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Abstract— Cheating is a key issue in online games, as it
reduces the satisfaction of honest players with a game and can
result in reduced revenue for game providers. Cheat prevention
techniques used today typically aim to identify that a particular
known technique for cheating is in use, and then prevent that.
In this paper we present two techniques for identifying cheating
based purely on the results of games. These techniques are based
on the law of large numbers and the Bradley-Terry model,
and aim to identify statistical behaviour that suggests a player
is cheating. Preliminary simulation studies suggest that such
techniques are a promising way to identify cheaters.

I. INTRODUCTION

Online games are more and more popular. In particular,
Massively multiplayers online games (MMOGs) are video
games played on the Internet which involve simultaneously
a large number of players. While the popularity of MMOGs
has increased dramatically in the last years [1], [2], with
some games like World of Warcraft with a subscriber base
of more that 11 million users1 and revenues of millions of
dollars for gaming companies, cheating has emerged as a
notable phenomenon, with its own economy [3] and even
companies offering cheating products [4].

Cheating in online games, defined as the set of “activities
that modify the game experience to give one player an
advantage over another player(s)” [4], is a major concern
for the gaming companies as it degrades the experience
of the honest players and decreases their revenue [5], [6].
They thus try to introduce mitigation schemes in order to
prevent cheating or detect the cheaters. The anti-cheating
protocols are based on the prevention of known real-world
cheats (for a classification of them, see [7]) but it is well-
known that they usually introduce complications into the
games and some recent works suggest that strategies based
on cheat detection should be preferred ([8] and references
therein). Authors have also proposed looking for anomalous
in-game behaviour to identify cheating [9], through real-time
monitoring of gamers.

In this paper, we present a framework for modeling games
and cheaters that can be used for cheat detection. The
approach can be used in different types of online gaming,
from MMOGs to First-Shooter-Games. Probably the most
important assumption we make here is related to player
ranking. We assume that each player has a rank πi ≥ 0
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which determines the probability of the outcomes of their
games. We assume that while cheating, the player will have
an artificially inflated rank, and we attempt to detect this.
Note that a player’s rank πi does not correspond to any in-
game ranking, but can be estimated from game results. We
use the Bradley-Terry model [10], [11] to estimate the ranks
of the players as a function of their performances against
the other players. We then construct a probabilistic model
for the result of the games between different players and use
statistical tests to detect potential cheaters.

To provide evidence that statistical methods can be used
to efficiently detect cheaters, we present in this paper two
different detection methods.

The first framework that we consider is an extension of the
Bradley-Terry model. The Bradley-Terry model provides us
with a useful tool for estimating ranks. We define a cheater as
a player with the ability to increase artificially their rank (by
any cheats) in order to improve their results. We introduce
an additional parameter on the model, called the cheating
strength, and consider that one player is a cheater when their
cheating strength is significantly greater than expected.

Another way of identifying a cheater is to look for players
whose mean results are statistically unlikely with respect
to their rank. This second framework is based on the limit
theorems from probability theory including the central limit
theorem. For simplicity we will refer to it as the law of
large numbers based algorithms. We note that the second
framework makes the additional assumption that the ranks
are known in advance or that they slowly evolve with time,
and so can be well estimated.

We bring together these two different frameworks as they
compliment each other. In particular, the initial estimation of
ranks can be performed by the Bradley-Terry based algorithm
and then the estimated ranks can be used by the law of large
numbers based algorithm for cheat detection.

The remainder of this paper is organized as follows: we
first introduce a probabilistic game modeling in section 2.
In section 3 we propose two models of cheating and cheat
detection algorithms. Section 4 presents some experiments
and evaluates the performance of the algorithms. We then
conclude and draw some perspectives.

II. PROBABILISTIC GAME MODELING

We suppose that there are N ≥ 2 players i = 1, ..., N
competing in some set of tournaments. Notice that in online
games N may be very large (N ≈ 1000 or even more), but
it can also be relatively small. Each player i plays against
all the others players j 6= i at least once. Say that Xij is a
random variable that represents the number of times player
i beats player j, with Xii = 0 and sij > 0 is the number of



times player i and j played together.
Players ranking. We assume that each player i has a rank
πi that is normalized such that 0 ≤ πi ≤ 1. We note that a
player’s rank πi does not correspond directly to any in-game
ranking but it can be estimated from game results.
Tournament structure. A tournament is a set of related
games between players. We assume that players play in
several sequential tournaments with multiple games Tms (at
least M = 2, m ≤M and s =

