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Abstract

This paper deals with ripple-free deadbeat controller design for single-input/single-output sampled-data systems. Given a
prescribed settling time, the design problem is tackled by computing a ripple-free deadbeat controller that optimizes an H2

performance criterion. This criterion accounts for the quality of the tracking response and for the control energy necessary
to achieve the deadbeat behavior. Our main result shows that the optimal performance improves as the settling time grows,
revealing a fundamental tradeoff inherent to this control technique.
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1 Introduction

Deadbeat control has been a well established discrete-
time control technique for several decades [9,10,8]. Its
key feature is that it ensures that the tracking error set-
tles to zero in a finite number of samples. Although dead-
beat control allows perfect tracking in a finite time hori-
zon and various design methods have been proposed, see
for example [20,21,4], it is also known that in the con-
text of sampled-data control systems it may lead to poor
loop performance.

Indeed, deadbeat control only ensures that the error se-
quence vanishes at the sampling instants (beyond the
settling time) and no considerations about the inter-
sample behavior are done. Therefore, intersample ripple
may appear in the continuous-time output, which is cer-
tainly an undesirable feature. This issue is dealt with in
[17,19,1], where parameterizations of ripple-free dead-
beat controllers are given. The basic idea behind this
approach is that to avoid any intersample ripple after
the settling time, the control sequence must also reach
its steady state in, at most, the same number of samples
[3]. The results in [17,19,1] apply to general plants with
arbitrary reference signals, provided that the sampled-
data model satisfies the internal model principle for the
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corresponding reference [7].

If we aim at designing a ripple-free deadbeat controller
with certain prescribed settling time, there are, in the
general case, an infinite number of solutions. This issue
has motivated the search for design methods that allows
one to adjust the controller in such a way that different
design criteria can be met. This has been tackled in a
state-space framework in [2,11], by posing the problem
in the context of linear quadratic regulator theory. In
[16,15] the problem is faced using a frequency domain ap-
proach, leading to optimization problems that deal with
robustness and performance objectives that are solved
using LMI and linear programming algorithms.

An interesting result in this topic can be found in [1],
where the authors propose a systematic procedure to
design a ripple-free deadbeat controller that minimizes a
combined measure formed by the l∞ normof the tracking
error and the l1 norm of the control input. An insightful
conclusion of that work is that the optimal value of the
mixed l∞/l1 index is a decreasing function of the settling
time, which reveals an essential tradeoff in the deadbeat
design problem. A related result is reported in [22], where
a ripple-free deadbeat controller that ensures a minimal
control energy is proposed and the authors conclude that
the minimal energy can be decreased at the expense of
increasing the settling time.

This paper deals with optimal ripple-free deadbeat con-
trol for general single-input/single-output linear and
time invariant plants in a sampled-data control setup.
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Firstly, we derive a simple characterization of ripple-
free deadbeat controllers for constant reference signals.
This parameterization is comparable to that in [14] and
is useful to derive an analytical solution to an optimal
control problem arising from the minimization of a two
objective quadratic performance measure. This mea-
sure accounts for both the tracking error and control
energies. This implies that the derived control law ex-
hibits ripple-free deadbeat behavior while attaining an
optimal performance in terms of both tracking quality
and control effort. We stress that the latter property is
important from an application point of view since ex-
cessive control magnitudes have been source of criticism
towards this control technique.

The main result of this work is proving that the opti-
mal performance is a non-increasing function of the set-
tling time. This is an interesting feature that empha-
sizes the design tradeoffs derived in [1] and [22]. In this
sense, the contribution of this paper follows the phi-
losophy of that of [1] and stands as a complement to
that work. It is revealed that the compromise between
settling time/performance appears not only in a l∞/l1
framework, but also in a quadratic sense, constituting a
fundamental tradeoff inherent to deadbeat control.

The paper is organized as follows: Section 2 defines the
main notation and the assumptions made throughout
this paper. In Section 3 we derive a characterization of
ripple-free deadbeat controllers for step reference signals
that is used in Section 4 to propose a design procedure.
The main result of this paper is given in Section 5. Fi-
nally, the concluding remarks of this work are given in
Section 6.

