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1. Introduction

This demonstration provides an example of the application of the velocity-based framework to analyse the
dynamics of a simple nonlinear system and to design a nonlinear controller which achieves specified closed-loop
performance requirements.  The velocity-based gain-scheduling approach is a general framework for the analysis and
design of nonlinear systems.  This framework retains the continuity with linear methods which is the principle
advantage of conventional gain-scheduling methods.  However, in contrast to conventional methods, the velocity-
based gain-scheduling approach is not restricted to near equili brium operation and does not involve any form of
inherent slow variation requirement whatsoever; for example, global dynamic inversion controllers may be designed.
The velocity-based approach generalises the conventional series expansion linearisation about an equili brium point.
A linear system, namely the velocity-based linearisation, is associated with every operating point of a nonlinear
system, both equili brium and non-equilibrium.  The resulting velocity-based linearisation family is an alternative
representation of the nonlinear system which involves no loss of information; for example, the solutions to the
members of the velocity-based linearisation family may be pieced together to approximate arbitrarily accurately the
solution to the nonlinear system.

2. Nonlinear Plant

Consider the nonlinear plant with dynamics�
( ),x G y x= =ρ             

where ρ = −r x10 , G(s)=tanh(s)+0.01s. At an

equili brium operating point,
G(ρo)=0

which requires that
 ρo = ro-10 xo = 0

Hence, the series expansion linearisation of the plant
relative to the equilibrium operating point, (ro, xo, yo), is

δ δ δ δ δ
�

( ) ( ) ,x G x G r y x= − ∇ + ∇ =10 0 0    

δ δ δr r r x x x y y yo o o= − = − = +, ,

where∇ = −G s s( ) . tanh101 2 .  The series expansion
linearisation is the same at every equilibrium operating
point.
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Figure 1 – Plot of G(s)

To begin the demo, start MATLAB and then type Example followed by <enter>.  The Control Window shown
in figure 2 will appear (without the annotation).



Figure 2 – Control Window

By moving the marker to a number of different equilibrium points (points lying on the solid red line in the operating
space display), it can be seen that the transfer function of the series expansion linearisation is indeed the same at
every equilibrium point.

3. L inear PI Control

The requirement is to design a controller such that the closed-loop system has a rise time of around 0.5 seconds
with less than 25% overshoot in response to demanded step changes in the plant output,  y, of magnitude less than
100 units.

The conventional gain-scheduling approach is to design a linear controller on the basis of the series expansion
linearisation of the plant about a particular equili brium operating point.  This is repeated for a number of equili brium
points in order to obtain a number of linear controllers.  These linear controllers are interpolated, in some appropriate
manner, to obtain a continuous linear controller family.  A nonlinear controller realisation is then selected which
inherits, in some sense, the dynamic characteristics of the members of the linear controller family.

Based on the conventional series expansion linearisation of the plant at an equili brium operating point, an
appropriate local controller is the PI-type controller

Current operating point of nonlinear plant- altered by clicking and dragging
marker with the mouse.  Note, solid red line marks the equilibrium points of
the plant and dashed red lines mark parallel contours.

Bode plot of the transfer function of the
linearisation associated with the current
operating point.

Selects type of linearisation: either conventional series expansion
linearisation about an equilibrium point or the velocity-based linearisation
(which exists for every operating point, not just equilibrium points).

Selects system considered.



δ
δ

δ
δ δ δ

δ
δ

�� ,
x

x

x

x
e r K K

x

x
c

c

c

c

c

c

1

2

1

2

1

2

50 0

1 0

50

0 0 1

�
��

�
� � =

−
�
��

�
� �

�
��

�
� � +

�
��

�
� � =

�
��

�
� �   (1)

δ δe e e r r ro o= − = +, (2)

with e=yref-y, Ko=4.0,  K1=100.0.  The transfer function of the above linear controller is K
K

s so +
��	 
� �

+
1 50

50
.  In this

example, the plant dynamics are the same at every equili brium operating point and so the same controller dynamics,
(1), may be employed at every equili brium operating point.  It should be noted that whilst the controller dynamics,
(1), are the same at every equili brium point, the input/output transformations, (2), may vary with the equili brium
operating point.

