
1

Decentralized Constraint Satisfaction
K.R.Duffy1, C.Bordenave2, D.J.Leith1

Abstract—Constraint satisfaction problems (CSPs) lie at the
heart of many modern industrial and commercial tasks. An
important new collection of CSPs has recently been emerging
that differ from classical problems in that they impose constraints
on the class of algorithms that can be used to solve them.
In computer network applications, these constraints ariseas
the variables within the CSP are located at physically distinct
devices that cannot communicate. At each instant, every variable
only knows if all its constraints are met or at least one is
not. Consequently, the CSP’s solution must be found using a
decentralized approach. Existing algorithms for solving CSPs
are either centralized or distributed, both of which fundamen-
tally violate these algorithmic constraints. In this article we
present the first algorithm for solving CSPs that satisfies these
new constraints. It is fully decentralized, making no use of
a centralized controller or message-passing between variables.
We prove that this algorithm converges with probability one to
a satisfying assignment whenever one exists. Surprisingly, we
experimentally demonstrate that the time the algorithm takes to
find a satisfying assignment is competitive with both WalkSat and
Survey Propagation, two popular and efficient CSP solvers. That
is, despite its decentralized nature the algorithm is remarkably
fast. This raises new questions about the relationship between
information sharing and algorithm performance.

I. I NTRODUCTION

Constraint satisfaction problems lie at the heart of many
modern industrial and commercial tasks. The archetypal con-
straint problem is(k, d)-SAT, which consists ofN variables
x1, ..., xN and M constraints, each variable taking one of
d values and each constraint being a{0, 1} valued function
binding at mostk of the variables by forbidding certain
combinations of values. The special(k, 2)-SAT case where
variables are binary valued and constraints are boolean clauses
is abbreviated ask-SAT. An example of a 2-SAT constraint is
(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2), which forbids combinations where
x1 = x2. Any (k, d)-SAT problem withd > 2 can be reduced
to an equivalentk-SAT problem, although it is often more
natural to express problems in terms of(k, d)-SAT rather than
k-SAT. The constraint satisfiability problem is to find one
or more combinations of values that simultaneously satisfies
all constraints. Since the 1970s, thousands of problems have
been shown to be equivalent tok-SAT, from resource allo-
cation in wireless networks, through protein folding, genetic
fingerprinting and supply chain management. Many popular
puzzle games such as Suduko, Solitaire and Tetris can also be
formulated ask-SAT problems [1].

An important class of problems that can be cast within
the k-SAT framework has been emerging recently. Problems
in this class differ from classicalk-SAT in that they have
constraints on the nature of the algorithm used to find their

1Hamilton Institute, NUI Maynooth, Ireland,2 Dept of Mathematics,
University of Toulouse, France

solution. These restrictions come frominformation constraints
on variables, namely: (i) each variable does not know the
number or nature of clauses that contain it; (ii) each variable
knows only if all the clauses that do constrain it are presently
satisfied or if at least one is not satisfied; and (iii) based
solely on this information, variables must themselves make
a decision on whether to change their value without recourse
to message-passing to each other or an omniscient centralized
controller. In particular, each variable does not explicitly know
the value of any other variables. These constraints eliminate
centralizedalgorithms where a single controller is cognizant
of all variable values and can dictate changes to them and
distributedalgorithms where decisions are made more locally
but with message passing between variables.

Information constraints such as these arise naturally in
many modern resource allocation problems. Examples in-
clude: resource allocation in the Internet, where scalability
requirements cause the overhead incurred by message-passing
to be unacceptable; in security problems where firewalls,
for example, block communication; and in wireless networks
where variables are located at distinct devices that may not
be able to communicate (see examples below). Note that
sometimes a limited amount of message-passing between
variables may be feasible, but we leave consideration of how
best to exploit limited inter-change of variable values to future
work, focusing here on the most challenging cases where fully
decentralised algorithms are required. Although these areour
motivating scenarios, we expect that our results will have
wider application to other types of self-organising system.

