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Abstract

In this paper we want to look at the distribu-
tion with which passwords are chosen. Zipf’s
Law is commonly observed in lists of chosen
words. Using password lists from four different
on-line sources, we will investigate if Zipf’s law
is a good candidate for describing the frequency
with which passwords are chosen. We look at
a number of standard statistics, used to mea-
sure the security of password distributions, and
see if modeling the data using Zipf’s Law pro-
duces good estimates of these statistics. Finally,
we assess how similar the common passwords in
different instances of these password lists are by
using guessing as a metric.

1 Introduction

In this paper we investigate if password fre-
quency distribution can be modelled by Zipf’s
Law. Zipf’s Law is a probability distribution
where the frequency of an event is inversely pro-
portional to its rank on a frequency table. Here
the rank of the most common event is 1, the
rank of the second most common is 2, and so
on. Zipf’s Law has been observed when looking
at the frequencies with which words are used in
natural language. In our case, the events will
be the use of a particular password by a user.
To study this, we use lists of users and pass-
words from hotmail.com, flirtlife.de, computer-
bits.ie and rockyou.com. In each case, the list
of usernames and passwords were made public
after a security incident. The lists have between
1800 users to 32 million users.

There are a number of substantial differences
between the choice of passwords and the use of
words in natural language. In particular, pass-

words are usually chosen to be hard to guess
and there is a large literature of advice on how
to choose passwords (e.g. [7]). However, there
are many reasons for not choosing a password
according to the recommendations: the advice
is arduous, it takes a long time to produce a rec-
ommended password, the resulting password is
likely to be a hash of letters and numbers which
will be hard to memorise. It has even been ar-
gued that in general, the cost of choosing one
of these passwords is far greater than the cost
of loosing the information it is trying to protect
[4]-

Thus, rather than uniformly choosing from a
list of non-dictionary words the average user is
likely to choose a password which they can easily
remember, such as their name, city where they
live, favourite team and so on which leads to
certain passwords being used more frequently
than others. Since Zipf’s Law has been observed
in many empirical data sets, we would like to
investigate if it provides a reasonable model for
the passwords we see.

Seeing Zipf’s Law, or any other distribution
that is skewed in favour of a number of pass-
words, has implications for security. If the right
distribution of passwords can be identified, the
cost of guessing a password can be reduced. One
naturally expects that, say, the demographic of
users of a site could be used to target an at-
tack; a website with a .ie domain is more likely
to have Irish themed passwords than a site with
a .fr domain.

Zipf’s law tells us that the number of occur-
rences of something is inversely proportional to
its rank on a frequency table, y ~ r~° where s is
a parameter which is close to 1. By plotting our
datasets and fitting a value for s, we will see if a
Zipf distribution provides a good model. Then,



Site Ffusers ##pass 7#pass
F#users
hotmail 7300 6670 0.91
flirtlife 98930 43936 0.44
computerbits 1795 1656 0.92
rockyou 32603043 | 14344386 0.44

Table 1: Number of users and number of distinct
passwords seen for each site.

using the metrics as the guesswork [8] and Shan-
non entropy, we will see if these models provide
good predictions of these statistics.

We will also compare the similarity of our dif-
ferent data sets using guessing as a metric. We
will show that by using common passwords from
one list, a speed up can be obtained when guess-
ing the passwords from another list.

2 Overview of Datasets

We collected sets of passwords belonging to sites
which were previously hacked and the lists of
passwords leaked. Since the sets were gathered
by different methods, such as key-logging, net-
work sniffing or database dumps, the lists may
only contain a random samples of users. Our
lists are from the 2009 hotmail.com list, the 2006
flirtlife.de list, the 2009 computerbits.ie list and
the 2009 rockyou.com list.

