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Abstract: In this paper, a MIMO interaction measure is used to analyze how
the interaction evolves in the context of sampled data control, as a function
of the sampling frequency. The basic tool is the Participation Matrix, which is
a measure of the dynamic interaction in stable MIMO systems. This measure
provides support for decentralized input-output pairing as well as for a richer
controller architecture selection, including triangular, block diagonal and sparse
structures. It is shown that the controller structure selection may be significantly
dependant on the sampling period.
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1. INTRODUCTION.

One of the main challenges when designing a
controller for a multivariable plant is to choose
a suitable controller structure. This decision re-
quires to quantify the significance of the inter-
actions in the plant model. In the decentralized
(diagonal) architecture, this issue translates into
how inputs and outputs are paired. In the general
case, that quantification may lead to controllers
with structures ranging from decentralized up to
full MIMO.

The problem of quantifying interactions in a
MIMO system has received a lot of attention over
the last four decades, starting with the seminal
work of E. Bristol (Bristol, 1966), who devel-
oped the idea of Relative Gain Array (RGA).
The field has been enriched with additional ideas
such as Niederlinski index (Niederlinski, 1971).
A variation of the RGA was proposed by Z.
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Zhu (Zhu, 1996). A common feature of those in-
dices is that they only use the system model at
zero frequency. Dynamic features were introduced
in the Relative Dynamic Gain Array (RDGA),
(Witcher and McAvoy, 1977) , (Bristol, 1978). The
RDGA also provides information of how interac-
tion varies with frequency, suggesting bandwidths
for alternative pairings. That line of work was
continued by Gagnon and co-workers (Gagnon et

al., 1999) through the Generalized Relative Dy-

namic Gains (GRDG).

Recently, two gramian-based interaction measures
have been proposed (Conley and Salgado, 2000),
(Wittenmark and Salgado, 2002), (Salgado and
Conley, 2004). In (Salgado and Conley, 2004) the
Participation Matrix (PM) is proposed as a tool
to quantify dynamic interactions in stable mul-
tivariable systems. It is shown that the PM can
be applied, in continuous time and in discrete
time frameworks, to decide on which controller
structure is more appropriate. In this paper the
Participation Matrix is used to explore the evolu-



tion of the multivariable dynamic interaction as a
function of the sampling frequency.

The expression system structure is used in the se-
quel to denote the web of paths from the (vector)
input to the (vector) output, independently of the
dynamical order of each scalar subsystem.

We consider a discrete-time system with p inputs
and p outputs which can be modeled as a mul-
tivariable process with matrix transfer function
given by G[z] = [Gij [z]]. The same notation is
used to denote the transfer function of a sampled
data system, where the underlying continuous
time system is described by G(s) = [Gij(s)]. A
zero-order hold is assumed to be present in the
sampling process.

This paper is organized as follows: in section § 2
controllability and observability gramians are re-
visited and the main properties of the Participa-
tion Matrix are summarized. In section § 3 the
PM is used to quantify interactions in discrete-
time and sampled data systems. Those results are
illustrated with examples in § 4. Conclusions are
presented in section § 5.

2. PARTICIPATION MATRIX

2.1 Gramians

Gramians, in linear control theory, are matri-
ces which describe controllability and observabil-
ity properties of a given stable linear system.
They can be computed for continuous-time and
discrete-time systems.

Assume that a p × p stable, discrete-time MIMO
system has a state space representation given by
the 4-tuple (A ∈ C

n×n, B ∈ C
n×p, C ∈ C

p×n,
0 ∈ R

p×p), then the controllability gramian, P,
and the observability gramian, Q, are hermitian
non negative definite matrices which satisfy the
Lyapunov equations (1)-(2)

P − APAH − B BH = 0 (1)

Q − AHQA − CHC = 0 (2)

Useful interpretations for gramians can be derived
using energy concepts (see (Glover, 1984) and
(Salgado and Conley, 2004)).

