubov's theorem

Examples

Asymptotic controllability

Problem description Zubov's theorem for control systems

Examples

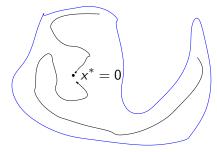
Robust domains of attraction

Asymptotic controllability

The domain of attraction

Consider a nonlinear system

f Lipschitz continuous, f(0) = 0. Assume $x^* = 0$ is asymptotically stable.



4 🗆 🕨

The domain of attraction of 0 is defined by

$$\mathcal{A}(0) := \{x \in \mathbb{R}^n \mid \varphi(t; x) \to 0, \text{ as } t \to \infty\}$$
.

Here $\varphi(\cdot; x)$ denotes the solution of (1).

The domain of attraction: Properties

 $\mathcal{A}(0)$ has the following properties:

- $\mathcal{A}(0)$ is diffeomorphic to \mathbb{R}^n ,
- ► Conversely, any set, that is diffeomorphic to ℝⁿ, is the domain of attraction of some asymptotically stable fixed point,
- dynamic properties:
 - $\mathcal{A}(0)$ and $\operatorname{cl} \mathcal{A}(0)$ are invariant under the flow,

There is little general information available on the domain of attraction. On the other hand, in applications one is often interested in knowing, what it looks like.

Question:

How to compute (approximations of) the domain of attraction?

◆□→ ◆□→ ◆目→ ◆目→ □目

4 m b

4 A N

4 = 1

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
	7	how's result	

Zubov's result

V.I. Zubov: Methods of A.M. Lyapunov and their application Nordhoff, Groningen, The Netherlands, 1964 (Russian edition in 1957)

◆□> <□> <=> <=> <=> <=> <<=><<=><</p>

<□▶ </p>

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
	Zu	bov's result	

$$\dot{x} = f(x), \quad t \in \mathbb{R}$$
 (1)

Theorem

A set A containing 0 in its interior is the domain of attraction of (1) if and only if there exist continuous functions V, h such that

▶
$$V(0) = h(0) = 0,$$

 $0 < V(x) < 1 \text{ for } x \in A \setminus \{0\}, h > 0 \text{ on } \mathbb{R}^n \setminus \{0\}$

► for every $\gamma_2 > 0$ there exist $\gamma_1 > 0$, $\alpha_1 > 0$ such that $V(x) > \gamma_1$, $h(x) > \alpha_1$, if $||x|| \ge \gamma_2$,

•
$$V(x_n) \rightarrow 1$$
 for $x_n \rightarrow \partial A$ or $||x_n|| \rightarrow \infty$,

$$DV(x) \cdot f(x) = -h(x)(1 - V(x))\sqrt{1 + \|f(x)\|^2}$$

・ロト (個) (主) (主) (主) (の)

<ロト <回ト <u>< 三ト</u>

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	0000000000

Zubov's result II

By proper choice of h the function V can be made as smooth as f_0 . In particular:

Corollary

If f is continuously differentiable, then

$$DV(x) \cdot f(x) = -h(x)(1 - V(x))\sqrt{1 + \|f(x)\|^2}$$

has at most one continuously differentiable solution satisfying V(0) = 0.

In order for the solution to exist it is sufficient that

$$\int_0^\infty h(\varphi(t,x_0))dt < \infty \, .$$

<ロ> (日) (日) (日) (日) (日)

for all x₀ sufficiently small.

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	00●	0000000000	0000000000

Zubov's result III: Series approximation

$$DV(x) \cdot f(x) = -h(x)(1 - V(x))\sqrt{1 + \|f(x)\|^2}$$
 (Z).

If f is real-analytic, then h, V may also be chosen real analytic. Series approximations of V may be calculated by expanding:

$$V(x) = 0 + 0 + x^{T} P x + O(3)$$

$$h(x) = 0 + 0 + x^{T} Q x + O(3)$$

$$f(x) = 0 + A x + O(2)$$

Then the second order terms in (Z) yield

$$x^T PAx = -x^T Qx \quad \Leftrightarrow \quad A^T P + PA = -\frac{1}{2}Q.$$

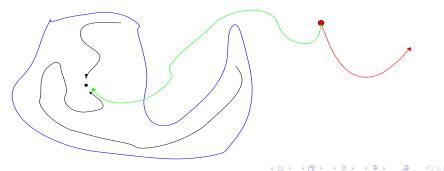
4 E b

Robust domains of attraction

Consider systems

$$\dot{x}(t) = f(x(t), d(t)), \quad t \in \mathbb{R}$$

with a perturbation term d. We are interested in robust stability properties. In particular, the robust domain of attraction.