Some of the lists also give multiple passwords
for a small number of users. In this case, we
cleaned up the sets by taking the user’s pass-
word as the last entry seen for that user, which
would hopefully correspond to a user initially
typing the wrong password and then typing the
correct one, or in the case that the password was
changed, the most recent password. We also
omitted any user with a whitespace password.
After the data was cleaned up, we produced a
table ranking passwords in order of decreasing
frequency of use by users. Table 1 shows the
number of users and the number of distinct pass-
words for each set of data. As is obvious from
the table, for smaller lists there are relatively
more unique passwords.

Table 2 summarises the top 10 passwords
in each list. We see that passwords such as
123456 and password are very common. The
most common password, “123456” accounts for
0.7% of the total passwords in the hotmail data,
3.3% in the flirtlife list and 2.0% in the rockyou
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Figure 3.1: Plot of rank vs frequency on a linear
scale

list; “password” accounts for 1.2% of the total
passwords of the computerbits list. This indi-
cates that the password distribution is skewed
in favour of some common passwords.

The demographic of the users from each list
is quite clear form the first 10 passwords of
the lists with each ccTLD. Note that the hot-
mail.com data is believed to have been collected
with phishing targeted at the Latino commu-
nity. The flirtlife list shows clear signs of users
speaking German and Turkish, and the comput-
erbits list contains place names of Irish interest.
If we look at the data from computerbits and
rockyou we see that the name of the website ap-
pears in the top ten of each list. It seems likely
that this method for choosing a password will
also be used on other sites.

By taking obvious passwords and knowing the
demographic of the users at which the site is
aimed one could build a comprehensive dictio-
nary that could be expected to cover the most
common passwords in use at a site. This implies
that users, if they are concerned about their ac-
counts being hacked, should use less common
passwords. Even something as simple as chang-
ing some of the characters to upper-case or writ-
ing the word in ‘leet speak’, could be expected
to move the password out of the most-common
list.

3 Distribution of Passwords

In this section we will look at how passwords
are distributed in our lists, and see how well
these distributions match a Zipf model. We will
be interested in the frequency f; with which we
see the i*® most popular password. Where pass-
words are seen equal numbers of times, we break



Rank | hotmail Fusers | flirtlife #users | computerbits | #users | rockyou Ffusers
1 123456 48 | 123456 1432 | password 20 | 123456 290729
2 123456789 15 | ficken 407 | computerbits 10 | 12345 79076
3 111111 10 | 12345 365 | 123456 7 | 123456789 76789
4 12345678 9 | hallo 348 | dublin 6 | password 59462
5 tequiero 8 | 123456789 258 | letmein 5 | iloveyou 49952
6 000000 7 | schatz 230 | qwerty 4 | princess 33291
7 alejandro 7 | 12345678 223 | ireland 4 | 1234567 21725
8 sebastian 6 | daniel 185 | 1234567 3 | rockyou 20901
9 estrella 6 | 1234 175 | liverpool 3 | 12345678 20553
10 1234567 6 | askim 171 | munster 3 | abcl23 16648
Table 2: Top 10 Passwords for each list
the tie randomly. hotmail | flirtlife | c-bits | rockyou
s 0.16 0.64 0.15 0.51
Fig. 3.1 shows the rank vs. frequency of our raw
data plotted on a linear scale for the hotmail S 0.44 0.69 | 0.45 0.78
list. There are a small number of passwords binned
with a high frequency, and many passwords with —m 2.46 1.72 2.56 1.37
a frequency of 1 or 2, which makes the graphs raw
hard to read. Instead, we plot the frequency ver- —m 3.07 2.32 3.10 2.23
sus rank on a log-log scale in Figure 3.2. These | binned
graphs certainly show evidence of heavy-tailed | 1+1/s 3.27 245 | 3.22 2.28
behaviour, with the frequency dropping much binned

more slowly than exponential. A Zipf distribu-
tion would appear as a straight line on a log-log
plot, where the parameter s is the negative of
the slope.