Gramians quantify how hard is to control and to
observe the system state, and the ranks of P and
Q are the dimensions of the controllable subspace
and observable subspace respectively. However,
gramians depend on the state space realization. To
extract valuable information, the product PQ is
formed and its eigenvalues, λi (i = 1, 2, . . . , n), are
computed. It can be proved that those eigenvalues

are non-negative and that they do not depend on
the particular realization, see e.g. (Glover, 1984)
and (Kwakernaak and Sivan, 1972). The system
Hankel singular values (HSV) are defined as

σ
(i)
H =

√

λi i = 1, 2, . . . , n (3)

where the λ′
is are ordered to obtain σ

(1)
H ≥ σ

(2)
H ≥

. . . ≥ σ
(m)
H ≥ 0.

It turns out that the system gramians are strongly
connected to the gramians of the elementary sub-
systems. To define these subsystems, consider the
system state space description (A, B, C, 0),
where

B =
[

b1 b2 . . . bp

]

; C H =
[

c1 c2 . . . cp

]

(4)

We can then associate with the MIMO system,
a set of elementary (SISO) subsystems, each of
them having a single input uj , j ∈ {1, 2, . . . , p},
and a single output yi, i ∈ {1, 2, . . . , p}, and a
state space model given by (A, bj, ci

H , 0 ) with
gramians Pj and Qi satisfying

Pj − APjA
H − bjbj

H = 0 (5)

Q i − AHQ iA − cici
H = 0 (6)

A key observation is that Gij [z] is the transfer
function of the minimal realization of the ele-
mentary subsystem with input uj and output yi.
Hence, the sets of HSV for the elementary subsys-
tem (A, bj, ci

T , 0 ) and for the minimal system,
characterized by Gij [z] differ only in a subset of
zero HSV.

The connection between the system gramians and
those of the elementary subsystems is described
by the following lemma.

Lemma 2.1. (Gramian decomposition). Let Pj and
Q i be the controllability and observability grami-
ans for the elementary system (A, bj, ci

T , 0 )
given by (4).

Then, the original system controllability and ob-
servability gramians P and Q are P =

∑p

j=1 Pj,

and Q =
∑p

i=1 Q i.

Proof. See (Salgado and Conley, 2004).

From the gramians decomposition introduced in
Lemma 2.1, it can be seen that the product PQ

for the multivariable process is given by (7)

PQ =





p
∑

j=1

Pj





(

p
∑

i=1

Qi

)

=

p
∑

i=1

p
∑

j=1

PjQi (7)



The maximum controllability and observability is
attained when a full MIMO controller architecture
is chosen, then all terms of the form PjQ i have to
be added to compute the system HSV. However if
a restricted complexity controller is chosen, then
only a subset of those terms is involved.

2.2 Interaction quantification

The above analysis requires, to have practical
interest, a way to quantify and to compare.

By definition, the products PQ and PjQ i have
non negative eigenvalues. However, the eigenval-
ues of a sum of products PjQ i is not equal, in
general, to the sum of the eigenvalues of each sum-
mand. It turns out that the trace of the product
PjQ i is a convenient basis to measure the inter-
action and the degrees of controllability and ob-
servability of different controller structures. Recall
that the trace of PjQ i is the sum of the squared
HSV for the elementary system with input j and
output i and also recall that the HSV associated to
the pair (Pj,Q i) quantify the combined abilities
of input uj and output yi to control and to observe
the system state.

The information encompassed in the above results
can be organized in a matrix Φ = [φij ] ∈ R

p×p,
which is known as the participation matrix

(PM), defined by

φij =
trace [PjQi]

trace [PQ]
(8)

where the trace measure has been normalized by
trace(PQ). This implies that 0 < φij < 1 and
that

∑p

i=1

∑p

j=1 φij = 1.

From (8) we observe that φij quantifies the rela-
tive dynamic relevance of the subsystem (i, j). It
is then crucial to understand the dependence of
trace [PjQi] on dynamic features such as pole and
zero locations, d.c. gain and delays. For sampled
data systems, those features, except the d.c. gain,
depend on the sampling frequency. The interplay
between those dynamic features, the sampling
period and trace [PjQi] defines the focus of this
paper.