∑
i<j sij). We also consider

two types of tournaments: a first one m = 1, where the
ranks of the players are unknown, and we assume that there
are no cheaters during this first round; and all the following
tournaments 2 ≤ m ≤ M , where the players ranks of the
previous tournament m−1 are known or have been estimated.
Game outcome. We suppose that the result of a game
between players i and j is defined by the so-called outcome
function g(·, ·), with 0 ≤ g(., .) ≤ 1. A player i beats a player
j with probability g(πi, πj) = 1− g(πj , πi). For simplicity,
we assume in this paper that g(πi, πj) = πi

πi+πj
.

III. CHEATING MODELING AND CHEATING DETECTION
ALGORITHMS

The crucial element for cheating modeling is the way the
cheating behavior is manifested. In order to get insight in
cheaters behavior, we first define the cheating strategy and
then try to identify cheaters within their underlying strategy.
Notice that several strategies can be mixed, which can make
the identification of a cheater more complex. Here we will
consider only the following ones:
• for the law of large numbers based algorithm, we con-

sider that a cheater cheats systematically. In that case,
a cheater i beats non-cheating player j with probability
ĝ(πi, πj) > g(πi, πj).;

• for the Bradley-Terry framework, we make the assump-
tion that a cheater cheats only with a given number of
selected players j. In that case, a cheater i beats player
j with probability ĝ(πi, πj) > g(πi, πj).

Notice that the assumption that we make for the BT frame-
work can be also used in the LLNs framework, while the
opposite does not hold.

A. Law of large numbers based algorithm

The law of large numbers (LLNs) describes the long-term
stability of the mean of a random variable. We expect that
the results of cheaters will show different long term behavior
than non-cheating players. This means that we implicitly
assume that cheaters win more than they are supposed to.
Note if their cheating strategy makes them win as many
games as they would have won without cheating, we won’t
be able to detect them as a cheater.

Let first consider the case where there are no cheaters in
the tournament. In that case, the probability of seeing player
i winning k times against player j follows a binomial law
Xij ∼ B(sij , g(πi, πj)):

P (Xij = k) =
sij !

k!(sij − k)!
.g(πi, πj)k.g(πj , πi)sij−k

and the total number of wins of player i is defined as Xi =∑N
j=1Xij . By definition,

E(Xi) = E(
N∑
j=1

Xij) =
N∑
j=1

E(Xij) =
N∑
j=1

sijg(πi, πj)

and

σ2
i = V (Xi) =

N∑
j=1

V (Xij) =
N∑
j=1

sijg(πi, πj)(1−g(πi, πj))

as Xij are independent. We note that if there are no cheaters
then, by the Central Limit Theorem

Xi − E(Xi)
σi

∼ N (0, 1)

for all i = 1, . . . , N as N approaches infinity. We use here
the fact that all game outcomes are independent of each other.
We also implicitly assumed that

sup
i,j

sij <∞,

i.e. number of games between players are uniformly
bounded. Using the normal distribution we can say that
without cheaters we get

lim
N→∞

P

(
Xi − E(Xi)

σi
≤ ξ
)

= Φ(ξ) (1)

where Φ(ξ) is the cumulative repartition function of N(0, 1).
This means that from (1) it follows that with probability 1−α
the following inequality takes place:

Xi ≤ E(Xi) + ξ · σi.

For instance, choosing ξ = 3 gives a risk of observing a total
number of wins wi of player i wi > E(Xi) + 3 ·σi less that
1%.

Now, we consider three other cases, where i is a non-
cheating player:
• player j is not a cheater and there are some cheaters

in the tournament. We then expect that Xj < Xi as,
by assumption, cheaters are players who win more than
they are supposed to and they cheat against every other
players;

• player k is a cheater and there are no other cheaters in
the tournament. In that case, we have Xk > Xi as, by
definition, they win more than they are supposed to;

• player l is a cheater and there are other cheaters in the
tournament. Then, we can not conclude anything about
Xl: if it is a good cheater, we expect that Xl > Xi but
if other players are better cheats, we can have Xl ≤ Xi.
In this last case, if the player does not win more than
he should have done, he does not fall into the class of
cheaters that we are interested in detecting.

