
A Clean Slate Design of Internet’s
Congestion Control Algorithm

Nandita Dukkipati

(Collaborators: Nick McKeown, Masayoshi Kobayashi, Rui Zhang-Shen)

High Performance Networking Group
Stanford University

Hamilton Institute Workshop on Congestion Control
27 September, 2005

TCP does not work well

1. Slow additive increase means flows take a long time to
acquire spare capacity

2. Unsustainable large equilibrium window; requires extremely
small loss

3. Puzzled by lossy links -- low throughput in wireless links

4. Unfair bandwidth sharing: Flow throughput

5. Inefficient Slow Start

• Flows made to last multiple round trip times

• Instability -- exponential increase in aggregate traffic

6. Large queueing delay

∝
1

RTT

p = 3/(2w2)

Explicit Control Protocol (XCP)

• Proposed by Katabi et. al Sigcomm 2002; part of
NewArch project

• Explicit feedback on congestion from the network

• Flows receive precise feedback on window
increment/decrement

• Routers do detailed per-packet calculations

XCP -- Pros and Cons

• Pros:
• Long-lived flows: Works very well -- convergence to

fair-share rates, high link utilization, small queue
occupancy, low loss.

• Cons:
• With a mix of flow lengths: Deviates far from

Processor Sharing. Unfair and inefficient.
• Flow durations: Makes the flows last two orders of

magnitude higher than necessary. Worse than TCP.
• Complexity: Requires detailed per-packet

computations

Bandwidth-limited vs. Latency-limited

mean flow size >~ “pipe” size

mean flow size << “pipe” size

Example: XCP vs. TCP vs. PS
Flow Duration (secs) vs. Flow Size # Active Flows vs. time

Wish List

I. Emulate Processor Sharing
1. Performance is invariant of flow size distribution
2. Mix of flows: Results in flows finishing quickly -- close to

the minimum achievable
3. Long flows: Results in 100% link utilization -- even under

high bandwidth-delay, lossy links...
4. All flows get fair share of bottleneck bandwidth

II. Want stability -- convergence to equilibrium operating point
III. Want all the above under any network conditions (mix of

RTTs, capacities, topologies) and flow mixes
IV. Without any per-flow state, per-flow queue or per-packet

computation in the routers

RCP: Picking the Flow Rate

• Is there one rate a router can give out to all the flows so
as to emulate Processor Sharing ?

• Rate

• RCP is an adaptive algorithm to emulate PS:

• picked by the routers based on queue size and
aggregate traffic

• Router assigns a single rate to all flows

• Requires no per-flow state or per-packet calculation

R(t) = C/N(t)

R(t)

RCP: The Basic Mechanism

!"#
$%&'(%)

*+,%-./012&

!"# *+,%-3012& !"# *+,%-3012&

!"#4

567
*+,%-3012&

89#4567

!%:)':;<*+,%<-<301=&

!%:)%(*>?,%(<. *>?,%(<@ *%A%'B%(

89#

RCP: The Algorithm

R(t) = R(t − d0) +
α(C − y(t)) − β q(t)

d0

N̂(t)

Average RTT

Link Capacity
Aggregate Traffic queue

Estimate of # flows

R(t) = R(t − T)[1 +
T
d0

(α(C − y(t)) − β q(t)
d0

)

C
]

N̂(t) =
C

R(t − d0)

Understanding RCP
• How good is the estimate, ?

•

• RCP performs well and is stable for a broad range of it’s
parameters and α β

C/R(t)

RCP Performance
• When traffic characteristics vary
• Different flow sizes
• As mean flow size increases
• Different flow size distributions
• Non Poisson arrivals of flows
• As load increases

• When Network Conditions vary
• As link capacity increases
• As RTT increases
• Flows with different RTTs
• Multiple bottlenecks
• Compared with:

• In each case RCP achieves the goals we set out

AFCT ≥ 1.5RTT +
E[L]

C
;FCTPS = 1.5RTT +

L

C(1 − ρ)

Example 1: Achieves PS for different Flow Sizes

Max. FCT

Example 2: Achieves PS for different Flow Sizes

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
F

C
T

 [
s
e
c
s
]

Flow Size [pkts]

C = 2.4 Gbps, E[S] = 500 pkts

XCP (< 10000 pkts)
TCP (< 10000 pkts)

Slow Start
RCP (< 10000 pkts)

PS

 0.1

 1

 10

 100

 1000

 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
F

C
T

 [
s
e

c
s
]

Flow Size [pkts]

C = 2.4 Gbps, E[S] = 500 pkts

XCP (> 10000 pkts)
TCP (> 10000 pkts)

Slow Start
RCP (> 10000 pkts)

OPT

RCP vs. TCP vs. XCP

Example 3: Achieves PS for any flow size distribution

RCP Stability

Ṙ(t) = R(t − T)[
α(C − y(t)) − β q(t)

d(t)

Cd(t)
]

d(t) = d0 +
q(t)

C

q̇(t) =
[y(t) − C] if q(t) > 0

[y(t) − C]+ if q(t) = 0

y(t) = N × R(t − d0)

RCP System:

Equilibrium:
Ṙ(t) = 0; q̇(t) = 0

(R∗, q∗) = (C

N
, 0)

RCP is Stable

α

β

Stable Independent of C, RTT and # Flows

RCP’s weakness
A lot of flows starting at once: N × R(t) >> C

Spike can be arbitrarily high

Intuition: Spectrum of Protocols
• RCP is aggressive --- incoming traffic could be unbounded

• Acceleration: Control how aggressively flow-rates converge to R(t)

• Protocol Spectrum:

- acceleration: small

- Latency-limited:
finishes flows fast

- bandwidth-limited:
works well, small
queues, near-zero
losses, XCP-like

- Latency-limited: long
flow completion times

- acceleration: large

- bandwidth-limited:
aggressive

Best of both: Adaptive Algorithm?

Conclusion

• Making network faster doesn’t help; Flow durations and
performance is constrained by protocols

• XCP: bold attempt in clean-slate design but there is more to do

• Network bandwidth increases => more flows capable of completing
in fewer RTTs

• Metrics: Flow completion time vs. link utilization

• RCP: a simple algorithm that completes flows quickly