3. PM AND DISCRETE-TIME SYSTEMS

In the PM framework, the selection of a model
with captures the most significant interactions in
a MIMO system is a competitive game. Indeed,
a given elementary subsystem with transfer func-
tion Gij [z] has to compete with other subsystems
to be included in the model with the chosen struc-
ture. In this paper, we explore how the compet-

itive stand of that particular subsystem changes,
as the sampling frequency is modified.

For the purpose stated above, we compute and
discuss the indicator tracePjQ i for certain classes
of elementary subsystems.

3.1 First order case

Consider a first order system with transfer func-
tion given by

Gij [z] = K
1 − a

z − a
(9)

Using (5) and (6) with A = a, B = K(1− a) and
C = 1 we obtain

trace{PjQ i} = K2 1

(1 + a)2
(10)

This results says that the significance of this el-
ementary subsystem will increase as the pole ap-
proaches −1. This property is particularly inter-
esting, since in the continuous-time counterpart
tracePjQ i does not depend on the location of the
pole, but only on the subsystem d.c. gain. Equa-
tion (10) also verifies that the HSV is proportional
to the d.c. gain K.

Consider a system model Gij [z] which arises from
sampling a first order continuous-time system
with pole at s = p ∈ R

−, i.e. with time con-
stant τ = |p|−1 and a = e−

∆
τ . Therefore, the

dynamic relevance of the sampled-data system
is larger for those continuous-time systems with
larger bandwidths. If ∆ >> τ , then trace{PjQ i}
tends to K2. On the contrary, if ∆ << τ , then
trace{PjQ i} tends to 0.25K2, which is the cor-
responding value for the continuous time system
(Salgado and Conley, 2004). On the other hand,
if a sampled data system has only one stable pole
in the interval (−1, 0), we then now that the un-
derlying continuous time system has damped os-
cillatory modes, and that the sampling frequency
has been ill-chosen.

3.2 Second order case

Consider a second order system with transfer
function given by

Gij [z] =
K1

z − a1
+

K2

z − a2
(11)

where K1 ∈ C, K1 ∈ C, a1 ∈ C and a2 ∈ C.

The model in (11) accommodates systems with
and without a zero, and with real and com-
plex poles. However we will always require that
Gij [z] ∈ R, for all z ∈ R.



Fig. 1. System with two complex poles and no zero

Using (5) and (6) with A =
[

a1 0
0 a2

]

; B =

[ K1 K2 ]
T
; C = [ 1 1 ], we obtain

Pj =





|K1|
2

1−|a1|2
K1K∗

2

1−a1a∗

2

K∗

1 K2

1−a∗

1
a2

|K1|
2

1−|a1|2



 ; Qi =

[

1
1−|a1|2

1
1−a∗

1
a2

1
1−a1a∗

2
1−|a1|2

]

;

(12)

To proceed with the analysis we will consider
several cases.

3.2.1. Two complex poles, no zero In this case,
we assume that the poles are conjugate, that is
a1 = a∗

2 and that K1 = −K2 to ensure that there
is no zero. These assumptions and (12) lead to

trace{PjQi} =
2K2

1

(1 − |a1|2)2
−

K2
1

(1 − a2
1)

2
−

K2
1

(1 − a2
2)

2

Also, to have a unit d.c. gain we need K1 =
(1−a1)(1−a2)

(a1−a2)
. We then describe the poles as a1 =

a∗
2 = ρejθ and the trace is computed for different

values of ρ and θ. The result is shown in Figure
1. It is there observed that trace{PjQi} increases
as the

Figure 1 show that the largest value for trace{PjQi}
is achieved when the poles get close to (−1, 0).

3.2.2. Real poles, no zero In this case a1 ∈ R,
a2 ∈ R, a1 6= a2. Since there is no zero, and given
that G[z] must be real for all real z, we have that
K1 = −K2. Then

trace{PjQi} =
K2

1

(1 − a2
1)

2
−

K2
1

(1 − a1a2)2
+

K2
1

(1 − a2
2)

2

(13)

To analyze the effect of the system d.c. gain we

choose K1 = (1−a1)(1−a2)
a1−a2

. The trace of PjQi is
shown in Figure 2, where it can be appreciated

Fig. 2. System with two real poles and no zero

that Gij [z] has the strongest combination of con-
trollability and observability when its two poles
are close to (−1, 0).