4 🗆 🕨

Robust domains of attraction

$$\dot{x}(t)=f(x(t),d(t))\,,\quad t\in\mathbb{R}$$

Assumptions:

• $f : \mathbb{R}^n \times D \to \mathbb{R}^n$ continuous, locally Lipschitz continuous in x, uniformly in d

- $D \subset \mathbb{R}^m$ compact, convex, $d(t) \in D$ a.e.
- f(0, d) = 0 for all $d \in D$
- 0 is locally uniformly asymptotically stable

Notation: $\mathcal{D} := \{ d : \mathbb{R} \to D ; d \text{ Lebesgue measurable} \}$ Question:

Can the approach of Zubov be used to determine Lyapunov functions on the robust domain of attraction $\mathcal{A}_D(0)$?

↓□▶ ↓@▶ ↓ ∃▶

<ロ> (四) (四) (三) (三) (三) (三)

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	0000000000

A robust version of Zubov's theorem

Theorem:[Zubov's theorem for perturbed systems] Under suitable conditions on *g* there is a unique viscosity solution of

$$\begin{cases} \inf_{d \in D} \{-Dv(x)f(x,d) - (1-v(x))g(x,d)\} = 0\\ v(0) = 0 \end{cases}$$

The robust domain of attraction satisfies

$$\mathcal{A}_D(0) = v^{-1}([0,1)).$$

This is a straightforward generalization of Zubov's original equation

$$DV(x) \cdot f(x) = -h(x)(1 - V(x))\sqrt{1 + \|f(x)\|^2}$$
 .

for which we had

$$A = V^{-1}([0,1)).$$

A robust version of Zubov's theorem: Outline of proof

choose g continuous, positive definite, such that

$$\int_0^\infty g(\phi(t,x_0,d),d(t))dt < \infty$$

if and only if $\phi(t, x_0, d) \rightarrow 0$.

To be able to do this information on the local convergence rate near $x^* = 0$ is needed.

define v via the optimal control problem

$$v(x) = \sup_{d\in\mathcal{D}} \left[1 - \exp\left(\int_0^\infty g(\phi(t, x_0, d))dt\right)\right]$$

Use relation between Bellman principle and viscosity solutions to show that v solves the robust Zubov equation.

イロト イロト イヨト イヨト 三星

Prove uniqueness.

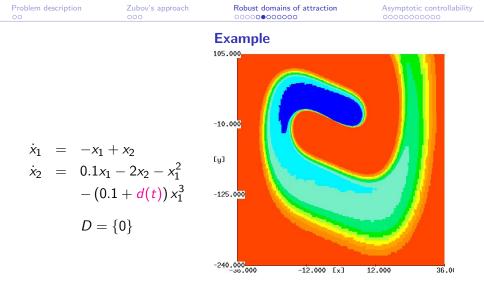
Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	0000000000

Example

$$\dot{x}_1 = -x_1 + x_2 \dot{x}_2 = 0.1x_1 - 2x_2 - x_1^2 - 0.1x_1^3$$

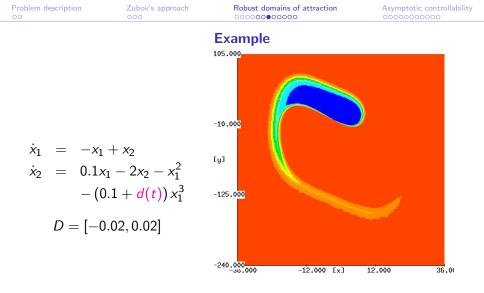
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ○○○

<□▶ <@▶ < ≧▶

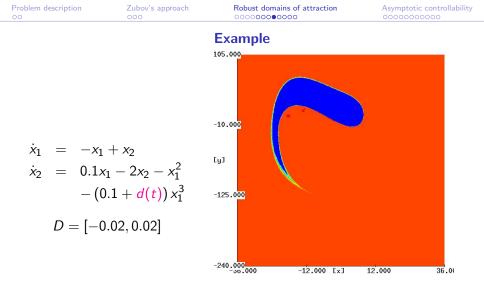


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の9(0)