2 Notation and assumptions

In this paper we deal with proper continuous-time mod-
els of the form

Gc(s) =
Bc(s)

Ac(s)
e−sτ , τ ≥ 0, (1)

where Bc(s) and Ac(s) are coprime polynomials in s.
Since we are interested in a sampled-data control setup,
we consider a zero-order hold discrete-time model for
Gc(s) given by G(z) = B(z)/A(z), where B(z) and A(z)
are coprime, B(z) =

∑

m

i=0 biz
i, A(z) =

∑

n

i=0 aiz
i and

m ≤ n. The following assumption is made throughout
this paper:

Assumption 1

(a) The sampling is nonpathological, i.e., if pi, i =
1, 2, . . . , n is a pole of Gc(s), then

ℑ{pi} 6= κωs; ∀κ ∈ Z, i = 1, 2, . . . , n, (2)

where ωs is the sampling frequency.
(b) B(1) 6= 0.

Assumption 1(a) ensures that no natural modes of the
continuous-time model are lost through the sampling
process, while Assumption 1(b) is necessary for tracking
constant reference signals with an internally stable con-
trol loop. Furthermore, to simplify to subsequent deriva-
tions, without loss of generality we assume that B(z) is
scaled such that B(1) = 1. We also introduce the de-
composition A(z) = A−(z)A+(z), where A−(z) has all
its roots in |z| < 1, A+(z) has all its roots in |z| ≥ 1 and
deg {A+(z)} = n+.

3 Ripple-free deadbeat control

We are interested in the one degree of freedom sampled-
data control architecture represented in Figure 1. In that
figure, Gh0(s) is the model of the zero order sample and
hold device and C(z) is the transfer function of the con-
troller.

If the reference signal is a step function, i.e. r(k) =
vµ(k), v ∈ R, then achieving a ripple-free deadbeat re-
sponse means that yc(t) satisfies yc(t) = v , ∀t > N∆,
where N ∈ N0 is called the deadbeat horizon of the con-
trol system. Otherwise stated, a controller is a ripple-
free deadbeat controller if and only if it provides perfect
steady state tracking at D.C. and forces the output of
the plant to settle in a finite number of samples, while
avoiding intersample ripple beyond the deadbeat hori-
zon. Ripple in a deadbeat response arises when the con-
troller cancels the minimum phase zeros of G(z). Those
cancelled zeros appear as closed loop poles and gener-
ate natural modes in the control input that, in turn, ap-
pear in the intersample response of the continuous-time
output. In the context of sampled-data control systems,
this issue is of major significance, since the discrete-time
model G(z) usually contains sampling zeros located in
the negative real axis and therefore, its cancellation leads
to oscillatory modes in the deadbeat response.

Since the sampling is assumed to be nonpathological,
a necessary and sufficient condition to avoid intersam-
ple ripple is that the control sequence also settles in, at
most, N samples (see [17,3]). This condition is equiv-
alent to u(k) = uss , ∀k > N , where uss is the steady
state value of the control sequence. We thus conclude
that a stabilizing controller C(z) with integral action
provides a ripple-free deadbeat response, with horizon
N , if and only if it is such that the complementary sen-
sitivity, T (z), and the control sensitivity, Su(z), are FIR
transfer functions of N th order.

From previous results [14] it is known that the minimum
value for N is given by Nmin = n + n+. Therefore, the
deadbeat horizon is, in general, N = Nmin + ℓ, with
ℓ ∈ N. We next give a parameterization of ripple-free
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deadbeat controllers for constant reference signals that
will prove useful for the purpose of this work.

Lemma 2 Consider the control system of Figure 1 with
G(z) and Gc(s) satisfying Assumption 1. Then, the con-
troller C(z) is stabilizing and achieves ripple-free dead-
beat control for step references in N = Nmin + ℓ samples
if and only if

C(z) =
Po(z) + Xℓ(z)A(z)

Lo(z) − Xℓ(z)B(z)
, (3)

where Xℓ(z) is any FIR transfer function of ℓth order

and Co(z) = Po(z)
Lo(z) is a biproper controller of nth order

achieving minimum horizon ripple free deadbeat control
such that

A(z)Lo(z) + B(z)Po(z) = zNminA−(z), (4)

and
Lo(1) = Xℓ(1) = 0. (5)