Existing algorithms for solvingk-SAT are centralized or
distributed, violating these information constraints andso
cannot be used to solve this class of problems. In this article
we present the first decentralized algorithm for solvingk-SAT.
We show that this algorithm converges with probability one
whenever a feasible solution exists. We show experimentally
that the time the algorithm takes to find a satisfying assignment
is close to that of WalkSat, a popular and efficientk-SAT
solver, whilst also possessing desirable features of Survey
Propagation. That is, despite its decentralized nature, the
algorithm is remarkably fast. This raises new questions about
the relationship between information sharing and algorithm
performance.

A. Motivating Example

Modern households are typically connected to the Internet
via a broadband modem that has an integrated WiFi router
to provide wireless coverage within the home. Wireless trans-
missions are inherently broadcast in nature and transmission
power leaks into neighboring homes causing interference and
degrading network performance; this is illustrated schemati-
cally in Fig. 1. To reduce interference, WiFi technology allows

2

Fig. 1. Illustrating overlapping interference regions in neighboring wireless
networks. Black dot indicates location of a wireless router, shaded area
indicates region within which communication with router can take place; outer
circle indicate regions within which transmissions interfere.

the router within each home to select the radio channel it will
operate on. For example, the IEEE 802.11b/g variants of WiFi
support 11 distinct radio channels [2]. The task of the WiFi
routers within an apartment block or group of houses is to
select their radio channels such that interference is kept below
an acceptable threshold.

This system can be formulated as a(k, d)-SAT problem.
With R routers andd channels, a variablexj taking values
in {1, . . . , d} is colocated with each routerj ∈ {1, . . . , R}
and records the channel selected by that router. Based on the
physical topology of the network, constraints are introduced
that forbid channel selections that would cause transmissions
to interfere. These will be described further when we return
to this example later.

We also have the following information constraints that
are not present in classicalk-SAT and restrict the class of
algorithm that can be practically used for this problem’s
solution. Firstly, note that in a wireless network each variable,
the channel to be selected, is located at a distinct physical
device. Secondly, in wireless networks the range within which
transmissions can be decoded, and so within which communi-
cation take place, is typically much smaller than the distance
over which transmissions interfere [3]. Moreover, security
measures such as firewalls typically prevent communication
between routers via their wired Internet connections. Hence,
when solving thek-SAT problem we cannot rely on message-
passing between the set of routers, and hence the variables,
involved in each constraint. Thirdly, it is not possible forany
router to explicitly enumerate the full set ofk-SAT constraints
nor for a router to identify the subset of constraints in which
it participates. This is a direct consequence of the inability to
reliably pass messages between interfering routers combined
with a lack of a priori information due to the unstructured
nature of a network with no common administrative control.
It follows that a router cannot know the number or identities
of the routers participating in any constraint and so, fourthly,
evaluation of constraints must be carried out in a decentralized
manner. The latter can be achieved by each router monitoring
the signal-to-noise ratio of received transmissions to determine
whether the level of interference is acceptable or not,i.e.
whether the subset of constraints in which the router partici-

pates is satisfied in aggregate or not. In other words, by sensing
the local environment each router is able toevaluatewhether
the entire collection of constraints which affect its variable
are satisfied or if at least one is not, but it otherwise lacks the
ability to co-ordinate its choice of channel with that of other
routers. We will return to this example later, demonstrating
that it can be solved in practice despite its decentralization
requirement.

