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1. Introduction

This demonstration provides an example of the gplication of the velocity-based framework to anayse the
dynamics of a simple nonlinea system and to design a nonlinea controller which achieves pedfied closed-loop
performance requirements. The velocity-based gain-scheduling approac is a general framework for the analysis and
design of nonlinea systems. This framework retains the continuity with linea methods which is the principle
advantage of conventional gain-scheduling methods. However, in contrast to conventional methods, the velocity-
based gain-scheduling approad is not restricted to nea equili brium operation and dces not involve any form of
inherent slow variation requirement whatsoever; for example, global dynamic inversion controll ers may be designed.
The velocity-based approach generali ses the mnventional series expansion lineaisation about an equili brium point.
A linea system, namely the velocity-based lineaisation, is asciated with every operating point of a nonlinea
system, both equili brium and nonequilibrium.  The resulting velocity-based lineaisation family is an aternative
representation of the nonlinea system which involves no loss of information; for example, the solutions to the
members of the velocity-based lineaisation family may be pieced together to approximate abitrarily accurately the
solution to the nonlinea system.

2. Nonlinear Plant

Consider the nonlinea plant with dynamics s

x=G(p), y=x
where p=r-10x, G(s)=tanh()+0.01s. At an 1 — ]
equili brium operating point,
G(po)=0 e
which requires that s
Po=Tro10% =0 () o
Hence the series expansion lineaisation of the plant os
relative to the equilibrium operating point, (ro, Xo, Yo), iS -
O = -100G(0)x + OG(0)or, dy = & L -
O =1 =1, X=X=-X,y=0y+Yy,
whereJG(s) =101-tanh*s. The series expansion T s 2 a1 o 1 2z s 4 s
lineaisation is the same at every equilibrium operating Figure 1 — Plot of G(s)

point.

To begin the demo, start MATLAB and then type Example followed by <enter>. The Control Window shown
infigure 2 will appea (without the annotation).



Current operating point of nonlinear plant- altered by clicking and dragging  Bode plot of the transfer function of the
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Figure 2 — Control Window

By moving the marker to a number of different equilibrium points (points lying on the solid red line in the operating
spacedisplay), it can be seen that the transfer function of the series expansion lineaisation is indeed the same &
every equilibrium point.

3. Linear PI Control

The requirement is to design a @ntroller such that the dosed-loop system has a rise time of around 0.5 seconds
with lessthan 25% overshoat in resporse to demanded step changes in the plant output, y, of magnitude less than
100units.

The mnventiona gain-scheduling approach is to design a linea controller on the basis of the series expansion
lineaisation of the plant about a particular equili brium operating point. Thisis repeaed for a number of equili brium
pointsin order to oktain a number of linea controllers. These linea controllers are interpolated, in some gpropriate
manner, to oltain a continuous linea controller family. A nonlinea controller redisation is then seleded which
inherits, in some sense, the dynamic charaderistics of the members of the linea controll er family.

Based on the cnventional series expansion lineaisation of the plant at an equilibrium operating point, an
appropriate locd controller isthe Pl-type cntroll er
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with e=y,«Y, K;=4.0, K;=1000. The transfer function of the eove linea controller is (KO +?ljsf—c;0 . Inthis

example, the plant dynamics are the same & every equili brium operating point and so the same controller dynamics,
(1), may be employed at every equili brium operating point. It should be noted that whilst the controller dynamics,
(1), are the same & every equili brium point, the input/output transformations, (2), may vary with the eguili brium
operating point.

It remains to determine a ontroller redisation corresponding to the family of linea controllers. Owing to the
integral adion in the controller, e,is zero and r, isimplicitly generated by the feedbadk. Hence on the basis of the
family of lineaisations at the equilibrium operating points, a linea Pl-type wntroller seems to be gpropriate;
namely,

RPN EECEN N

Since the series expansion lineaisation of the plant is the same & every equili brium operating point, it is perhaps
unsurprising that the cmnventional gain-scheduling approach should lead to alinea design of controller.

