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Many sources, one bottleneck
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w;j(k) = the number of packages sent by the i-th source at the
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Time evolution for one source
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Assumptions |

» Congestion occurs in a single bottleneck.

» Congestion is noticed one RTT after it happens.

» Buffer size of bottleneck is small, i.e. RTT can be
approximated by a constant.

» RTT is the same for all sources.

» The network is synchronized.
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Many sources, one bottleneck

Kth congestion
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A linear model

A little manipulation shows that
w(k+1)=Aw(k), k>1

where A is given by

01 0o ... 0
. al
0 : 1
: B2 | +Z’.a, 0‘2 [1-81 -~ 1-5, ].
0... 0 By n

Here «; is the additive increase parameter of the i-th source
and f3; is the multiplicative decrease parameter.
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Digression: Different RTT's
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Digression: Different RTT's

A little manipulation leads to a linear equation
w(k +1) = Aw(k).

The similarity transformation

RTT;Y 0 ... 0
0 RTIT,* ... 0
w = ) w
0 . RTT,!

leads to an evolution equation for W of the same form as in the
case for equal RTT's.
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A linear model

w(k+1)=Aw(k), k>1

where A is given by

01 0o ... O o

0 : 1

E B2 | +Zia,- a2 [1-6 - 1-8, ].
0... 0 Bn n

Here «; is the additive increase parameter of the i-th source
and f; is the multiplicative decrease parameter.
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The Synchronized Case

Assumption: Every source experiences all congestions

4G 0 .. 0 o
0 5 1 Qs
A= 1—
: . +Z,'05i [ 61
0... 0 B Gn

1-6, ].

The matrix A is positive and column stochastic. Thus by the
Perron-Frobenius Theorem the evolution of A is very well

understood.

«O0>» «4F» «E>»




Modeling of TCP flows
00000e0000

The Synchronized Case

1 0O ... O
. a1
0 5 1 1 an
A= : . +Z;04i [1=F e =B ]
0... 0 8, n

Theorem (Berman, Shorten, Leith)
1. A has an eigenvalue one with eigenvector

_ a1 Qp
Ve TE 1—6n] '
2. For all initial conditions wy we have
Afwg — Ov.

3. the rate of convergence is exponential, bounds for this rate
can be given in terms of the j;.
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Assumptions Il

» Congestion occurs in a single bottleneck.
» Congestion is noticed one RTT after it happens.

» Buffer size of bottleneck is small, i.e. RTT can be
approximated by a constant.

» RTT is the same for all sources.

» The network-is-synchronized—




Modeling of TCP flows
0000000800




Modeling of TCP flows
0000000080




Modeling of TCP flows
0000000008




Modeling of TCP flows
e0

The unsynchronized case

w(k +1) = A(k)w(k),
where A(k) is given by

B1(k) 0 0 o
0 [afk) : 1 s
5 +Zi0‘i o
0... 0 Ba(k) n

k>1

[ 1=PBu(k) -+ 1= Ba(k) |

Here «; is the additive increase parameter of the i-th source

and ;(k) is equal to the multiplicative decrease parameter or 1,
depending on whether the i — th source experiences congestion at
the k-th congestion event or not.
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The unsynchronized case

In the analysis of the dynamics of TCP flows we are led to the
consideration of a linear inclusion of the form

w(k +1) € {Aw(k) | Ae M},

where M C R™" is the set of 2”1 matrices obtained by setting
Bi,i=1,...,n either to 1 or to a constant in (0, 1).
(Note that the identity is omitted.)
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Application to the TCP model

The matrices modeling TCP flows were of the form

Gk 0 ... 0 o
0 Ga(k) ) : _i_ziai @2 [ 1—=Bu(k) -+ 1= Ba(k) |
0... 0 ﬁn(k) o

The matrices are all column stochastic.
The set M is irreducible on the invariant subspace
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Weak ergodicity