Proof

• Sufficiency.
Here we shall prove that with C(z) defined as in (3),

and satisfying (4)-(5), the controller achieves ripple-
free deadbeat behavior. We first note that (4) is the Dio-
phantine equation that arises from solving a standard
pole assignment problem [7]. Here, Nmin closed loop
poles are assigned to the origin and the rest are equal to
the stable poles of G(z). This implies that the controller
Co(z) is stabilizing and must cancel every stable pole

of G(z). Hence we may write Po(z) = P̃o(z)A−(z), so
that (4) can be written as

A+(z)Lo(z) + B(z)P̃o(z) = zNmin . (6)

Therefore, we have that the complementary and control
sensitivities [7] are given by

T (z) =
B(z)(P̃o(z) + A+(z)Xℓ(z))

zNmin

, (7)

Su(z) =
A(z)(P̃o(z) + A+(z)Xℓ(z))

zNmin

. (8)

C(z) is stabilizing since it does not cancel any unstable
pole of G(z) and both T (z) and Su(z) are stable. In ad-
dition, we observe that if Xℓ(z) is a FIR transfer func-
tion of ℓth order satisfying (5), then T (z) and Su(z)
are FIR of order N = Nmin + ℓ, with T (1) = 1, which
are necessary and sufficient conditions for ripple-free
deadbeat control.

• Necessity.
From the Youla-Kučera parameterization [7] we

have that any stabilizing controller for G(z) can be

expressed as

C(z) =
Po(z) + Q(z)A(z)

Lo(z) − Q(z)B(z)
, (9)

where Q(z) is any stable and proper transfer func-
tion and Po(z)/Lo(z) is any stabilizing controller for
G(z). We thus choose that controller to satisfy (4) with
Lo(1) = 0 and hence

T (z) =
B(z)

(

P̃o(z) + A+(z)Q(z)
)

zNmin

(10)

Su(z) =
A(z)

(

P̃o(z) + A+(z)Q(z)
)

zNmin

(11)

However, ripple-free deadbeat requires that T (z) and
Su(z) to be FIR of N th order, i.e., Q(z) = Xℓ(z) must
be FIR of ℓth order, and also T (1) = 1, which implies
that Xℓ(1) = 0. 2

Expression (3) shows that the proposed deadbeat con-
troller cancels every stable pole of the plant model (recall

that Po(z) = A−(z)P̃o(z)) and that it does not cancel any
zero, which is necessary to obtain a ripple-free deadbeat
response. Also, the cancellation of A−(z) by C(z) im-
plies that the set of closed loop poles is the union of two
subsets: one containing only N poles at the origin, and
the other including all stable plant poles. This implies
that the response to input disturbances does not exhibit
deadbeat behavior. Nonetheless, if the focus is in the re-
sponse to reference signals or output disturbances, then
only the poles at the origin matter and the ripple-free
deadbeat response is achieved. The problem of obtain-
ing a deadbeat response even for input disturbances is
more general than the one treated in this paper and the
reader is referred to [12] for recent results on the topic.

The characterization of Lemma 2 provides the general
form for a ripple-free deadbeat controller as a function of
the free FIR transfer function Xℓ(z). Since Xℓ(z) must
be a FIR transfer function of ℓth order, we may write it
as

Xℓ(z) =
Dℓ(z)

zℓ
, (12)

where Dℓ(z) is a polynomial such that deg {Dℓ(z)} ≤ ℓ
and

Dℓ(1) = 0, (13)

Dℓ(0) 6= 0, ∀ ℓ 6= 0. (14)

The parameter Xℓ(z) is completely determined by the
polynomial Dℓ(z). As a consequence, instead of Xℓ(z),
we will treat Dℓ(z) as the free parameter. In the sequel,
we will always consider that deg {Dℓ(z)} = ℓ. This is
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advantageous since if we choose a biproper Xℓ(z), then
for a fixed ℓ the available number of free parameters in
Dℓ(z) is maximized, which is beneficial from an opti-
mization point of view.