All the previous cases hold with probability one (see refer-
ences on the coupling methods, for instance [12]).
We run N tests, with n = 1, ..., N , testing the following
hypothesis:
Hn

0 : wn ≤ E(Xn) + ξ · σn



Hn
1 : wn > E(Xn) + ξ · σn

which means that, if we reject Hn
0 , we can conclude that

player n is not a non-cheater, but if we don’t reject Hn
0 ,

we estimate them as a non-cheater, still according to the
definition that a cheater is a player who wins more than
they are supposed to. So the following algorithm for cheating
detection is described:

Algorithm 1 LLNs based cheating detection algorithm
Require: Real ranks πi, i = 1, ..., N . Calculated E(Xi), σi

and observed wi
repeat

(i = 1, ..., N )
if (wi > E(Xi) + ξ · σi) then

player i is detected as a cheater
else

player i is detected as a non-cheater
end if

until

B. Bradley-Terry extended models

1) Bradley-Terry model for rank estimation: In the first
tournament m = 1, we make the assumption that they are no
cheaters, in order to estimate the real rank of all the players.
Otherwise, we can assume that the initial rank of the players
are known when they enter a game.
To estimate the rank of each player, we assume that player
i beats player j with a probability g(πi, πj). The function
g(πi, πj) = πi

πi+πj
corresponds to the Bradley-Terry model

[10] for paired comparisons. Suppose that the outcomes of
all games are independent, and given wij the number of
times player i has beaten player j during the tournament,
an approximated rank pi can be found by minimizing the
following negative log-likelihood:

min
p
`(p) =

−
∑
i<j

(
wij log

pi
pi + pj

+ wji log
pj

pi + pj

)
subject to 0 ≤ pi, i = 1..N,

∑N
i=1 pi = 1

(2)

This problem can be solved using a MM algorithm [13], by
the simple iterative procedure Algorithm 2.

Algorithm 2 Rank estimation algorithm

Require: any initial p0
j , j = 1, ..., N , such that

∑N
j=1 p

0
j = 1

repeat
(k = 0, 1, ...)
Let s = (k mod N) + 1.

pk+1 ≡

[
pk1 , ..., p

k
s−1,

∑
i,i 6=s wsi∑

i,i 6=s
wsi+wis

pk
s+pk

i

, pks+1, ..., p
k
N

]T
Normalize pk+1 :

∑N
i=1 p

k+1
i = 0

until
∂`(pk+1)
∂pj

= 0, ∀j

where
∂`(pk+1)
∂pj

=
∑
i<j

−wij
pi

+
wij + wji
pj + pi

.

If wi =
∑
j 6=i wij > 0, ∀i, and sij > 0, this algorithm

globally converges to the unique minimum of eq. (2). The
study of the convergence can be found in [14].

2) Bradley-Terry extended models for cheat detection:
a) Principle: We assume here that we could face

cheaters in the tournaments m > 1. We propose a model
extended from the Bradley-Terry model with home field
advantage [15]:

P(player i beats player j) =
θiπi

θiπi+πj
when player i has an advantage

πi

πi+θjπj
when player j has an advantage

πi

πi+πj
when neither of them has an advantage

with θi > 0 the strength of the advantage of player i and
πi their rank at the mth tournament. Having an advantage
here means that player i is in a position to cheat, and not the
fact that he is actually cheating. Players with associated θi
significatively different from 1 are the cheaters; when θi = 1,
∀i, we retrieve the initial Bradley-Terry model.

In this paper, we suppose that, if a player i is a cheater, he
is in a position to cheat when its opponent has a better rank.
Some other conditions could be used: the only restriction is
that we must know on which games they cheat. If we denote
πm−1
j the rank of player j on the previous tournament, player
i has an advantage on player j (and possibly cheats if he is
a cheater) when πm−1

i < πm−1
j , that is to say when he is

more likely to lose. We thus obtain the following outcome
function:

g(πi, πj , θi, θj) =


θiπi

θiπi+πj
if πm−1

i < πm−1
j

πi

πi+θjπj
if πm−1

i > πm−1
j

πi

πi+πj
if πm−1

i = πm−1
j

(3)

b) Algorithm: Suppose that the outcomes of all games
are independent and that players know the estimated ranks
at the last tournament pm−1

i of their opponents, and given
whij (or whji) the number of times player i has beaten (or
has lost against) player j when pm−1

i < pm−1
j and waij (or

waji) the number of times player i has beaten (or has lost
against) player j when pm−1

i > pm−1
j and wtij (or wtji) the

number of times player i has beaten (or has lost against)
player j when pm−1

i = pm−1
j , an approximated rank pi and

strength of the advantage ϑi can be found by minimizing the
following negative log-likelihood:

min
p,ϑ

`(p,ϑ) =

−
∑
i<j

(
whij log ϑipi

ϑipi+pj
+ waij log pi

pi+ϑjpj
+

whji log ϑjpj

pi+ϑjpj
+ waji log pj

ϑipi+pj
+

(wtij + wtji) log pj

pi+pj

)
subject to 0 ≤ pi, i = 1..N,

∑N
i=1 pi = 1, ϑi > 0.