In the Control Window, choose Plant+Linear Pl to _
andyse. An addtiona window will appea which Linear P Contraller Parameters
permits the ontroller parameters K, and K; to be .
spedfied (see figure 3) and the transfer function P":'E':';itf”al N N A
displayed will change to show the dosed-loop dynamics 5.05
of the series expansion lineaisation of the plant with the Inteqral 4 N
linea Pl controller. Adjust the mntroller parameters to Gait 1455
obtain a satisfadtory closed-loop transfer function with '
bandwidth around 5 rad/s, pe&k lessthan 6 dB (eg.
Ko=5, K;=50). Figure 3—Linea PI controller parameter window

Recdl that this transfer function only describes the dynamics in the vicinity of an equilibrium point. To seethe step
response of the nonlinea plant when the linea Pl controller is employed, from the Nonlinear menu choose Step
Response. A new window will appea showing the step response (seefigure 4). The magnitude of the step input
applied can be varied by adjusting the dlider on this window. It can be seen that for inputs greaer than around 0.3
units, the PI controller is unable to achieve the overshoot requirements.

Exercise Vary the mntroller parameters to seeif performance spedficaion can be satisfied.
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Figure 4 Step response window

4. Velocity-based linearisation

In order to incorporate information about the plant dynamics at non-equili brium operating poaints into the
controller design, reformulate the nonlinea plant, by differentiating, as
W= -100G(p)w+ OG(p)r, y=w 3
where p=r —-10x. The velocity-based lineaisation associated with the operating point at which p equals p; is
simply the @rresponding “frozen” form of (3)
W= -100G(p,)W+ OG(p,)f, y=Ww
where p, =r, —10x,. Recdling that p equals zero at the ejuilibrium operating points, it can be seen that the

velocity-based lineaisation at an equili brium operating point is diredly related to the mnventional series expansion
lineaisation at an equilibrium point. However, in contrast to the cnventional lineaisation, a velocity-based
lineaisation is defined for every operating point, not just the eguilibrium points. The solution to a particular
velocity-based lineaisation approximates the solution to the nonlinea system in the vicinity of the relevant operating
point. As the nonlinea system moves from one operating point to another, the solution can be gproximated
arbitrarily accurately by piedng together the solutions to appropriate vel ocity-based linearisations.

Seled Plant and Velocity-based Linearisation in the Control Window to display the transfer function of the
plant velocity-based linearisation associated with the current operating point. Since avelocity-based lineaisation is
defined for every operating point, it is now possble to move the operating point marker off the equili brium manifold.
It can be seen that the bandwidth of the plant velocity-based lineaisation rapidly deaeases as the operating point
moves away from the eguili brium manifold and p increases (it can be seen from figure 1 that the slope, or “gain”, of
the plant nonlineaity rapdily deaeases as p changes from zero). Seleding Plant+Linear PI, the variation in the
transfer function of the velocity-based lineaisation of the dosed-loop system is displayed. It can be seen that the
bandwidth rapidly deaeases as p increases and a large resonance peak develops in the transfer function. The
vel ocity-based linearisation thereby providesinsight into the failure of thelinea PI controller.



5. Velocity-based Gain-scheduling

The velocity-based gain-scheduling methoddogy can be employed to incorporate information regarding the plant
dynamics away from equilibrium points into the antroller design. This design approad involves the following

steps

1. Determine the velocity-based lineaisation family associated with the nonlinea plant dynamics.

2. Based on the plant velocity-based lineaisation family, determine the required controller velocity-based
lineaisation family such that the resulting closed-loop family adhieves the performance requirements.  Since
ead member of the plant family is linea, conventional linear design methods can be utilised to design each
corresponding member of the antroller family.

3. Redise anonlinea controller corresponding to the family of linea controllers designed at step 2. The velocity-
based form of the @ntroller can be obtained diredly from the family of linea controllers by smply permitting
the p to vary with the operating point.