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 <lp>▲□▶



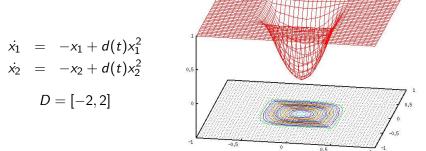
<ロト <回ト < Eト



<□▶ <@▶ <≧▶

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	000000000000	0000000000

A toy example



<□> <□> <□> <=> <=> <=> <=> ○<○

<□▶ <⊡▶ < 글▶

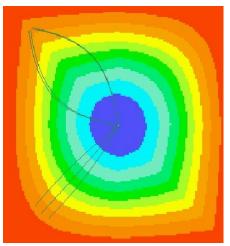
Problem	description
00	

Zubov's approach

Robust domains of attraction

Asymptotic controllability 0000000000

A toy example



$$\dot{x_1} = -x_1 + d(t)x_1^2$$

 $\dot{x_2} = -x_2 + d(t)x_2^2$
 $D = [-2, 2]$

<□▶ <⊡▶ < 글▶

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	000000000000000000000000000000000000000	0000000000

Another toy example

Khalil, Nonlinear Systems, 2nd ed., p. 190

$$\dot{x}(t) = -2x(t) + x(t)y(t) \dot{y}(t) = -y(t) + (1 + d(t))x(t)y(t) .$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

< □ > < //>

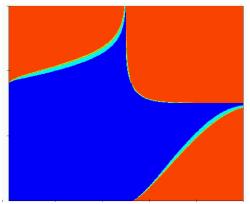
Problem description	Zubov's approach	Robust domains of attraction	Asymptotic con
00	000	000000000	000000000

Another toy example

$$\dot{x} = -2x + xy$$

$$\dot{y} = -y + (1 + d(t))xy$$
.

D = [-1, 1]



イロト イロト イヨト イヨト 三星

Image: 1

In reality, the whole lower half plane is contained in the robust domain of attraction. The discrepancy to the picture is caused by calculating on a finite domain.

Asymptotic nullcontrollability

Consider the control system

$$\dot{x}=f(x,u)\,,$$

where $f : \mathbb{R}^n \times U \to \mathbb{R}^n$ is sufficiently regular (to be made precise) and $U \subset \mathbb{R}^m$ is closed. Assume that f(0,0) = 0. We are now interested in asymptotic nullcontrollability. The admissible controls are given by

 $\mathcal{U} := \left\{ u : \mathbb{R}_+ \to U \mid \text{ measurable and essentially bounded } \right\}.$

The domain of asymptotic nullcontrollability is defined by

 $\mathcal{A}_{\mathcal{U}}(0) := \{x \in \mathbb{R}^n \,|\, \text{there exists } u \in \mathcal{U} \text{ with } \varphi(t, x, u) \to 0 \text{ for } t \to \infty\}.$

4 □ ト < 一型 ト < 三 ト</p>

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	000000000

Control Lyapunov functions

$$\dot{x} = f(x, u), \quad f(0, 0) = 0.$$

 $\mathcal{A}_U(0) := \left\{ x \in \mathbb{R}^n \, | \, \text{there exists } u \in \mathcal{U} \, \, \text{with} \, \, \varphi(t, x, u) \to 0 \, \, \text{for} \, \, t \to \infty \right\}.$

It is known that asymptotic nullcontrollability is closely tied to the existence of a control Lyapunov function: Consider a continuous, positive definite¹, proper² function

 $v: \mathbb{R}^n \to \mathbb{R}_+.$

v is called a control Lyapunov function on $\mathcal{A}_U(0)$ if there is a positive definite function W such that v is a viscosity supersolution on $\mathcal{A}_U(0)$ of

$$\max_{u\in U, \|u\|\leq \kappa(\|x\|)} -Dv(x)f(x,u) \geq W(x).$$

 ${}^{1}v(x) \ge 0$ and $v(x) = 0 \Leftrightarrow x = 0$ ²preimages of compact sets are compact

Hamilton Institute

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	00000000000	0000000000

A Zubov type theorem

Theorem: [Zubov's theorem for controlled systems] For suitable g there exists a unique viscosity v solution of

$$\begin{cases} \sup_{u \in U} \{-Dv(x)f(x, u) - (1 - v(x))g(x, u)\} = 0 \\ v(0) = 0 \end{cases}$$

In particular, v is a control Lyapunov function on

$$\mathcal{A}_U(0) = v^{-1}([0,1)).$$

Again this is a straightforward generalization of Zubov's original equation

$$Dv(x) \cdot f(x) = -h(x)(1 - v(x))\sqrt{1 + \|f(x)\|^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくぐ

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	0000000000

Comments on proof:

Again proof relies on the analysis of an optimal control problem, namely

$$v(x) = \inf_{u \in \mathcal{U}} \left[1 - \exp\left(\int_0^\infty g(\phi(t, x_0, u))
ight)
ight] \, .$$

The choice of g is a bit more complicated this time, because we have to deal with the unboundedness of u.