We look for a simultaneous estimation of p and ϑ. We use
a MM algorithm, taking advantage that we know that, for



positive x and y, − lnx ≥ 1 − ln y − x
y to construct the

surrogate Qk(p,ϑ) (see [13] for details):

Qk(p,ϑ) = −
∑
i<j

whij lnϑipi + waij ln pi + wtij ln pi+

waji ln pj + whji lnϑjpj + wtji ln pj+

(whij + waji)

(
1− ln(ϑki p

k
i + pkj )− ϑipi + pj

ϑki p
k
i + pkj

)
+

(waij + whji)
(

1− ln(pki + ϑkj p
k
j )− pi+ϑjpj

pk
i +ϑk

j p
k
j

)
+

(wtij + wtji)

(
1− ln(pki + pkj )− pi + pj

pki + pkj

)
,

with Qk(p,ϑ) ≤ `(p,ϑ) with equality if and only if
(p,ϑ) = (pk,ϑk). Such a function is said to minorise
`(p,ϑ) at the point (pk,ϑk). The advantage of using
Qk(p,ϑ) is that it makes easier the maximization than the
original likelihood because it separates the components of
(p,ϑ).
Here, the presence of θiπi leads to a non-separation of the
parameters by the surrogate. However, we can construct a
cyclic algorithm in that case, first by maximising Qk(p,ϑk)
as a function of p and Qk(pk+1,ϑ) as a function of ϑ.

Setting
∂Qk(p,ϑk)

pi
= 0 leads to

pk+1
i = wi.

∑
j,j 6=i

ghi ϑ
k
i

ϑki p
k
i + pkj

+
gai

pki + ϑkj p
k
j

+
gti

pki + pkj

−1

where wi is the total number of wins of player i, ghi the
number of games player i played at home, gai away and gti
when none of the players has an advantage.

Setting
∂Qk(pk+1,ϑ)

∂ϑi
= 0 leads to

ϑk+1
i = ghi .

∑
j,j 6=i

ghi p
k+1
i

ϑki p
k+1
i + pk+1

j

−1

where ghi is the number of wins of player i when they play
with an advantage (pm−1

i < pm−1
j ).

Similarly to the Bradley-Terry model for rank estimation,
the convergence of the global algorithm is guaranteed if
each player wins and loses at least once away and at home
(proof will be presented in a forthcoming paper). Then,
with function g(πi, πj , θi, θj) defined in equation (3), these
conditions will never be met as the best player a will never
play at home (his rank pm−1

a is greater than all the other
one) and as the worse player b will never play away (they
have smallest rank).
To deal with this problem, we make two additional assump-
tions: θa = θb = 1. For the best player, the assumption makes
sense as this player has no opportunities to cheat anyway;
for the worse player, the legitimacy of the assumption is
less obvious but needed: if the worst player of the previous
tournament cheats, we won’t be able to detect it.

Algorithm 3 summarises up the simultaneous rank and
cheating strength estimation process.

Algorithm 3 Rank and strength estimation algorithm

Require: any initial p0
j , j = 1, ..., N , such that

∑N
j=1 p

0
j = 1

Require: initial ϑ0
j = 1, ∀j

repeat
(k = 0, 1, ...)
Let s = (k mod N) + 1.
pk+1
s =

ws.

∑
i,i 6=s

gksϑ
k
s

ϑksp
k
s + pki

+
gas

pks + ϑki p
k
i

+
gts

pks + pki

−1

pk+1 ≡
[
pk1 , ..., p

k
s−1, p

k+1
s , pks+1, ..., p

k
N

]T
Normalize pk+1

if s is not the best or the worst player of the previous
tournament then
ϑk+1
s = whs .