This design procedure retains a divide and conquer philosophy and maintains the continuity with linea design
methods which is an important feaure of the mnventiona gain-scheduling approach. However, in contrast to the
conventional gain-scheduling approad, the resulting nonlinea controller is valid throughout the operating envelope
of the plant, not just in the vicinity of the eguili brium operating points. This extension is a dired consequence of
employing the velocity-based lineaisation framework rather than the cnventional series expansion lineaisation
about an equili brium operating pant.

5.1Velocity-based Dynamic Inversion Control

A dynamic inversion controller is obtained when, in step 2, the cntroller lineaisation family is designed such
that the dosed-loop combination of ead plant velocity-based lineaisation with the arresponding controller
velocity-based lineaisation has the same transfer function at every operating point and, in addition, the state of the
controller is ®leded appropriately. Thisis a dired generalisation of linea pole-zero inversion and is quite distinct
from Input-Output Lineaisation. Similarly to the linea case, when the relative degrees of the plant velocity-based
lineaisations are greaer than zero (in the SISO case, number of poles is greder than the number of zeroes), the
dynamic inverse is unredisable. However, an arbitarily acarate redisable gproximation can be obtained by
augmenting the exad inverse with sufficiently fast dynamics (analagous to adding high frequency polesin the linea
case).

In the present example, the relative degree of the plant is unity and an approximate velocity-based dynamic
inverseis

W =-o+Hoepw - 8@y r=lwely (4)
€ € € €
where v is an auxili ary input and € determines the fast dynamics included to make the inverse redisable. As ¢ tends
to zero, the gproximate inverse tends to the exad inverse in the sense that the output y of the plant tends to the

input v. The system, (4), is esentially an open-loop inverse of the plant. In order to rejed stready disturbances
integral feedbadk is employed

V=AY —Y) ©)
where v, is the signal which the plant output is required to track and A determines the speed of the eror dynamics.
Recdl that the velocity-based lineaisations of the gproximate inverse ae obtained by simply “freeang” the
dynamics, (4)-(5).



In the Control Window, set the system to
Plant+inverse. An additional window will appea
which permits the @ntroller parameters € and A to be
spedfied (see figure 5) and the transfer function
displayed will change to show the dosed-loop dynamics
of the velocity-based lineaisation of the plant with that
of the inverse mntroller. To seethe step response of
the nonlinea closed-loop system, from the Nonlinear
menu choose Step Response. A new window will
appea showing the step resporse (see figure 4). The
magnitude of the step input applied can be varied by
adjusting the slider on this window. Adjust the
controller parameters to oltain a satisfadory step
response (e.g. €=0.001, A=5).

5.2 Blended M ultiple M odel Approximation of Plant
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Figure5 - Inverse cntroller parameter window

The velocity-based gain-scheduling approacd is not confined to dynamic inversion but may also be employed to

design controllers when the desired closed-loop d/namics are nonlinea.

In step 2 d the velocity-based gain-

scheduling design procedure, the velocity-based lineaisation family of the antroller is determined based on the
velocity-based lineaisation family of the plant. Of course, the plant and controller lineaisation families have an
infinite number of members. The antroller family can be determined diredly (asin the dynamic inversion situation)
when an analytic desription of the plant is available However, an aternative is to design the controller velocity-
based lineaisation for only a small (finite) number of members of the plant lineaisation family and these controller
lineaisations are then interpolated to oltain a cntinuous controll er velocity-based lineaisation family.

Rather than choosing an arbitrary controll er interpolation (such as linea interpolation of the controll er state-space
meatrices), an appropriate blended multiple model based representation of the plant is first determined. The velocity-
based lineaisations of the plant at a small number of operating points (“locd models’) are interpolated (“blended”)
to oktain an approximate plant velocity-based lineaisation family. It should be noted

that this representation is distinct from other blended
multi ple model representations proposed in the literature
in that the locd models are linear (rather than affine)
and the solution to the overal system is directly related
to the solutions to the locd models (simply the
interpolation of the solutions to the locd models). In
the present example, an appropriate gproximate
velocity-based lineaisation family of the plant, which
uses only two locd models, is

= 3 (~100G(p, )i+ 0G(P )P, 9),

where p, = 0 (“equilibrium”), p;=5 (“far from
equilibrium”) and the weighting functions, ;, are

Gaussian-based and normalised so thatipi =1(see
i=0

y=w (6)

figure 6).