If we fit a least-squares line to this data, as
shown in Figure 3.2, we get a slope which is too
shallow because a large fraction of the points
have frequency 1 or 2, which biases the slope
towards 0. To account for this, we follow the
method in [1] and bin the data logarithmically,
as shown in Figure 3.3. Here, we sum the fre-
quency of all ranks between 2™ and 2"+ —1. We
see that this gives us a slope which better fits
our data, and that the line appears a relatively
good fit. We use this binned slope as a basis for
modeling our data with a Zipf distribution.

An alternate way to view the data is to look at
the number of passwords ny that are each used
by exactly k users. We plot this in Figure 3.4 on
a log-log scale. As explained in [1], if the data
is Zipf distributed, we expect this graph to also
be a straight line with slope —(1 4+ 1/s). As we
can see, we also need to bin this data before fit-
ting a line, and the result it shown in Figure 3.5.
Again, we see a line is a relatively good fit, with
the largest discrepancy appearing for computer-
bits, the smallest list. The resulting slopes are
summarised in Table 3.

Table 3: Estimated parameters for
bution and ny vs. k graphs.

Zipf distri-

4 Password Statistics

In this section we will look at a number of statis-
tics relevant to passwords that can be derived
from the distribution of how passwords are cho-
sen. We will look at these statistics when cal-
culated directly from our lists, and when calcu-
lated using two simple models of the lists. For
the real lists, we calculate our statistics assum-
ing the probability of the password of rank ¢ ap-
pearing is f;/N, where f; is the frequency with
which we observed that password and N is the
total number of passwords observed.

The first model assumes password choices are
uniform over all passwords seen, i.e., if the num-
ber of passwords is N then a password is cho-
sen with probability 1/N. The second model
assumes that password choices are distributed
with a Zipf distribution, i.e., the probability of
password with rank ¢ being used is P; = Ki™%,
where s is the parameter found in Section 3 and
K is a normalising constant.

Now let us consider the statistics of interest.
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Some of these statistics place considerable em-
phasis on the tail of the distribution, and can
be sensitive to relatively small gaps between the
model and the data. The first statistic is the
guesswork, which is the mean number of guesses
needed to correctly guess the password [8], when
the password distribution is known, but the ex-
act password is not. Guesswork is given by

N

lezv

i=1

G

where P; is the probability of the password of
rank q.

Another strategy for guessing passwords,
given the distribution, is to try the common
passwords, but to give up before when some
fraction « of the distribution has been covered.
The mean number of guesses associated with
this is known as the a-guesswork, G, [§]. Its
value is given by

To

Ga =) iP,

i=1

where 7, is the rank of the password when the
cumulative probability of being successful is at
least a. We will work with @ = 0.85, so that
we cover most of the distribution, but avoid the
tail.

The Shannon Entropy,

H=-> Plog, P,

is a common measure of the number of bits of
uncertainty associated with a random variable.
While Shannon Entropy has been used as a mea-
sure of security of password and key distribu-
tions, it does not relate directly to how easy it
is to guess a password [6, 5]. Renyi entropy,
which is a generalization of Shannon entropy, is

given by
R =1log,(d_VP)*.

It is asymptotically related to the guessability of
a password. The min-Entropy is also used as a
conservative measure of password/key security
[3].

Figure 4.1 compares the guesswork statistics
for the uniform model, the real data and the
Zipf model. The bars on the left show the guess-
work and the bars on the right show the 0.85-
guesswork. As expected, the guesswork esti-
mates for the uniform model overestimate the
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required number of guesses. As only a small
percentage of the total number of passwords
seen in both the hotmail.com and computer-
bits.ie list, the passwords, in general, are closer
to having uniform probability, so the guesswork
is better modelled. We see that when pass-
words that shared among many users make up
a larger percentage of the total passwords, as in
the flirtlife.de and rockyou.com list, the guess-
work is far lower than the uniform guesswork.
The Zipf model seems to underestimate the re-
quired guesswork.