3.2.3. Two real poles, one real zero In this case
a1 ∈ R, a2 ∈ R, a1 6= a2, and we assume that
Gij [z] has a real zero at z = c. If we also choose
the gains K1 and K2 to achieve unit d.c. gain, we
have that

[

K1

K2

]

=

[

(c − a1)(1 − a1)(1 − a2)
(a2 − c)(1 − a1)(1 − a2)

]

1

(a2 − a1)(1 − c)
(14)

leading to (13) with K1 and K2 given by (14).

In this case, trace{PjQi} achieves its maximum
when the poles are close to (−1, 0) and the zero
is close to (1, 0). If both poles are in the interval
[0, 1), still that maximum is achieved for the zero
close to (1, 0). These results are in agreement
with that observed in the previous case, since the
system modes are oscillatory with poor damp-
ing. Also, a zero close to the stability boundary
is a strong dynamic feature in discrete and in
continuous-time systems.

In sampled data control systems, the presence of a
zero is sometimes originated in the sampling pro-
cess. This sampling zero is usually located in the
negative real axis. To explore this issue further,
we consider the case of a continuous-time system
with transfer function Gij(s) = 1

(s+1)(τs+1) , where

τ goes from 0.1 up to 10. We next consider a sam-
pling process with zero-order hold and sampling
period ∆ going from 0.01 up to 20. The value of
trace{PjQi} is shown in Figure 3.

Figure 3 shows that if τ is fixed, then the
higher combined controllability and observability
is achieved for the largest sampling period. This
sampling period produces a sampling zero close
to the origin. In general, the closer the sampling



Fig. 3. trace{PjQi} for a sampled-data second
order system

zero is to (1, 0) the largest value is obtained for
trace{PjQi}.

Two main results can be drawn form the anal-
ysis above: firstly, the value of trace{PjQi}
varies with the sampling frequency, and secondly,
trace{PjQi} grows as the sampling frequency di-
minishes.

These results say that interaction in a sampled-
data MIMO systems may be significantly depen-
dant on the sampling period. This means, for
instance, that the input-output pairing for decen-
tralized control might be required to be changed
if the sampling frequency changes. The general ef-
fect of this change on the PM interaction measure
is illustrated in the following examples.

4. EXAMPLES

4.1 Effect of large bandwidth dynamics

Consider the continuous time full MIMO system
described by its matrix transfer function

G1(s) =

[

0.375(s+2)
(s+1)(s+1.5)

−5
(s+10)

4
(s+10)

0.375(−s+4)
(s+1)(s+3)

]

(15)

The PM of G1(s) is given by

Φ1 =

[

0.2345 0.2212
0.1416 0.4027

]

(16)

Suppose a digital control system is to be imple-
mented, so a zero order hold model for G1(s) is
computed with sampling period ∆. Some cases are
shown next regarding the effect of the sampling
period election.

4.1.1. Sampling period ∆ = 10[ms]

Using ∆ = 10[ms] the zero order hold equivalent
for G1(s) is given by

G1[z] =

[

0.0037406(z−0.9802)
(z−0.99)(z−0.9851)

−0.047581
(z−0.9048)

0.038065
(z−0.9048)

0.0036018(−z+1.041)
(z−0.99)(z−0.9704)

]

(17)

The PM of H1a[z] is given by

Φ1a =

[

0.2270 0.2343
0.1499 0.3887

]

(18)

According to the criteria discussed in (Salgado
and Conley, 2004), a reasonable structure would
be to make y1 depend on both u1 and u2, leaving
y2 depending just on u2, that is to select a trian-
gular structure for the control design stage. This
selection coincides with that for the continuous-
time plant.