In the Control Window, set the system to Approx
Plant. The transfer function displayed will change to
show that of the @gproximate velocity-based
lineaisation family, (6), of the plant. Changing the
setting to Approx Error displays the difference between
the transfer function of the exad and approximate plant
velocity-based lineaisations.
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Figure 6 — Weighting functions used in blended multiple
model of plant and in velocity-based gain-scheduled
controll er



5.3Velocity-based Gain-scheduled Control

A velocity-based gain-scheduled controll er can be designed by first determining alinea controller for ead of the
locd models in the gproximate blended multiple model of the plant. These linea controll ers are then interpolated
(using the same weighting functions |; as in the plant model) to oltain a mntinuous controller velocity-based
lineaisation family. In the present example, only two locd models are required and the gain-scheduling design is
particularly straightforward. Employing a Pl-type antroller structure once ajain, the antrollers for, respedively,
the p,=0 and p,=5 are

I bl s G ]
e A2 8o (B el ]

where e=y,Yy. The orresponding scheduled nonlinea controller, obtained by interpolating between these two
controll ers using the plant weighting functions, is

W, -50 O] W. 501, . W
{Wﬂ [ o}{quo}e’ f =[Ko() Kl(p)]{wl} @
Cy Co C2
where K, = i Kol (), K, = iKliui (p). The velocity-based lineaisations of the ntroller are simply the
i=0 i=0

“frozen” forms of (7). The ntroller, (7), cannot be implemented dredly since & depends on y which is not
measured. However, the mntroller may be reformulated equivalently in the redi sable form

W, = -50w,, +50e, T = K,(p)(-50w,, +50€)+ K, (p)w,,

€2

In the Control Window, set the system to

Plant+Scheduled Pl An additional window will #| Scheduled Pl [ol=]

appea which permits the ontroller parameters

KS KO Ké and K2 to be spedfied (seefigure 7) and the Scheduled Pl Controller Parameters
11N 1

transfer function displayed will change to show the Propartional j J j

closed-loop dynamics of the velocity-based lineaisation Gain O

of the plant with that of the gain-scheduled controller. 34

Adjust the antroller parameters to oltain a satisfactory Integral B N 3]

closed-loop transfer functions when p=0 and p=5 Gain 0 105

(bandwidth around 5rad/s, pe&k value lessthan 6dB). It
should be noted that the transfer function of the dosed-
loop velocity-based lineaisation will vary with p even

when it is the same & both p=0 and p=5. This arises P'EQE:LTH B N ]
becaise of the rather crude interpoation employed in 500

this example and the variation can be reduced by finer Irtegral

interpolation between a larger number of controller Gain 1 J J - j

designs. To see the step response of the nonlinea
closed-loop system, from the Nonlinear menu choose
Step Response. A new window will appea showing
the step response (seefigure 4). The magnitude of the
step input applied can be varied by adjusting the slider
on this window. If necessry, adjust the controller  Figure 7- Scheduled PI controller parameter window
parameters further to oltain a satisfadory step response

(e.g. K =10,K? =100, K} =500, K] =550).
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Appendix — I nstallation

Demo requires MATLAB 5.1 o better (but is otherwise standalone and dces not require aay of the MATLAB
toolboxes). Ingtalation is draightforward: creade anew direcdory, copy the demo files there ad set the MATLAB
path to include the new diredory. The demo filesare

Example.m
StepResporse.m
LineaPlParas2.m
InvParas.m
ScheduledPl Paras.m
Workshop.m
PlantFn.m

PIFn.m

PlantPIFn.m
PlantlnverseFn.m
PlantSchedPl Fn.m
Example.mat
StepResporse.mat
StepResporse.mat
LineaPlParas2.mat
InvParas.mat
ScheduledPl Paras.mat
workshop-demo.pdf