Figure 4.2 shows the Entropy values for the
actual data and models. Shannon Entropy is
shown on the left, Renyi Entropy in the mid-
dle and min-entropy on the right. The Uniform
model, again as expected, tends to overestimate
the Entropy. However, for the Renyi Entropy
both models and the data seem to give results
that are close together. The Zipf model seems
to provide relatively good approximations in all
cases.

5 The Relation
Distributions

between

We have seen that while the popular passwords
in our lists have things in common (for example,
the password 123456), they also show features
specific to the website or service. One thing all
the lists have in common is a number of rela-
tively frequently used passwords followed by a
long tail of uncommon passwords. In this sec-
tion, we will try to quantify how much we learn
about one list, based on the others.

Consider the problem of guessing the pass-
word of a randomly selected user from one of
our lists. If we guess the passwords from most
popular to least popular, then after ¢t guesses we
will have guessed the passwords used by

C(t) = Zfi,

users. If we guess one password at each trial,
guessing in this order recovers passwords as
quickly as possible, and is in this sense opti-
mal. Figure 5.1 shows C(t) for each of our
datasets, as the optimal guessing strategy. The
right hand axis shows C(t)/N, which we can in-
terpret as the probability of successfully guess-
ing in t guesses or the fraction of users whose
passwords have been guessed.

Uniform model Entropy ———1
Real data Entr

Bits

(a) hotmail

(b) flirtlife

Bits
>

(¢) computerbits

Uniform model Entropy ———1
Entr

Bits

(d) rockyou

Figure 4.2: Entropy values for Uniform model,
Real data and Zipf model.



If we do not know the optimal order in which
to guess the passwords, we may instead guess
them in the optimal order ¢ for another refer-
ence data set. Now, after ¢ guesses, we will have
guessed the passwords of

C(tllo) = foii),
=1

users, where we assume fo ;) is zero if password ¢
is not in the list we are guessing. If the ordering
of the passwords by popularity is the same for
both lists, then this function will be C(t||o) =
C(t), otherwise C(t||o) < C(t).

Figure 5.1 shows C(t||o) for each of our lists,
when using each of the other lists as a reference.
Consider the situation after 1000 trial guesses.
The number of users whose passwords match
one of these 1000 guesses, C'(1000||c), can be
seen to vary by almost an order of magnitude,
depending on the list used as a reference. Thus,
to guess passwords quickly, we would like a good
reference list.

Observe that for any list, once we have made
more than 10-100 guesses, the larger reference
lists lead to more successes than smaller refer-
ence lists. This suggests that the impact of de-
mographics is limited to the most popular pass-
words, and a larger list gives a better ordering
of passwords, that cannot be determined from a
smaller data set. The rockyou list is quite effec-
tive and the top one million rockyou passwords
cover close to 40% of users in the other lists.

We can apply this directly to a password
cracking problem. In December 2010, the pass-
word database from Gawker.com was leaked.
This database did not contain plaintext pass-
words, but instead contained hashes of pass-
words using the well-known DES and Blowfish
password hashing schemes. We can use the
words in our list as guesses in an off-line crack-
ing attack against the Gawker hashes.

The Gawker dataset contained 748,090 users
potentially valid (i.e. 13 character) DES hashes.
The hashes use 3844 different salts. A simple
perl script can attempt passwords at a rate of
approximately 80,000 trials per hour per core
on a modern CPU. As the DES hash trun-
cates passwords to 8 characters, we truncate
long passwords and reaggregate our previous
lists. The number of users whose passwords
were cracked after ¢ trials is shown in Figure 5.2.

Again, the large lists provide the fastest re-
covery of passwords, and recovers 40% of users
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Figure 5.1: Using password ordering from one
distribution to guess another.
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in less than one million trials. Even our smaller
lists do well, recovering the passwords of more
than 10,000 users in around 1,000 trials (less
than one minute of CPU time).