Theorem Let {A(k)}xen C MY be a sequence with the property
that at most one source does not see a drop infinitely often, then
lim A(k)A(k —1)...A(0)s =0.
k—o00
In other words, the sequence {A(k)}ken is weakly ergodic.
This result extends results of Leizarowitz (LAA, 2000) in this

special case.
Proof builds on properties of extremal norms
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A fairness result

Assume now that the matrices A(k) are i.i.d. random variables.
These random variables induce for the i-th source a probability

Ai := P( source i experiences congestion at the k-th congestion event).
Theorem
If for each i =1,...,n we have

A >0,

then, almost surely, (for the right )

k
- 1 o Qn
i 20 = [
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Model Validation I, NS Simulation
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Model Validation Ill, Data from a Real Network

Q ue ue ntt=21ms rit=34ms rtt=55ms
20 Measurement 0.4055 0.3014 0.2931
Theorm 3.3 04054 0.3061 0.2886
" difierence 0.0247 1.5504 1.5353
40 Measurement 0.4122 0.2849 0.3029
Theorm 3.3 0.4121 0.2915 0.2964
" difierence 0.0243 2.3166 2.143
60 Measurement 0.4024 0.3083 0.2882
Theorem 3.3 04204 0. 3087 0.2709
" difierence 44732 0.1940 6.0028
B0 Measurement 0.416 0.3293 02547
Theorem 3.3 0.3835 0.2891 0.3274
s difierence 78125 12.2077 28 5434
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A Markov model

We are interested in the system
W(k+1)=Ak)\W(k), Ak)e M :={My,...,Mn_1}.

All matrices A; are column stochastic, and window sizes are
non-negative.
We may thus restrict our attention to the simplex

Z::{XER1| in:]-}a
i=1
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We may thus restrict our attention to the simplex

n
Z:—{XGRQH Zx,-—l},
i=1

Assume the random variables A(k),k =0,1,... are i.i.d. and

P(A(k) = M) =p;, i=1,....u.

Assume also the “everyone drops” condition

)\j: Z ,0,'>0,

Bi(M;)<1
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The assumptions lead to a Markov process on 2. The transition
kernel of that process acts on continuous functions h: ¥ — R
through

Ph(x):/zh( (x,dy) = Zp,h(Ax

For each continuous h the sequence
Pkh, keN,

is equicontinuous.
Markov chains with this property are called e-chains.
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Theorem(Meyn & Tweedie)
Consider an e-chain on a compact space ¥. If there is a positive
and aperiodic state z € ¥, then

(i) there exists a unique invariant probability 7,

(i) for every x € X and every continuous function h: ¥ — R we
have that if W(0) = x, then

lim 1. h(W(j)):/zh(y)dw(y), in probability,

(iii) for every x € ¥ and every continuous function h: ¥ — R we
have

/ hy) P*(x, dy) — / hy)dn(y), ask— oo
> >
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Positive and Aperiodic States

L :={{Ak}ken € MY | {Axk}ken each source sees infinitely many drops}

Re:={R|rank R =1, 3{Ax}ken € L, k1 — 00 : Ilim M(k)) = R} .

C={zex|zyT €eR.}.
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Positive and Aperiodic States

Proposition

(i) C is compact and forward invariant,

(ii) for any z € C and any open neighborhood U C X of z there is
a ko > 0 such that P¥(x, U) > § > 0, for all k > kg and all
X € X,

(iii) For any initial condition Wy € ¥ we have almost surely

Jlim dist(W(k),C) =0.

By (ii)& (iii): C is the set of positive, aperiodic states.
C is the support of the unique invariant probability measure 7.
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W(k +1) = A(k)W(K).

Theorem
Consider the Markov chain W on X. For this chain there is a
positive and aperiodic state z € ¥, and so

(i) there exists a unique invariant probability ,

(i) for every x € X and every continuous function h: ¥ — R we
have that if W(0) = x, then

k—
fim Ez:: hW(j)) = /z h(y)dr(y), in probability,
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What does the support look like ?




A Markov Model

Thank you !
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