B. Existing Algorithms Require Centralization

The literature on general purposek-SAT solvers is vast,
but they can be broadly classified into those based on: (i) the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which
employs a backtracking search; (ii) Survey Propagation; and
(iii) on Stochastic Local Search. Algorithms based on DPLL
are centralized in nature, while those based on Survey Prop-
agation use explicit and extensive sharing of variable values,
i.e. message passing between variables. Existing Stochastic
Local Search algorithms also depend fundamentally upon
the exchange of information, mostly in an explicit manner
by basing update decisions on relative rankings of the con-
straint variables but also in a more implicit fashion. To see
this implicit requirement, consider the following algorithm
originally proposed by Papadimitriou [4]. Initially pick a
random assignment of values for the constraint variablesxi,
i ∈ {1, 2, ..., N}. Repeat the following: pick an unsatisfied
constraint clause and flip the value of one of the variables. Stop
when all clauses are satisfied or a specified time limit expires.
Although simple, this forms the basic building block for all
Stochastic Local Search algorithms, including the well-studied
WalkSat algorithm which is competitive for some of the largest
and least-structuredk-SAT problems and which we will revisit
later. It is important that a single unsatisfied clause is selected
at each step and that a single variable within the clause is
adjusted as it is this that leads to the algorithm behaving
as a random walk [5]. Achieving this, however, requires co-
ordination across variables and clauses that amounts to implicit
information-sharing and the existence of a central controller.

II. RESULTS

A. Decentralized Algorithm

An instance of the Communication-Free Learning (CFL)
algorithm is run in parallel for every variablexi, i ∈
{1, 2, ..., N}. The CFL algorithm is given in pseudocode as
follows:

1: Initialise pi,j = 1/d, j ∈ {0, 1, ..., d− 1}.
2: loop
3: Toss a weighted coin and choosexi = j with probabil-

ity pi,j .
4: Evaluate the subset of constraint clauses involving

variable i, returning satisfied if all are satisfied and
unsatisfiedotherwise.

5: Update:
If satisfied,

pi,j =

{

1 if j = xi

0 otherwise,

3

If unsatisfied,

pi,k =

{

(1 − b)pi,k + a/(d − 1 + a/b) if j = xi

(1 − b)pi,k + b/(d − 1 + a/b) for all j 6= xi,

wherea, b ∈ (0, 1] are design parameters.
6: end loop

The affect of the final step is that if a variable experiences
success in all clauses that contain it, it continues to select the
same value; if one or more clauses in which it is contained fail,
it decreases its probability of making the same variable choice
again. Note that the only information known to algorithm is
whether all clauses that involve its variable are satisfied or if
one or more are not.

B. Algorithm Termination

If all variables are simultaneously satisfied in all clauses,
the algorithm automatically stays indefinitely with that valid
solution to the problem. This is an important feature of the
algorithm, that the “stickiness” in update step 5 of the CFL
algorithm means that any variable selectionx1, ..., xN that
satisfies all of the constraint clauses is an absorbing state,
i.e. the algorithm instances collectively cannot leave that state
once they enter it and so will remain in that state indefinitely.
This has the important consequence that there is no need to
explicitly terminate the algorithm instances, or to perform a
co-ordinated restart of the instances if there is a subsequent
change in the constraint clauses. Co-ordinating termination or
restart of the parallel algorithm instances would be problematic
with the information constraints required by decentralization.

C. Synchronization

From here on we will assume that the update step 5 is
performed in a synchronized fashion across variables. Without
synchronization, the fundamental character of the algorithm
doesn’t change, but the analysis becomes more involved. Note
that synchronization solely requires that algorithm instances
each have access to a shared sense of time and that this can be
achieved without information-sharing or other communication
between variables, i.e. algorithm instances. A suitable clock
is, for example, available to any Internet connected devicevia
the Network Time Protocol (NTP).

D. Parameterization

The CFL algorithm provably identifies satisfying assign-
ments for all values of its two design parameters,a and
b. The value ofa determines the algorithm’s aversion to
variable values for which clause failure has been experienced.
The value ofb impacts on the speed of convergence of the
algorithm. For simplicity, we seta = b in all examples here.
We useb = 0.2 for random 3-SAT,b = 0.1 for random 4-
SAT and b = 0.05 for random 5-SAT. We useb = 0.1 for
our wireless networks example, a value which we have found
to yield good performance across a range of practicalk-SAT
problems.