For comparison, we show the results of using
a dictionary in lexical order as list of guesses.
The dictionary is based on the contents of
/usr/share/dict/ on Mac OS X, truncated to
8 characters and sorted using the Unix sort com-
mand. This results in a return on effort that is
substantially lower than with ranked password
lists.

In [2], the authors consider various techniques
for generating candidate passwords for guessing,
including dictionary attacks, mangled dictionar-
ies and Markov generators, which can be trained
on sample passwords. They assess these tech-
niques in terms of the fraction of passwords re-
covered in three data sets. For comparison, we
will show the fraction of passwords recovered us-
ing the ranked password lists.

Figure 5.3 shows the results for our main lists.
The optimal rate at which we can recover pass-
words is 1 per guess, so we plot the optimal
line y = . We see that with about 500,000—
5,000,0000 guesses we can obtain about 40% of
the passwords, except when guessing rockyou
passwords, when the other lists simply do not
have enough guesses to reach 40%. Note, that
in the rockyou graph, the curves for the other
lists stay close to the optimal line, showing that
there is a relatively good return for each guess.

Figure 5.4 shows the results for guessing the
Gawker passwords, in terms of fraction of pass-
words recovered. As not all hashes have been
cracked and the hashes are salted, we do not
know the total number of distinct passwords.
However, we can upper bound the number by as-
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Figure 5.3: Using password ordering from one
distribution to guess another.
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suming that all uncracked passwords are unique.

First we note that using other password lists
to guess still provides significantly better return
than using a dictionary. Indeed, the curves stay
relatively close to the optimal line for guesses
based on the rockyou data set for between 10
and 10,000 guesses, indicating a success rate of
almost 100%. After using all 14 million pass-
words in this list, we have cracked close to 40%
of the passwords.

This compares favourably with the techniques
in [2], where in order to achieve success rates
in the region of 40% (without direct use of the
training data) the number of required guesses is
over 100 million. Of course, once exhausted, a
list provides no more candidate guesses, whereas
the mangling and Markov techniques can theo-
retically yield unbounded data sets.

6 Discussion

From our basic results, we have seen that Zipf’s
law seems to provide a reasonable description of
the frequencies with which passwords are cho-
sen, though with a parameter s < 1. We also
see that fitting a distribution provides good ap-
proximations of the Shannon Entropy, guess-
work and other statistics that are of interest
when assessing a password distribution. As ex-
pected, we see that a model where all passwords
are equally likely provides a poor approxima-
tion.

We have seen that demography of the user-
base choosing the passwords can be evident in
the most popular passwords, and even the name
of the website is a likely password. Some sites,
for example Twitter, implement banned pass-
word lists [9], which includes many of the more

10

common passwords, including the name of the
site. Banning more commonly chosen passwords
may result in a more even spread of password
choices.

The Zipf distribution decays relatively slowly,
so we expect there to be a large number of rel-
atively commonly chosen passwords. If these
passwords do not change much from one list to
another, we expect that one list can provide a
pretty good guide about the popularity of pass-
words in another. We see that this is the case,
and that while not optimal, larger lists provide
good guidance about the ranking of passwords
in other lists. We’ve demonstrated that this
can provide a significant speedup in guessing
or cracking passwords with moderate numbers
of guesses, particularly over a simple dictionary
attack.

An attacker who has collected leaked pass-
words from a collection of websites has useful
starting point for cracking a password. If a
hashed password is exposed, the time for an at-
tacker to try, say, 20 million passwords is rela-
tively small, even on a single CPU. We note that
this adds some extra weight to the advice that
reusing passwords between websites is a risk,
even if there is no way for an attacker to identify
common users.

7 Conclusion

We have seen that a Zipf distribution is a rela-
tively good match for the frequencies with which
users choose passwords. We have also seen that
the passwords found in the lists that we have
studied have relatively similar orderings. Con-
sequently, passwords from one list provide good
candidates when guessing or cracking passwords
from another list.
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