[∑
i,i6=s

gh
s p

k+1
s

ϑk
sp

k+1
s +pk+1

i

]−1

else
ϑk+1
s = ϑks

end if
ϑk+1 ≡

[
ϑk1 , ..., ϑ

k
s−1, ϑ

k+1
s , ϑks+1, ..., ϑ

k
N

]T
until

∂`(pk,ϑk)
∂pj

= 0 and
∂`(pk,ϑk)

∂ϑj
= 0, ∀j

c) Tests for detecting cheaters: A cheater is a player
whose θi value significantly deviates from 1 (or which is
significantly greater than 1). We here construct N tests, with
n = 1, ..., N :
Hn

0 : ϑ = [ϑ1, ϑ2, ..., 1, ..., ϑN ] = ϑn0
Hn

1 : ϑ = [ϑ1, ϑ2, ..., ϑn, ..., ϑN ] = ϑn1 , with ϑn > 1
If we reject Hn

0 , we conclude that player n is a cheater.
We proceed by using a likelihood ratio test: we construct
the statistics Dn = 2(`(p,ϑn1 ) − `(p,ϑn0 )) ∼ χ2(N − 1)
where `(p,ϑn1 ) is the log-likelihood under the alternative
hypothesis and `(p,ϑn0 ) the log-likelihood under the null
hypothesis. If we reject Hn

0 at a significance level α, we
conclude that player n is a cheater.

IV. PERFORMANCE EVALUATION ON SIMULATED
EXAMPLES

In this section we present simulations to show that our
technique can be effective. We first consider the test based
on the law of large numbers, which assumes that the ranks
are known. Then we will move to a more general situation
using the Bradley-Terry extension to track cheaters across
multiple games.

A. Data generation

For every tournament, we generate data for N =
5, 20 and 80 players, and with sij = 5, 10, 20, 40 and 80
games between each pair of players (except for 5 players
and 5 games, where the conditions of the extended Bradley-
Terry algorithm convergence are infrequently met).

1) First tournament m = 1: Here, we generate N random
numbers ui uniformly distributed on the [0, 1] interval and
normalize them such that

∑N
i=1 ui = 1, and set them as the



true ranks πi = π1
i = ui. We then simulate a tournament

where each pair of players (i, j) plays sij times against each
other. For each game, we generate a random number u ∼
U(0, 1) and declare player i as the winner if u < g(πi, πj)
and as the loser otherwise. In order to obtain a measure of
the accuracy of our results, we replicate this tournament 500
times.

2) Next tournament m = 2: We first suppose that the true
rank of the players evolves between two tournaments πmi =
πm−1
i + ui where ui ∼ U(0,

∣∣ 1
N − 0.2

∣∣) (there can not be a
too big gap between the previous and the current rank) and
the ranks are πi = πmi after normalization

∑N
i=1 π

m
i = 1.

We consider that we face q cheaters, 0 ≤ q ≤ N . For the
non-cheating players, we assign θi = 1 and for the cheaters
θi > 1. We test 3 cases: where there are no cheaters, 3
cheaters (with θi ∈ {5, 10, 20}) or half of the players are
cheaters (with θi ∈ {5, 8, 11, 14, 17}).
To determine the result of a game between player i and j, we
generate a random number u ∼ U(0, 1) and declare player i
as the winner if u < g(πi, πj , θi, θj) and player j otherwise.
In order to obtain a measure of the accuracy of our results,
we replicate this tournament 500 times.

B. Results for the LLNs based algorithms

To use the LLNs framework, we have to make the
assumption that, either the ranks are known or that they
evolve slowly between the tournaments. In the following
experiments, we suppose that the ranks are known and use
algorithm 1 to discriminate cheaters and non-cheaters, setting
πi = πmi .
Table 1 gives the confusion matrix for different combina-
tions of players, games and cheaters, using a test at 95%
confidence level. It shows that the algorithm performs well,
especially when the number of players and games are high,
correctly identifying both cheaters and non-cheaters. When
the number of players is small, we observe that the number of
cheaters accurately detected as cheaters falls. One possible
explanation is that the number of players is too small to
satisfy the conditions of the central limit theorem. A second
explanation is that, with 3 cheaters and 5 players for instance,
at least one of the cheaters will perform less well than the
other ones, and then that the cheating strategy doesn’t allow
one to significantly increase the total number of wins.
The algorithm is fast, performing all the set of experiments
in a couple of minutes.