E. Convergence Analysis - Theory

The CFL algorithm forms a Markov Chain (or Iterated
Function System) with place dependent probabilities [6],
where the state space corresponds to each variable’s value and
probability vector. The convergence time of the algorithm is
the stopping time defined by the first time the chain enters an
absorbing state representing a valid solution to the CSP. The
following theorem provides an upper bound to this stopping
time.

Theorem 1. Given ǫ ∈ (0, 1), for any satisfiable CSP the
number of iterations for the CFL algorithm to find a satisfying
assignment with probability greater than1− ǫ is of order less
than

N exp

(

N(N − 1)

2
log(γ−1)

)

log(ǫ−1), whereγ =
min(a, b)

d − 1 + a/b
.

For a CSP corresponding to graph coloring, a satisfying
assignment will be found with probability greater than1 − ǫ
in a number of iterations of order less than

N exp(2N log(γ−1)) log(ǫ−1).

Proof: The method of proof for both statements is similar:
we create a sequence of events overN − 1 iterations that,
regardless of the initial configuration, lead to a satisfying
assignment with a probability that we find a lower bound
for. Due to the Markovian nature of the algorithm and the
independence of the probability of this event on its initial
conditions, if this events does not occur inN − 1 iterations,
it has the same probability of occurring in the nextN − 1
iterations. This is what leads to the exponential nature of the
bounds.

The difference between a general CSP and those corre-
sponding to coloring is that for the latter we can construct
a more complex sequence of events that improves the bound.
We give a sketch of both, details are omitted due to space
constraints. First consider a general CSP and select any
satisfying assignment as a target solution for it. We either
have started with a satisfying assignment or have at least
one unsatisfied variable. The likelihood that it takes its target
assignment is lower bounded byγ. At each iteration, either a
solution (not necessarily the target solution) is found or at least
one more variable is dissatisfied. Newly dissatisfied variables
then take their target value and repeatedly select it until a
solution is found. In the worst case, in each ofN − 1 steps
one more variable becomes dissatisfied, triggering new clauses
that keep all previously unsatisfied variables dissatisfied. Thus
in N − 1 steps, the likelihood a satisfying solution is found is
lower bounded byγN(N−1)/2.

For CSPs corresponding to graph coloring, the advantage
is that variables cannot be dissatisfied indefinitely by newly
dissatisfied variables. Instead we can generate a flame-front
of dissatisfied variables. Those variables sufficiently farwithin
the interior of this flame-front can select their final value
without further disturbance. Details are omitted, but the con-
struction is a generalization of that found in [7][Theorem 3].

Note that the above proof means that for fixedN the
tail of the distribution of the stopping time of the algorithm

4

TABLE I
CURRENT BEST UPPER/LOWER BOUNDS ON THE PHASE TRANSITION

THRESHOLDS IN RANDOMk-SAT.

k 3 4 5 7 10 20

Theory bounds:

2k log 2 5.54 11.09 22.18 88.72 709.78 726,817

r
¬exist,k[10] 4.51 10.23 21.33 87.88 708.94 726,817

rexist,k[8], [18] 3.52 7.91 18.79 84.82 704.94 726,809

2k log 2 − k 2.54 7.09 17.18 81.72 699.78 706,817

rpoly,k [19], [18] 3.52 5.54 9.63 33.23 172.65 95,263

Estimated:

r
¬exist,k[20] 4.267 9.93 21.12 87.79 708.91 -

r1RSB,k [20], [21] 4.15 9.38 19.16 62.5 - -

is bounded by a geometric distribution and so all of its
moments exist. Empirical evidence suggests that both bounds
are extremely loose, particularly the former, but they do prove
that if a solution exists the CFL algorithm will almost surely
find it.

F. Convergence Analysis - Experiment

We present experimental data evaluating the performance
of the CFL algorithm for randomk-SAT, a class ofk-SAT
problems that continue to be much studied. We demonstrate
that the theoretical bounds underestimate algorithm perfor-
mance, which we show to be competitive with centralized and
distributed solvers.