It remains to determine a controller realisation corresponding to the family of linear controllers.  Owing to the
integral action in the controller, eo is zero and ro is implicitly generated by the feedback.   Hence, on the basis of the
family of linearisations at the equili brium operating points, a linear PI-type controller seems to be appropriate;
namely, �� ,
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Since the series expansion linearisation of the plant is the same at every equili brium operating point, it is perhaps
unsurprising that the conventional gain-scheduling approach should lead to a linear design of controller.

In the Control Window, choose Plant+Linear PI to
analyse.  An additional window will appear which
permits the controller parameters Ko and K1  to be
specified (see figure 3) and the transfer function
displayed will change to show the closed-loop dynamics
of the series expansion linearisation of the plant with the
linear PI controller.  Adjust the controller parameters to
obtain a satisfactory closed-loop transfer function with
bandwidth around 5 rad/s, peak less than 6 dB (e.g.
Ko=5, K1=50). Figure 3 – Linear PI controller parameter window

Recall that this transfer function only describes the dynamics in the vicinity of an equilibrium point.  To see the step
response of the nonlinear plant when the linear PI controller is employed, from the Nonlinear menu choose Step
Response.   A new window will appear showing the step response (see figure 4).  The magnitude of the step input
applied can be varied by adjusting the slider on this window.  It can be seen that for inputs greater than around 0.3
units, the PI controller is unable to achieve the overshoot requirements.

Exercise Vary the controller parameters to see if performance specification can be satisfied.



Figure 4 Step response window

4. Velocity-based linear isation

In order to incorporate information about the plant dynamics at non-equili brium operating points into the
controller design, reformulate the nonlinear plant, by differentiating, as�

( ) ( )
�
,

�
w G w G r y w= − ∇ + ∇ =10 ρ ρ             (3)

where ρ = −r x10 .  The velocity-based linearisation associated with the operating point at which ρ equals ρ1 is

simply the corresponding “ frozen” form of (3)
 �
( )



( ) � , � 


w G w G r y w= − ∇ + ∇ =10 1 1ρ ρ             

where ρ1 1 110= −r x .  Recall ing that ρ equals zero at the equili brium operating points, it can be seen that the

velocity-based linearisation at an equili brium operating point is directly related to the conventional series expansion
linearisation at an equili brium point.  However, in contrast to the conventional l inearisation, a velocity-based
linearisation is defined for every operating point, not just the equili brium points.  The solution to a particular
velocity-based linearisation approximates the solution to the nonlinear system in the vicinity of the relevant operating
point.  As the nonlinear system moves from one operating point to another, the solution can be approximated
arbitrarily accurately by piecing together the solutions to appropriate velocity-based linearisations.

Select Plant and Velocity-based Linearisation in the Control Window to display the transfer function of the
plant velocity-based linearisation associated with the current operating point.  Since a velocity-based linearisation is
defined for every operating point, it is now possible to move the operating point marker off the equili brium manifold.
It can be seen that the bandwidth of the plant velocity-based linearisation rapidly decreases as the operating point
moves away from the equili brium manifold and ρ increases (it can be seen from figure 1 that the slope, or “gain” , of
the plant nonlinearity rapdily decreases as ρ changes from zero).  Selecting Plant+Linear PI, the variation in the
transfer function of the velocity-based linearisation of the closed-loop system is displayed.  It can be seen that the
bandwidth rapidly decreases as ρ increases and a large resonance peak develops in the transfer function.  The
velocity-based linearisation thereby provides insight into the failure of  the linear PI controller.

refreshes the
step response
after changes to
the controller or
controller
parameters

sets amplitude
of step input

quantity to be
displayed



5. Velocity-based Gain-scheduling

The velocity-based gain-scheduling methodology can be employed to incorporate information regarding the plant
dynamics away from equilibrium points into the controller design.  This design approach involves the following
steps

1. Determine the velocity-based linearisation family associated with the nonlinear plant dynamics.
2. Based on the plant velocity-based linearisation family, determine the required controller velocity-based

linearisation family such that the resulting closed-loop family achieves the performance requirements.   Since
each member of the plant family is linear, conventional linear design methods can be utili sed to design each
corresponding member of the controller family.