C. Rank estimation on tournament m = 1

In the following subsections, we present experiments on
πi and θi estimations on simulated data. In implementing
Algorithm 2, we use the following stopping criteria:

max
j,j∈{1...N}

∣∣∣∣∂`(pk)
∂pj

∣∣∣∣ < 0.0001

and for Algorithm 3:

max
j,j∈{1...N}

∣∣∣∣∣∂`(pk,ϑk)
∂pj

,
∂`(pk,ϑk)

∂ϑj

∣∣∣∣∣ < 0.0001

which implies that these quantities are close to zero.
We compute the relative mean square error over our 500

simulations in order to evaluate the accuracy of the estimated
ranks:

RMSE(π) =
1

500

500∑
k=1

(
1
N

N∑
i=1

(πi − pki )2

π2
i

)
where pki is the estimated rank of player i at the kth

replication. Figure 1 shows that the accuracy of the rank
estimation increases with the number of players and of games
between each pair of players. We see that the estimates are
quite good, but improve greatly when the overall number of
games becomes larger.

5 10 20 40 80
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RM
SE

 
π
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20 players
80 players

Fig. 1. RMSE(π) for the first tournament.

D. Results for the Bradley-Terry model extension

We compute the relative mean square error in order to
evaluate the accuracy of the estimated cheating strengths:

RMSE(θ) =
1

500

500∑
k=1

(
1
N

N∑
i=1

(θi − ϑki )2

θ2i

)
where ϑki is the estimated strength of player i at the kth

replication. Figures 2 and 3 presents the RMSE for the ranks
and the strengths of the players. We see that, as for the first
tournament, RMSE(π) and RMSE(θ) decrease with the num-
ber of players and games, and that the number of cheaters
seems to have a small influence on the accuracy of the
results (except for the RMSE(θ) values for 5 players that are
different, for which we have no explanation). Nevertheless,
we notice that RMSE(π) is larger in the second tournament
than in the first, which can be due to the fact that we have
in that case more unknown values to estimate.

Table 1 gives the confusion matrix for different combina-
tions of players, games and cheaters. It shows that the tests
perform well, identifying correctly the cheaters and the non-
cheaters, especially when the number of games are larger. We
notice that the number of non-cheaters detected as cheaters
is always small, whatever the number of games, players or



TABLE I
CONFUSION MATRIX FOR 5, 20 AND 80 PLAYERS ON THE TOURNAMENT, WHERE THE PREDICTIONS ARE MADE WITH α = 0.05. THE MATRIX READS

AS FOLLOWS: IF WE HAVE 20 PLAYERS PLAYING 5 GAMES, AND IF THERE ARE 3 CHEATERS, THE BRADLEY-TERRY BASED ALGORITHM DETECT

60.3% OF THE CHEATERS (AND THEN DOESN’T DETECT 39.7% OF THEM) WHEREAS IT DETECTS 99.4% OF THE NON-CHEATERS (AND THEN

IDENTIFIES AS CHEATERS 0.6% OF THE NON-CHEATERS).

PREDICTION
# cheaters # non-cheaters

0 cheaters 3 cheaters half cheaters 0 cheaters 3 cheaters half cheaters
BT LLN BT LLN BT LLN BT LLN BT LLN BT LLN

A
C

T
U

A
L

5
pl

ay
er

s # cheater

10 g. 63.7 60.2 36.3 39.8
20 g. 88.3 70.1 11.7 29.9
40 g. 96.7 76.1 3.3 23.9
80 g. 99.7 83.7 0.3 16.3

# non-cheaters

10 g. 3.0 2.8 0 0 97.0 97.2 100 100
20 g. 3.4 2.4 0 0 96.6 97.2 100 100
40 g. 2.6 2.4 0 0 97.4 97.6 100 100
80 g. 3.2 2.8 0 0 96.8 97.2 100 100

20
pl

ay
er

s # cheater

5 g. 60.3 99.9 61.5 86.0 39.7 0.1 38.5 14
10 g. 81.0 100 81.1 92.0 19.0 0 18.9 8.0
20 g. 92.0 100 91.2 95.6 8.0 0 8.8 4.4
40 g. 96.7 100 97.2 97.9 3.3 0 2.8 2.1
80 g. 99.7 100 99.8 99.3 0.3 0 0.2 0.7