Before proceeding we briefly review current knowledge
regarding randomk-SAT. In randomk-SAT, the constraint
clauses are drawn uniformly at random from the possible
sets ofM clauses of sizek and N variables, e.g. [4]. The
behavior of randomk-SAT is known to depend strongly on
the parameterr = M/N with, in particular, phase transi-
tions and associated thresholdsr¬exist,k and rexist,k. When
r > r¬exist,k the constraint problem is unsatisfiable with high
probability while whenr < rexist,k satisfying assignments
exist with high probability. Evidently,rexist,k ≤ r¬exist,k

and it is conjectured thatrexist,k = r¬exist,k [8]. A simple
argument givesr¬exist,k ≤ 2k log 2 and this upper bound can
be refined to obtain the values in the second row of Table I.
Also shown in row four of this table are estimated values for
r¬exist,k derived from statistical physics considerations. These
latter estimates are strongly supported by experimental data for
k = 3 e.g. [9], although there are fewer experimental studies
for k > 3. It can be seen that the theoretical bound forr¬exist,k

and the estimated values are in good agreement fork ≥ 5, and
that both approach2k log 2 for largek. Recent mathematical
results have established thatrexist,k ≥ 2k log 2 − k [10] and
this lower bound can be tightened to obtain the theoretical
values shown in the third row of Table I.

There also exists a thresholdrpoly,k below which a sat-
isfying assignment can be found in polynomial time with
high probability. This threshold has been the subject of much
interest and the current best analytic lower bound forrpoly,k

is also indicated in Table I. Statistical physics considerations
have led to the conjecture thatrpoly,k is equal to the value

0 1 2 3 4
10

−2

10
0

10
2

10
4

r

M
e
d
ia
n
 s
to
p
p
in
g
 t
im
e
/N

CFL

WalkSat

0 5 10 15 20 25
10

−2

10
0

10
2

10
4

r

M
e
d
ia
n
 s
to
p
p
in
g
 t
im
e
/N

4−SAT

5−SAT

9.93 21.12

r = 4.267exist,3

Fig. 2. Median normalized stopping time of CFL algorithm vsr for
random 3-SAT andN = 100. Each point is derived from at least 1000 runs
of the algorithm; algorithm terminated after107 iterations if no satisfying
assignment found. For comparison, stopping time measurements for WalkSat
taken from [9, Fig 2a] are also indicated. (Inset) CFL algorithm measurements
for random 4-SAT and 5-SAT. Measurements shown are for values of r up
to 4.20 (3-SAT), 9.90 (4-SAT), 21.10 (5-SAT); close to the current best
estimates forrexist,k and well abover1RSB,k.

r1RSB,k at which so-called “one-step replica symmetry break-
ing” (1RSB) instability occurs [11]. Current best estimates for
this value are given in Table I. Fork ≥ 8, it has been proven
analytically that the set of satisfying assignments is grouped
into widely separated clusters, which lends strong supportto
this conjecture [12]. For values ofk < 8 the situation is less
clear, with experimental evidence indicating thatrpoly,k lies
abover1RSB,k for k = 3, 4 and5 [13].

Armed with this background information on randomk-SAT,
we now consider performance data for the CFL algorithm. Fig.
2 gives median measurements of normalized stopping time (i.e.
stopping time divided byN) of the CFL algorithm vsr=M/N
when the number of variablesN = 100. Fig. 3 gives median
measurements of normalized stopping time vsN with r held
constant. Data is shown for randomk-SAT with k = 3, 4 and
5. We immediately observe two striking features from this
data. Firstly, the median normalized stopping time increases
exponentially withr, with N held constant (see Fig. 2, noting
that a log scale is used on they-axis). Secondly, the median
normalized stopping time vsN , with r held constant, is upper
bounded by a constant (see Fig. 3). That is, a satisfying
assignment is found in a time with median value that increases
no more than linearly withN . This linearity holds even when
r is close torexist,k (data is shown in Fig. 3 for 3-SAT with
r = 4) and is of great practical importance as it implies that
with high probability the CFL algorithm finds a satisfying
assignment in polynomial time.