If we are interested in achieving a minimum horizon
ripple-free deadbeat response, then the associated con-
troller is unique and can be obtained by choosing ℓ = 0.
Therefore D0(z) = 0 is the only feasible choice for the
free polynomial in (12). However, if we allow larger dead-
beat horizons, additional degrees of freedom appear in
the controller. These are given by the polynomial coeffi-
cients of Dℓ(z), and may be chosen to satisfy additional
design criteria. In this paper we are interested in ad-
justing the polynomial Dℓ(z) in such a way that a two
objective quadratic cost function is optimized.

From (3) it can be seen that C(z) belongs to the class of
biproper controllers, which are known to provide imple-
mentation benefits such as the inclusion of anti-windup
mechanisms [7], making them popular in industrial ap-
plications. A parameterization of ripple-free deadbeat
controllers such as that of Lemma 2 is not new in the
literature and its structure follows the same guidelines
as those in [14]. It has been reformulated in this paper
using the complex variable z (in [14] the authors work
in z−1) in a more compact way, and a simpler proof
based on the Youla-Kučera parameterization has been
included for completeness.

4 Optimal controller design

In this section we provide a methodology to design
ripple-free deadbeat controllers that achieve good tran-
sient performance. The main issue to solve this problem
is how to choose the polynomial Dℓ(z) in (12), in such a
way that an appropriate transient response is achieved.
Following a similar idea to that in [1], we tackle this
problem by choosing a polynomial Dℓ(z) that minimizes
a performance index representative of some standard
control objectives. The essential distinction of our ap-
proach with respect to [1] is the use of an H2 measure
as the target function to be optimized.

We can measure the quality of the transient performance
through the cost function

Je =

N
∑

k=0

e(k)2, (15)

where e(k) is the tracking error sequence. The quan-
tity Je is the energy of the tracking error sequence and
has been widely used as a tracking performance measure
[13,18] in the context of performance bounds computa-
tion. On the other hand, a common criticism made to
deadbeat control is that it usually demands a large con-
trol energy. This observation suggests the introduction

of an optimality criterion that weights the control ef-
fort necessary to achieve the deadbeat response. To that
end, in an analogous fashion as in [22], we define the cost
functional

Ju =

N
∑

k=0

(u(k) − uss)
2. (16)

This measure accounts for the control effort by means of
the energy of its deviation from the steady state value.
It is worth noting that in the definitions of both Je and
Ju, the deadbeat feature of the transient response has
been implicitly taken into account, since both sums are
made only up to the N th sample. It is simple to prove
that these measures can be conveniently expressed in the
frequency domain as

Je (Dℓ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

S(z)

z − 1
v

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (17)

Ju (Dℓ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

Su(z) − A(1)

z − 1
v

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (18)

where S(z) is the sensitivity function and the argument
of both cost functions has been made explicit to empha-
size their dependence on the free polynomial Dℓ(z). In
the sequel, and without loss of generality, we assume that
v = 1. We are interested in including both partial costs,
tracking error and control energies, in our optimal con-
trol problem. To that end, we define the two objective
cost functional

J (Dℓ(z)) = λJe (Dℓ(z)) + (1 − λ)Ju (Dℓ(z)) , (19)

where 0 ≤ λ ≤ 1. We are now able to state the optimiza-
tion problem of our interest.

Problem 3 Given a discrete-time plant model G(z) sat-
isfying Assumption 1 and a prescribed deadbeat horizon
N = Nmin+ℓ, ℓ ∈ N0, find a polynomial Do

ℓ
(z) such that

Do

ℓ (z) = arg min
Dℓ(z)∈Pℓ

J (Dℓ(z)) , (20)

where Pℓ is the set of polynomials of ℓth order and Do

ℓ
(z)

satisfies (13) and (14).