Still explicit conditions, that are easily checkable are available.

4 T N 4 A N

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability

Example

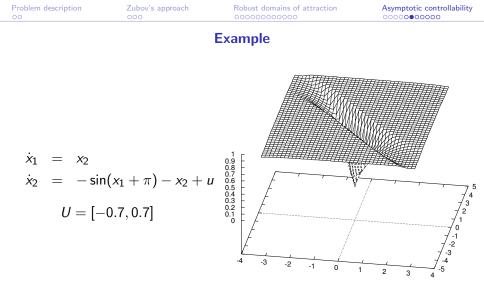
Consider the inverted pendulum

$$\dot{x}_1 = x_2$$

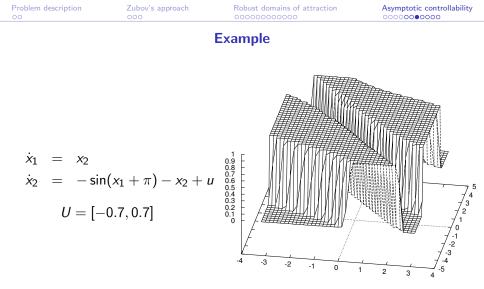
 $\dot{x}_2 = -\sin(x_1 + \pi) - x_2 + u$

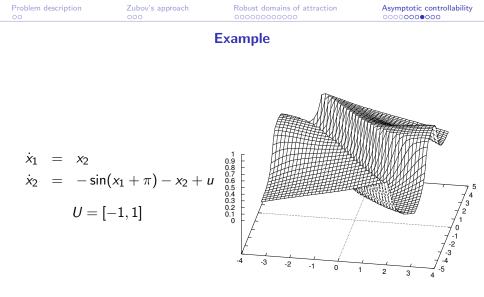
▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



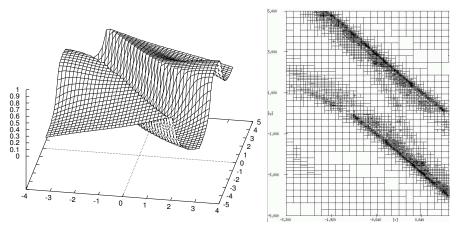
◀□▶ ◀@▶ ◀壹▶





<ロト <回ト < Eト

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability	
Example				



<□▶ <⊡▶ < 글▶

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	0000000000

Numerical treatment

Consider the perturbed case: Zubov's PDE has a singularity at 0.

$$\begin{cases} \inf_{d \in D} \{-Dv(x)f(x,d) - (1-v(x))g(x,d)\} = 0\\ v(0) = 0 \end{cases}$$

To make the numerical treatment rigorous we consider the function

$$g_{\varepsilon}(x,d) = \max\{g(x,d),\varepsilon\}$$

for fixed $\varepsilon > 0$ and the approximate equation

$$\begin{cases} \inf_{d \in D} \left\{ -Dv(x)f(x,d) - g(x,d) + v(x)g_{\varepsilon}(x,d) \right\} = 0\\ v(0) = 0 \end{cases}$$

<ロ> (四) (四) (三) (三) (三)

4 m b

Problem description	Zubov's approach	Robust domains of attraction	Asymptotic controllability
00	000	0000000000	000000000

Numerical treatment II

Theorem Let v be the unique solution of Zubov's equation. Then for each $\varepsilon > 0$ the approximate equation has a unique continuous viscosity solution v_{ε} with the following properties.

(i)
$$v_{\varepsilon}(x) \leq v(x)$$
, $\forall x \in \mathbb{R}^{n}$
(ii) $v_{\varepsilon} \rightarrow v$ uniformly in \mathbb{R}^{n} as $\varepsilon \rightarrow 0$
(iii) If $\varepsilon < g_{0}$ then we have the characterization

$$\mathcal{A}_D(0) = \{x \in \mathbb{R}^n \,|\, v_{\varepsilon}(x) < 1\}$$

(日) (문) (문) (문) (문)

(iv) If $f(\cdot, d)$ and $g(\cdot, d)$ are uniformly Lipschitz (uniformly in D with Lipschitz constants L_f and L_g) and further technical assumptions on g are satisfied then v_{ε} is uniformly Lipschitz on \mathbb{R}^n .