Comparing the performance of the CFL algorithm with
the popular WalkSat algorithm, we note that the WalkSat
algorithm also exhibits an exponential-like dependence of
stopping time onr and linearity inN [9], [14], [13]. To allow
comparison in more detail, median stopping time data taken
from [9, Fig 2a] is marked on 2. Forr < 3.9, the median
stopping time is similar for CFL and WalkSat. Above this
value, however, the stopping time for WalkSat diverges, in-

5

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

N

M
e
d
ia
n
 s
to
p
p
in
g
 t
im
e
/N

3−SAT/r=1

3−SAT/r=2

3−SAT/r=3

3−SAT/r=4

5−SAT/r=5

5−SAT/r=10

5−SAT/r=15

Fig. 3. Normalized stopping time of CFL algorithm vsN andr for 3-SAT
and 5-SAT. Stopping time is normalized byN and each point is derived from
at least 1000 runs.

creasing super-exponentially inr. This divergence is a feature
not only of WalkSat but also of other local search algorithms
algorithmse.g.ChainSat [13]. It is not exhibited by the Survey
Propagation algorithm [9], [15], which has been the subject
of considerable interest as it creates the ability to operate
close to therexist,k threshold. Observe that the CFL algorithm
also doesnot exhibit divergence asr approachesrexist,k.
These comparisons are encouraging as they indicate that the
CFL algorithm is competitive with some of the most efficient
general-purposek-SAT algorithms currently available. It is
also unexpected as information sharing is a key component of
both WalkSat and Survey Propagation, whereas CFL makes
local decisions simultaneously with no use whatsoever of
information-sharing, raising fundamental questions as tothe
role of message passing, the relationship between information
exchange and algorithm performance and, in particular, what
performance cost, if any, is imposed by constraining attention
to decentralized operation.

G. A Wireless Network Example

Real-world applications often exhibit distinct structurefrom
randomly drawnk-SAT instances. It is therefore instructive to
revisit one practical, motivating example that requires a de-
centralized approach: power and channel selection in wireless
networks.

From the online database WIGLE [16] we obtained the
locations of WiFi wireless Access Points (APs) in an approx-
imately 150m2 area at the junction of 5th Avenue and 59th
Street in Manhattan. This area contains 108 APs utilizing the
IEEE 802.11 wireless standard.

Imagine a worst-case scenario where, after a power-outage,
all these APs are switched back on. The aim of each AP is
to select its radio channel and transmit power in such a way
as to ensure that its transmissions can be received sufficiently
clearly within a specified radius. In other words, to ensure
that the signal power within this radius exceeds, by a specified
margin, the combined interference power from transmissions
by other APs plus the power due to background noise.

Each station, and hence variable in the CSP, selects a target
Signal to Interference plus Noise Ratio (SINR) of 15dB within
a 5m radius. This SINR is sufficient to sustain a data rate
of 36Mbps when the connection is line of sight and channel
noise is Gaussian [2], [3]. In the IEEE 802.11 standard [2],
the maximum transmit power is 18dBm and may be adjusted
in 3dBm increments up to this maximum value, yielding 6
selectable power levels. As per the 802.11 standard and FCC
regulations, each AP can select from one of 11 radio channels
in the 2.4GHz band. These radio channels are 20MHz wide
and overlapping in frequency so that only 3 orthogonal/non-
overlapping channels are available.

As we do not have a physical radio-propagation model for
the area where the APs are, we approximate this system by
calculating the SINR at thei’th AP using the well-known
Gaussian formula SINRi = GiiPi/

(

σ2 +
∑

j 6=i GjiPj

)

[3].
In this formula,Gji denotes the radio attenuation between
AP j and i, Pi is the transmit power of APi and σ2

denotes the noise power. The radio attenuation is modeled
by Gij = γ|ci−cj |/dα

ij , wheredij is the distance in meters
between APi and APj, α is the path loss exponent for which
we useα = 4, ci is the index of the radio channel used by APi
andγ = −28dB is the attenuation between adjacent channels
as per the IEEE 802.11 standard [2]. The radio channels are
consecutively indexed1, ..., 11 and the noise powerσ2 is taken
as−90dBm.