Note that this selection has a total interaction
measure given by

∑

φ = φ11 + φ12 + φ22 = 0.8501 (19)

4.1.2. Sampling period ∆ = 150[ms]

Using ∆ = 150[ms] the zero order hold equivalent
for G1(s) is given by

H1b[z] =

[

0.054098(z−0.7406)
(z−0.8607)(z−0.7985)

−0.38843
(z−0.2231)

0.31075
(z−0.2231)

0.027951(−z+1.903)
(z−0.8607)(z−0.6376)

]

(20)

The PM for H1b[z] can be computed as

Φ1b =

[

0.1578 0.3555
0.2275 0.2592

]

(21)

In this case, the structure selection yields a differ-
ent result from that obtained with ∆ = 10[ms].
Although the triangular structure is still a sensible
choice, a suitable structure choice would be to
make y2 to depend on both inputs while con-
sidering y1 to depend only on u2. The achieved
interaction measure is then

∑

φ = φ21 + φ12 + φ22 = 0.8422 (22)

This example shows that for a sufficiently high
sampling frequency, the model structure selection
may be the same to that selected for the under-
lying continuous-time system. However, for larger
sampling periods, the faster elementary subsys-
tems start to gain more significance, possibly
changing the control structure choice. Also, in
agreement with intuition and known dynamical
features characteristics, the nonminimum phase
subsystem loses importance as the sampling pe-
riod decreases.

4.2 3x3 system

Consider the 3x3 full MIMO continuous time
system with transfer function

G2(s) =







1.5
s+2

12
s2+5.6s+16

1
(s+1)2

15
(s+5)2

3
s+4

0.8(−s+1.5)
(s+1)(s+2)

7.2
(s+2)(s+4)

0.7
(s+1)2

10
s2+5.6s+16







(23)



The PM for G2(s) is computed as

Φ2 =





0.0705 0.1425 0.1880
0.0677 0.0705 0.1231
0.1466 0.0921 0.0989



 (24)

Some cases are shown next regarding the effect
of the sampling period selection when a digital
control system is to be implemented.

4.2.1. Sampling period ∆ = 100[ms]

The zero order hold equivalent for G2(s) with the
selected sampling period is given by




0.136
z−0.8187

0.04957z+0.0411

z
2
−1.45z+0.5712

0.004679z+0.004377

z
2
−1.81z+0.8187

0.05412z+0.03877

z
2
−1.213z+0.3679

0.2473
z−0.6703

−0.06345z+0.0738

z
2
−1.724z+0.7408

0.02957z+0.02421

z
2
−1.489z+0.5488

0.003275z+0.003064

z
2
−1.81z+0.8187

0.04131z+0.03425

z
2
−1.45z+0.5712





(25)

and its PM can be calculated as

Φ2a =





0.0764 0.1446 0.1741
0.0701 0.0906 0.1154
0.1432 0.0853 0.1004



 (26)

Assuming we wish to use a triangular controller
structure, the best choice is given by the total
interaction measure
∑

φ = φ12 + φ13 + φ23 + φ31 + φ32 + φ33 = 0.7630

(27)

4.2.2. Sampling period ∆ = 400[ms]

The zero order hold equivalent for G2(s) with
∆ = 400[ms] is




0.413
z−0.4493

0.4302z+0.1964

z
2
−0.2709z+0.1065

0.06155z+0.04714

z
2
−1.341z+0.4493

0.3564z+0.09219

z
2
−0.2707z+0.01832

0.5986
z−0.2019

−0.1116z+0.2205

z
2
−1.12z+0.3012

0.2729z+0.1226

z
2
−0.6512z+0.09072

0.04309z+0.033

z
2
−1.341z+0.4493

0.3585z+0.1637

z
2
−0.2709z+0.1065





(28)

and its PM result

Φ2b =





0.0951 0.1379 0.1501
0.0726 0.1383 0.1012
0.1353 0.0736 0.0958



 (29)

With a triangular controller structure, the best
achievable interaction measure is
∑

φ = φ12 + φ13 + φ22 + φ31 + φ32 + φ33 = 0.7310

(30)

Clearly, the controller structure decision based on
the PM can be heavily dependent on the sampling
time selection. In this case the nonminimum-phase
zero in the subsystem G23(s) loses importance as
the sampling period increases.

5. CONCLUSIONS

This paper has shown that the sampling period
may substantially modify the dynamic multivari-
able interaction as measured by the Participation

Matrix. This is consistent with intuition since
faster elementary subsystems become more rele-
vant as the sampling frequency decreases.
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