3. Realise a nonlinear controller corresponding to the family of linear controllers designed at step 2.  The velocity-
based form of the controller can be obtained directly from the family of linear controllers by simply permitting
the ρρ to vary with the operating point.

This design procedure retains a divide and conquer philosophy and maintains the continuity with linear design
methods which is an important feature of  the conventional gain-scheduling approach.  However, in contrast to the
conventional gain-scheduling approach, the resulting nonlinear controller is valid throughout the operating envelope
of the plant, not just in the vicinity of the equili brium operating points.  This extension is a direct consequence of
employing the velocity-based linearisation framework  rather than the conventional series expansion linearisation
about an equili brium operating point.

5.1Velocity-based Dynamic Inversion Control

 A dynamic inversion controller is obtained when, in step 2, the controller linearisation family is designed such
that the closed-loop combination of each plant velocity-based linearisation with the corresponding controller
velocity-based linearisation has the same transfer function at every operating point and, in addition, the state of the
controller is selected appropriately.  This is a direct generalisation of linear pole-zero inversion and is quite distinct
from Input-Output Linearisation.  Similarly to the linear case, when the relative degrees of the plant velocity-based
linearisations are greater than zero (in the SISO case, number of poles is greater than the number of zeroes), the
dynamic inverse is unrealisable.  However, an arbitarily accurate realisable approximation can be obtained by
augmenting the exact inverse with sufficiently fast dynamics (analagous to adding high frequency poles in the linear
case).

In the present example, the relative degree of the plant is unity and an approximate velocity-based dynamic
inverse is�

( ) ( )
( ) �

,
� �

w G w
G

v r w vii i10
1

          = − + ∇ − ∇ = +
ε

ρ ρ
ε ε ε

1 1
(4)

where v is an auxili ary input and ε determines the fast dynamics included to make the inverse realisable.  As ε tends
to zero, the approximate inverse tends to the exact inverse in the sense that the output 

�
y  of the plant tends to the

input �v .  The system, (4), is essentiall y an open-loop inverse of the plant.  In order to reject stready disturbances
integral feedback is employed�

( )v y yref= −λ (5)

where yref is the signal which the plant output is required to track and λ determines the speed of the error dynamics.
Recall that the velocity-based linearisations of the approximate inverse are obtained by simply “ freezing” the
dynamics, (4)-(5).



In the Control Window, set the system to
Plant+Inverse.  An additional window will appear
which permits the controller parameters ε and λ to be
specified (see figure 5) and the transfer function
displayed will change to show the closed-loop dynamics
of the velocity-based linearisation of the plant with that
of the inverse controller.   To see the step response of
the nonlinear closed-loop system, from the Nonlinear
menu choose Step Response.   A new window will
appear showing the step response (see figure 4).  The
magnitude of the step input applied can be varied by
adjusting the slider on this window.   Adjust the
controller parameters to obtain a satisfactory step
response (e.g. ε=0.001, λ=5).

Figure 5 - Inverse controller parameter window

5.2 Blended Multiple Model Approximation of Plant

The velocity-based gain-scheduling approach is not confined to dynamic inversion but may also be employed to
design controllers when the desired closed-loop dynamics are nonlinear.  In step 2 of the velocity-based gain-
scheduling design procedure, the velocity-based linearisation family of the controller is determined based on the
velocity-based linearisation family of the plant.  Of course, the plant  and controller linearisation families have an
infinite number of members.  The controller family can be determined directly (as in the dynamic inversion situation)
when an analytic desription of the plant is available  However, an alternative is to design the controller velocity-
based linearisation for only a small (finite) number of members of the plant linearisation family and these controller
linearisations are then interpolated to obtain a continuous controller velocity-based linearisation family.