As the transmission power of neighboring APs combines
additively to create interference, this task cannot be treated
as a graph coloring problem, but must instead be formulated
ask-SAT. The task possesses the information constraints: (i)
message passing between APs, i.e. of variable values, is inad-
missible due to security and physical wireless communication
constraints; (ii) each AP does not know the number or identity
of all interfering APs and so cannot identify or enumerate
constraints in which it participates; (iii) for a given choice of
channel and transmit power, each AP can only determine if all
of its constraints are met or if at least one is failing (namely,
by measuring whether its SINR is above the target value or
not). A decentralized algorithm is therefore mandated.

Running an instance of the CFL algorithm at all APs, Fig.
4 shows an example satisfying assignment of radio channels
and transmit powers obtained using the CFL algorithm. The
complexity of the topology generated by the physical location
of the APs, and the non-uniformity of the clauses it causes, is
apparent.

Fig. 5 shows the measured distribution of number of itera-
tions required to find a satisfying assignment, whereupon the
algorithm natural halts in a decentralized fashion. The median
value is 26 iterations and the 95% centile is 110 iterations.
Note that during this convergence period, although the network
is operating sub-optimally, it does not cease to function. In a
lab set-up [17] we have shown that a CFL update interval of
less than 10 seconds is feasible on current hardware. Thus
the median time to convergence is under 5 minutes. This is
a reasonable time-frame for practical purposes and thus the
CFL algorithm offers a pragmatic solution to this difficult
decentralized k-SAT problem for which existing solvers could

6

−120 −100 −80 −60 −40 −20 0 20 40
−150

−100

−50

0

50

100

x (m)

y
 (

m
)

1
2
3
4
5
6
7
8
9
10
11

9 dBm
12 dBm
15 dBm
18 dBm

channel

power

Fig. 4. A satisfying assignment of radio channels and transmit powers.
Each dot marks the location of a WiFi wireless access point and is based on
measurements taken at the junction of 5th Avenue/59th Street in Manhattan.
The color of a dot indicates the radio channel and the size indicates the
transmit power. To avoid interference between transmissions, nearby access
points need to operate on radio channels that are spaced sufficiently far apart.
There are 11 radio channels available to choose from, but thefrequencies of
these channels overlap so that only 3 orthogonal/non-overlapping channels
are available; there are 108 wireless access points in total.

0 50 100 150 200 250 300 350 400 450 500
10

−4

10
−3

10
−2

10
−1

10
0

X

P
ro

b(
S

to
pp

in
g

tim
e

>
 X

)

Fig. 5. Log of the empirical complementary cumulative distribution of
convergence time in iterations, based on 12,000 runs of CFL algorithm for 5th
Avenue data. Median 26,95% percentile 110 iterations. In current hardware,
one iteration can be performed in under 10 seconds, leading to a median time
to convergence of less than 5 minutes.

not be employed.

III. D ISCUSSION

In this article we have introduced a fully decentralized
algorithm for solving CSPs. We prove that it will almost surely
find a satisfying solution if one exists, but believe our bounds
on speed of convergence for a general CSP are far from tight
and conjecture that the real bound should be closer to the one
we have for the specific case of CSPs corresponding to graph
coloring.

Given how much information decentralization is sacrific-
ing, quite surprisingly an experimental investigation of solv-

ing random k-SAT instances suggests that the algorithm is
competitive with two of the most promising centralized k-
SAT solvers: WalkSat and Survey Propagation. This raises
the question: what, if anything, is the performance cost of
decentralized operation? This is particularly pertinent as the
decentralized nature of the CFL algorithm lends itself to
parallelized computation, with a fixed memory requirement per
variable, making it suitable for use in circumstances wherea
centralized algorithm could also be used, but would be difficult
to implement in a distributed fashion.