As stated in the previous section, if we choose ℓ = 0
there is a unique feasible polynomial that solves Prob-
lem 3. Hence, in such a case, the controller is uniquely
determined and no optimization is possible; if we choose
larger deadbeat horizons, then the coefficients of Dℓ(z)
may be computed as a solution of Problem 3. For that
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purpose we define

He(z) = B(z)A+(z) =

m+n+
∑

i=0

he

iz
i, (21)

Hu(z) = A(z)A+(z) =

n+n+
∑

i=0

hu

i
zi, (22)

F e(z) =
zN − zℓB(z)P̃o(z)

z − 1
, (23)

Fu(z) =
zNA(1) − zℓA(z)P̃o(z)

z − 1
, (24)

where P̃o(z) = Po(z)/A−(z) and Po(z) is defined in
Lemma 2. From the proof of Lemma 2 we have that
P̃o(z) satisfies (6), so that P̃o(1) = 1 and therefore both
F e(z) and Fu(z) are always polynomials (recall that

B(1) = 1). Thus, we may let F e(z) =
∑N−1

i=0 fe
i
zi and

Fu(z) =
∑

N−1
i=0 fu

i
zi. With these definitions, an analytic

solution to Problem 3 can be found, as shown next.

Theorem 4 Consider the parameterization of ripple-
free deadbeat controllers given in Lemma 2. Then, the
optimal polynomial that solves Problem 3 is given by

Do

ℓ
(z) = (z − 1)

[

1 z · · · zℓ−1
]

[ √
λΓℓ√

1 − λΨℓ

]† [ √
λγℓ√

1 − λψℓ

]

,

(25)

where (·)† denotes the Moore-Penrose pseudoinverse [5],
and Γℓ ∈ R

N×ℓ, Ψℓ ∈ R
N×ℓ, γℓ ∈ R

N×1 and ψℓ ∈
R

N×1 are defined as

Γℓ =





















































he
0 0 · · · 0

he
1 he

0 · · · 0

... he
1

. . .
...

he
m+n+

...
. . . 0

0 he
m+n+

. . . he
0

0 0
. . . he

1

...
...

...
...

0 0 0 he
m+n+

0(n−m)×ℓ





















































, (26)

Ψℓ =













































hu
0 0 · · · 0

hu
1 hu

0 · · · 0

... hu
1

. . .
...

hu
n+n+

...
. . . 0

0 hu
n+n+

. . . hu
0

0 0
. . . hu

1

...
...

...
...

0 0 0 hu
n+n+













































, (27)

γℓ =















fe
0

fe
1

...

fe

N−1















, ψℓ =















fu
0

fu
1

...

fu

N−1















, (28)

with 0(n−m)×ℓ
∈ R

(n−m)×ℓ denoting the zero matrix of
the specified dimensions.

Proof:

From Lemma 2 and (12) we have that

S(z) =
zN − B(z)P (z)

zN
, (29)

Su(z) =
A(z)P (z)

zN
, (30)

where P (z) = zℓP̃o(z) + A+(z)Dℓ(z). The constraint
(13) can be satisfied if we write Dℓ(z) as

Dℓ(z) = (z − 1)D̃ℓ(z), (31)

where D̃ℓ(z) is an arbitrary polynomial such that

deg
{

D̃ℓ(s)
}

= ℓ− 1. Substituting (29)-(31) in (17) and

(18) yields

Je (Dℓ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zN − zℓB(z)P̃o(z)

z − 1
− B(z)A+(z)D̃ℓ(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

,

(32)

=
∣

∣

∣

∣

∣

∣
F e(z) − He(z)D̃ℓ(z)

∣

∣

∣

∣

∣

∣

2

2
, (33)

Ju (Dℓ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

zNA(1) − zℓA(z)Qo(z)

z − 1
−

A(z)A+(z)D̃ℓ(z)
∣

∣

∣

∣

∣

∣

2

2
, (34)

=
∣

∣

∣

∣

∣

∣
Fu(z) − Hu(z)D̃ℓ(z)

∣

∣

∣

∣

∣

∣

2

2
, (35)

5



where He(z), Hu(z), F e(z) and Fu(z) are defined in
(21)-(24), and we have used the fact that z−N preserves
the H2 norm. Expressions (33) and (35) can be vector-
ized as follows

Je (Dℓ(z)) =
∣

∣

∣

∣

∣

∣

[

1 z . . . zN−1
] (

γℓ − Γℓd̃ℓ

)∣

∣

∣

∣

∣

∣

2

2
, (36)