Rather than choosing an arbitrary controller interpolation (such as linear interpolation of the controller state-space
matrices), an appropriate blended multiple model based representation of the plant is first determined.  The velocity-
based linearisations of the plant at a small number of operating points (“ local models” ) are  interpolated (“blended”)
to obtain an approximate plant velocity-based linearisation family.  It should be noted
that this representation  is distinct from other blended
multiple model representations proposed in the literature
in that the local models are linear (rather than affine)
and the solution to the overall system is directly related
to the solutions to the local models (simply the
interpolation of the solutions to the local models).   In
the present example, an appropriate approximate
velocity-based linearisation family of the plant, which
uses only two local models, is� �

( )
�

( )
�

( ),
� � �

w G w G r y wi i
i

i= − ∇ + ∇∑ =
=

10
0

1

ρ ρ µ ρ
� �

            (6)

where ρo = 0 (“equili brium”), ρ1=5 (“ far from
equili brium”) and the weighting functions, µi, are

Gaussian-based and normalised so that µ i
i=
∑ =

0

1

1(see

figure 6).

In the Control Window, set the system to Approx
Plant.   The transfer function displayed will change to
show that of the approximate velocity-based
linearisation family, (6), of the plant.  Changing the
setting to Approx Error displays the difference between
the transfer function of the exact and approximate plant
velocity-based linearisations.
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Figure 6 – Weighting functions used in blended multiple
model of plant and in velocity-based gain-scheduled
controller



5.3Velocity-based Gain-scheduled Control

A velocity-based gain-scheduled controller can be designed by first determining a linear controller for each of the
local models in the approximate blended multiple model of the plant.  These linear controllers are then interpolated
(using the same weighting functions µi as in the plant model) to obtain a continuous controller velocity-based
linearisation family.  In the present example, only two local models are required and the gain-scheduling design is
particularly straightforward.  Employing a PI-type controller structure once again, the controllers for, respectively,
the ρo=0 and ρ1=5 are�� �
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where e=yref-y. The corresponding scheduled nonlinear controller, obtained by interpolating between these two
controllers using the plant weighting functions, is�� �
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where K K K Ki

i
i

i

i
i0 0

0

1

1 1
0

1

= ∑ = ∑
= =

µ ρ µ ρ( ), ( )   .   The velocity-based linearisations of the controller are simply the

“ frozen” forms of (7).  The controller, (7), cannot be implemented directly since �e  depends on 
�
y  which is not

measured.  However, the controller may be reformulated equivalently in the realisable form� , � ( ) ( )w w e r K w e K wc c c c2 2 2 2
50 50 50 500 1= − + = − + +   ρ ρ

� �
In the Control Window, set the system to
Plant+Scheduled PI.  An additional window will
appear which permits the controller parameters
K K K K0

0
1
0

0
1

1
1, ,  and  to be specified (see figure 7) and the

transfer function displayed will change to show the
closed-loop dynamics of the velocity-based linearisation
of the plant with that of the gain-scheduled controller.
Adjust the controller parameters to obtain a satisfactory
closed-loop transfer functions when ρ≈0 and ρ≈5
(bandwidth around 5 rad/s, peak value less than 6dB).  It
should be noted that the transfer function of the closed-
loop velocity-based linearisation will vary with ρ even
when it is the same at both ρ=0 and ρ=5.  This arises
because of the rather crude interpolation employed in
this example and the variation can be reduced by finer
interpolation between a larger number of controller
designs. To see the step response of the nonlinear
closed-loop system, from the Nonlinear menu choose
Step Response.   A new window will appear showing
the step response (see figure 4).  The magnitude of the
step input applied can be varied by adjusting the slider
on this window.   If necessary, adjust the controller
parameters further to obtain a satisfactory step response
(e.g. K K K K0

0
1
0

0
1

1
110 100 550= = =, , = 500, ).

Figure 7- Scheduled PI controller parameter window



6. Conclusions
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Appendix – Installation

Demo requires MATLAB 5.1 or better (but is otherwise standalone and does not require any of the MATLAB
toolboxes).  Installation is straightforward: create a new directory, copy the demo files there and set the MATLAB
path to include the new directory.   The demo files are

Example.m
StepResponse.m
LinearPIParas2.m
InvParas.m
ScheduledPIParas.m
Workshop.m
PlantFn.m
PIFn.m
PlantPIFn.m
PlantInverseFn.m
PlantSchedPIFn.m
Example.mat
StepResponse.mat
StepResponse.mat
LinearPIParas2.mat
InvParas.mat
ScheduledPIParas.mat
workshop-demo.pdf