The observation that the CFL algorithm performs so well
with the most challenging of constraints is why we leave as
an open question how one could exploit limited inter-change
of variable values, as might be possible in certain practical
cases. In particular, if we have such partial information, can
we use this to do better? Given the strong performance of the
fully decentralized algorithm, are there gains to be made?

ACKNOWLEDGMENTS

This material is based upon works supported by Science
Foundation Ireland under Grant No. 07/IN.1/I901.

REFERENCES

[1] Demaine, E (2001) inMathematical Foundations of Computer Science
2001, Lecture Notes in Computer Science, eds Sgall, J, Pultr, A, Kolman,
P (Springer Berlin / Heidelberg) Vol. 2136, pp 18–33.

[2] (2003)Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications. Further Higher Data Rate Extension
in the 2.4GHz Band(IEEE, New York).

[3] Goldsmith, A (2005)Wireless Communications(Cambridge University
Press).

[4] Papadimitriou, C (1991)On Selecting a Satisfying Truth Assignment
(IEEE Computer Society, New York), pp 162–169.

[5] Schoning, U (1999)A Probabilistic Algorithm for k-SAT and Constraint
Satisfaction Problems(IEEE Computer Society, New York), pp 410–
414.

[6] Barnsley, MF, Demko, SG, Elton, JH, Geronimo, JS (1988) Invariant
measures for Markov processes arising from iterated function systems
with place-dependent probabilities.Ann. Inst. H. Poincaré Probab.
Statist.24:367–394.

[7] Duffy, K, O’Connell, N, Sapozhnikov, A (2008) Complexity analysis
of a decentralised graph colouring algorithm.Information Processing
Letters107:60–63.

[8] Achlioptas, D, Peres, Y (2004) The threshold for random k-SAT is 2k
log 2-O(k). J Amer Math Soc17:947–973.

[9] Aurell, E, Gordon, U, Kirkpatrick, S (2004)Comparing Beliefs, Surveys
and Random Walks(MIT Press, Boston), Vol. 17, pp 49–56.

[10] Achlioptas, D, Naor, A, Peres, Y (2005) Rigorous location of phase
transitions in hard optimization problems.Nature435:759–764.

[11] Mezard, M, Parisi, G, Zecchina, R (2002) Analytic and algorithmic
solution of random satisfiability problems.Science297:812–815.

[12] Mezard, M, Mora, T, Zecchina, R (2005) Clustering of solutions in the
random satisfiability problem.Phys Rev Lett94:197205.

[13] Alava, M et al. (2008) Circumspect descent prevails in solving random
constraint satisfaction problems.Proc Natl Acad Sci USA105:15253–
15257.

[14] Alekhnovich, M, Ben-Sasson, E (2006) Linear upper bounds for random
walk on small density 3-cnfs.SIAM J Comput36:1248–1263.

[15] Braunstein, A, Mezard, M, Zecchina, R (2005) Survey propagation: An
algorithm for satisfiability.Rand Struct Algorithms27:201–226.

[16] WIGLE.NET (2010) http://www.wigle.net/.
[17] D.Malone, P.Clifford, D.Reid, D.J.Leith (2007)Experimental Implemen-

tation of Optimal WLAN Channel Selection Without Communication. pp
316–319.

[18] Kaporis, A, Kirousis, L, Lalas, E (2006) The probabilistic analysis of
a greedy satis?ability algorithm.Rand Struct Algorithms28:444–480.

[19] Frieze, A, Suen, S (1996) Analysis of two simple heuristics on a random
instance of k-SAT.J Algorithms20:312?355.

7

[20] Mertens, S, Mezard, M, Zecchina, R (2005) Threshold values of random
k-SAT from the cavity method.Rand Struct Algorithms28:340–37.

[21] Krzakala, F, Montarani, A, F., RT, Semerijan, G, Zdeborova, L (2007)
Gibbs states and the set of solutions of random constraint satisfaction
problems.Proc Natl Acad Sci USA104:10318–10323.