Ju (Dℓ(z)) =
∣

∣

∣

∣

∣

∣

[

1 z . . . zN−1
] (

ψℓ − Ψℓd̃ℓ

)∣

∣

∣

∣

∣

∣

2

2
, (37)

where γℓ, Γℓ, ψℓ and Ψℓ are defined in (26)-(28), and

d̃ℓ ∈ R
ℓ×1 is such that

d̃ℓ =
[

d̃0 d̃1 . . . d̃ℓ−1

]T

, (38)

and D̃ℓ(z) =
∑

ℓ−1
i=0 d̃iz

i. Substituting (36) and (37) in
(19) and using elementary properties of the H2 norm
yields

J (Dℓ(z)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[ √
λγℓ√

1 − λψℓ

]

−
[ √

λΓℓ√
1 − λΨℓ

]

d̃ℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

e

,

(39)

where ||·||
e

denotes the Euclidean norm. Thus, the orig-
inal optimization problem can be posed in a standard
least squares framework as

d̃o

ℓ
= arg min

d̃ℓ∈Rℓ×1

J (Dℓ(z)) . (40)

The optimal vector d̃o

ℓ
is then given by [6]

d̃o

ℓ
=

[ √
λΓℓ√

1 − λΨℓ

]† [ √
λγℓ√

1 − λψℓ

]

. (41)

The result (25) follows by substituting (41) in (31). 2

Last theorem is comparable to the results in [1,16,15],
in which design methodologies based on optimization
routines are proposed. Nevertheless, the framework used
throughout this paper allows one to obtain an analytical
solution to the two objective optimal control problem of
interest. This draws a difference with respect to previ-
ous work on this topic. This issue, together with the fact
we use an H2 performance index, constitute the main
distinctions of this work with respect to [1,16,15]. The-
orem 4 provides a ripple-free deadbeat controller design
procedure that can be summarized as follows:

i. Choose a deadbeat horizon N = Nmin + ℓ and a
scalar weight 0 ≤ λ ≤ 1.

ii. Compute the unique solution (Po(z), Lo(z)) of
the diophantine equation (4) such that Po(z) =

P̃o(z)A−(z), Lo(1) = 0 and deg {Po(z)} =
deg {Lo(z)} = n.

iii. Compute the polynomials F e(z), He(z), Fu(z) and
Hu(z) using (21)-(24).

iv. Compute Do

ℓ
(z) from (25) and substitute it in (3)

using (12) to obtain the optimal controller.

5 Optimal performance

In the previous section, an explicit formula for the op-
timal ripple-free deadbeat controller has been derived.
We now turn our attention to the performance proper-
ties of the optimal design. In particular, this section fo-
cuses on a key property of the optimal controller that
sheds light on the design tradeoffs that appear in ripple-
free deadbeat control. This constitutes the main result
of this paper and is stated in next theorem.

Theorem 5 Let G(z) be a discrete-time plant model and
suppose that the ripple-free deadbeat controller defined by
Lemma 2 is computed using the optimal polynomial Do

ℓ
(z)

that solves Problem 3. Then, the optimal cost J (Do

ℓ
(z))

is a non-increasing function of ℓ.

Proof:

To keep a compact notation let us define

Mℓ =

[ √
λΓℓ√

1 − λΨℓ

]

, (42)

mℓ =

[ √
λγℓ√

1 − λψℓ

]

. (43)

It should be observed that Mℓ ∈ R
2N×ℓ and has full

column rank (which can be verified from (26) and (27)).
Hence

Mℓ
† =

(

Mℓ
TMℓ

)−1

Mℓ
T . (44)

Therefore, from (39) and (41), it is simple to prove [6]
that the optimal cost for a horizon N is given by

J (Do

ℓ
(z)) = mℓ

T

(

I2N − Mℓ

(

Mℓ
TMℓ

)−1

Mℓ
T

)

mℓ.

(45)

Analogously, if we increase the deadbeat horizon in one
sample, the optimal cost can be computed from

J
(

Do

ℓ+1(z)
)

= mℓ+1
T

(

I2N+2 −

Mℓ+1

(

Mℓ+1
T Mℓ+1

)−1

Mℓ+1
T

)

mℓ+1.