# non-cheaters

5 g. 0.6 2.4 0.6 0.1 0.6 0 99.4 97.5 99.4 99.9 99.4 100
10 g. 0.5 2.5 0.6 0 0.5 0 99.6 97.5 99.4 100 99.5 100
20 g. 0.7 2.5 0.6 0 8.8 0 99.3 97.5 99.4 100 91.2 0
40 g. 0.7 2.6 0.6 0 0.9 0 99.3 97.4 99.4 100 99.1 100
80 g. 0.6 2.3 0.8 0 0.7 0 99.4 97.7 99.2 100 99.3 100

80
pl

ay
er

s # cheater

5 g. 66.3 100 68.1 95.9 33.7 0 31.9 4.1
10 g. 84.7 100 84.0 98.7 15.3 0 16.0 1.3
20 g. 93.0 100 92.1 99.7 7.0 0 8.0 0.3
40 g. 95.7 100 96.1 100 4.3 0 3.9 0
80 g. 98.7 100 98.3 100 1.3 0 1.7 0

# non-cheaters

5 g. 0 2.6 0.3 0.6 0 0 100 97.4 99.7 99.4 100 100
10 g. 0.2 2.6 0.7 0.3 0 0 99.8 97.4 99.3 99.4 100 100
20 g. 0.1 2.6 1.0 0.2 0 0 99.9 97.4 99.0 99.8 100 100
40 g. 0.1 2.5 0.7 0.1 0 0 99.9 97.5 99.3 99.9 100 100
80 g. 0.1 2.5 1.0 0 0 0 99.9 97.5 99.0 100 100 100

cheaters, whereas the number of cheaters detected as non-
cheaters is larger when the number of games between players
is smaller. This result is not surprising: whereas we have
fixed the significance level of the test α (which corresponds
to the probability of rejecting the null-hypothesis — we then
control the number of false positive), the power of the test 1−
β, which correspond to the probability of correctly rejecting
the null-hypothesis (here detecting cheaters as cheaters), is
not controlled and increased with the sample size.
We also note that, in most cases, this method is less efficient
that the LLNs based one. This is expected as the algorithm
must estimate all ranks, which the LLN-based scheme as-
sumes are known. The runtime is a couple of hours for the
set of experiments, in contrast to a few minutes for the LLN-

based algorithms.

V. CONCLUSION

Cheating is a critical issue in online gaming. We have
proposed a framework for modeling games, based on the
assumption that the probability of outcomes of the games
is only determined by the ranks of the players. Making the
(strong) assumption that the ranks are known, we show that a
simple law of large numbers based algorithm can be used to
detect cheaters. In the case where the ranks are unknown, we
use the Bradley-Terry model to estimate them and we derive
a new model for cheat detection. We assume that, when
cheaters cheat, their rank is artificially increased. We then
introduce a new parameter in the Bradley-Terry model, the
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Fig. 2. RMSE(π) for the second tournament.
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strength of cheating, and derive an algorithm that estimates
simultaneously the rank and the cheating strength. Experi-
ments on synthetic data show promising results, especially
when the number of games is large, and the result accuracy
is independent on the number of cheaters.

The use of the LLN based algorithm suppose that the ranks
of the players are known or that they are estimated from the
previous tournament and evolve very slowly with time. This
assumption is valid when we consider games in which the
skills of the players do not change quickly, e.g. chess. It
would be interesting to study the robustness of the algorithm
to the evolution of the ranks. The advantage of using this
framework is that the algorithm is fast and no assumptions
on the cheating strategy need to be made (no systematic
cheating is possible for instance). The use of the Bradley-
Terry framework suppose that we know when the players
cheat. In this paper, we made the assumption that cheaters
cheat only with players better than them but other situations
can be considered. The advantage of this framework is that
it makes no assumption on the evolution of the skills of the
players between two tournaments (as the ranks and cheating

strengths are estimated together) and that it quantifies the
way players cheat.

Though we get relatively good performance in terms
of false positives, we expect that an application of these
algorithms would be used to identify players for further
investigation. This would allow other factors to be taken into
account (say complaints or a reputation system) before the
player would be deemed a cheater.

The next step is to evaluate the two cheater detection
algorithms on data coming from a real game. We plan to
extend this work to consider to consider other types of games
or tournaments. We would also like to compare the simpler
law of large numbers technique with a rank estimation stage
based on a Bradley-Terry model to assess how it behaves
when the ranks vary. We are also considering how to use
additional information instead of using only ranks and game
outcomes. For instance, it could be useful to use the players’
opinions about the other players’ behavior as a source of
input.
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