(46)
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From the definition of Γℓ and Ψℓ in (26) and (27) we
observe that

Mℓ+1 =

[√
λhe

o
01×ℓ

q TℓMℓ

]

, (47)

where q ∈ R
(2N+1)×1 is given by

q =
[√

λhe
1 · · ·

√
λ he

m+n+
01×(n−m+ℓ)

√
1 − λhu

0 · · ·
√

1 − λ hu
n+n+

01×ℓ

]T

, (48)

and

Tℓ =
[

e1 · · · eN eN+2 · · · e2N+1

]T

∈ R
(2N+1)×2N ,

(49)

with ei denoting the ith element of the canonical basis of
R

2N+1. Similarly, from (23), (24), (28) and (43), it fol-
lows that the vector mℓ+1 can be conveniently expressed
as

mℓ+1 =

[

0

Tℓmℓ

]

. (50)

Equation (47) implies that

Mℓ+1
TMℓ+1 =

[

λhe
0
2 + qTq qT TℓMℓ

Mℓ
TTT q Mℓ

TMℓ

]

. (51)

With some algebra after substituting (47), (50)-(51) in
(46) and applying the matrix inversion lemma [5] it fol-
lows that

J
(

Do

ℓ+1(z)
)

= (Tℓmℓ)
T

Λ (Tℓmℓ)−
1

κ
(Tℓmℓ)

T
ΛqqT Λ (Tℓmℓ) , (52)

where

Λ = I2N+1 − (TℓMℓ)
(

(TℓMℓ)
T

(TℓMℓ)
)−1

(TℓMℓ)
T

,

(53)

κ = λhe

0
2 + qT Λq. (54)

Using the fact that Tℓ
TTℓ = I2N in (52) and comparing

with (45), we recognize the optimal cost for horizon N
in the first term of (52), so that J

(

Do

ℓ+1(z)
)

can be
expressed as

J
(

Do

ℓ+1(z)
)

= J (Do

ℓ (z))−

(

1√
κ
mℓ

T

(

I2N − Mℓ

(

Mℓ
TMℓ

)−1

Mℓ
T

)

TT q

)2

.

(55)

Therefore it can be concluded that J
(

Do

ℓ+1(z)
)

≤
J (Do

ℓ
(z)) , ∀ℓ ≥ 0 and the result follows.

2

The result in Theorem 5 reveals an essential tradeoff
in the design of ripple-free deadbeat control systems. If
the focus of the designer is to have a deadbeat response
with short settling time, then last theorem implies that
this can only be done at the expense of sacrificing per-
formance. Similarly, one can only improve the transient
performance by extending the settling time (and hence
the complexity of the controller).

This kind of design tradeoff has already been reported
in [1] for a mixed l∞/l1 performance measure that ac-
counts for the same elements as those in this work, i.e.,
tracking error and control input measures. Therefore,
since in this paper an H2 performance index is used, our
result stands as a complement to those previous findings
and adds an insightful conclusion to the topic: perfor-
mance vs. settling time tradeoffs are inherent to ripple-
free deadbeat controller design. It should be emphasized
that our conclusion cannot be intuitively derived from
the results in [1], since l∞/l1 and H2 measures are not
related to the same aspects of the transient response.

6 Conclusions

In this paper a ripple-free deadbeat controller design
methodology for step references has been proposed and
analyzed. The ripple-free property of the controller
means that after the settling time, no ripple appears in
the output of the underlying continuous time plant. The
design algorithm is applicable to general SISO plants
under sampled data control and is such that, for a fixed
settling time, the controller is adjusted to minimize a
quadratic cost function. This cost function penalizes a
combination of the energy of both the tracking error
and the control signal, and has been minimized with aid
of the standard properties of the H2 norm. This also
allowed us to derive an explicit formula for the optimal
controller.

Since the controller is obtained from an optimization
procedure, the only design parameters in this strategy
are the settling time and a scalar weighting factor. The
most significative result of this paper is showing that
the optimal cost function is a non-increasing function of
the settling time for any value of the weighting factor.
This conclusion is a complement to existent results in
the literature [1] that use different norms and therefore,
reveals that the settling time/performance tradeoff is
essential in ripple-free deadbeat control.
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Fig. 1. Sampled data control loop.
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