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Abstract— This paper deals with feedback control of serial
processes, that is, processes formed by the series connection
of several subsystems. We focus on the determination of
conditions under which a full multivariate controller may lead
to performance improvements over a triangular controller. In
other words, we study conditions under which it is advisable
to include a control law with downstream feedback besides
local control and feedforward action. The problem is addressed
using an H2 optimal performance criterion in a discrete-time
framework. Our main result is a simple condition on the
unstable poles, non minimum phase (NMP) zeros and delays
of the discrete time plant model that ensures no penalization
on the achievable performance under triangular control. As
an application of this result, we show that for an application
relevant class of serial processes, the condition can be expressed
in terms of the time delays in each subsystem only. The derived
condition may be useful for both process design and process
control.

Index Terms— Optimal control, multivariate control, serial
processes, process control.

I. INTRODUCTION

The term serial process encompasses a wide class of

systems which are composed of cascaded subsystems, i.e.,

subsystems connected in such a way that the output of

each one affects the next one either as an input or as a

disturbance. This kind of multi-input multi-output (MIMO)

plants are often encountered in practical applications related

to process industry, such as pH-neutralization tanks and

mixing processes [1], [2]. For control design purposes, the

common approach is to use linear models obtained around

a certain operation point. In this framework, an important

feature of serial processes is that their linearized models have

lower triangular transfer matrices.

A general diagram of a serial process is shown in Figure

1, where Si represents the ith subsystem. In that scheme, the

output of subsystem Si acts as a disturbance for subsystem

Si+1. In reference to that figure, we refer as downstream

units (resp. upstream units) as those located to the right (left)

of a given stage in the diagram.

In this paper we consider the digital control of a serial

process. To that end, we study a standard one degree of

freedom control architecture, as the one shown in Figure 2.

In that figure, C(z) is the controller transfer function, Go(s)
is the continuous-time transfer function of a linearized plant

model, T is the sampling interval and G(z) represents an

at the samples exact discrete time model for the process.

In order to account for the different closed loop perfor-

mance specifications, the design of the controller C(z) is

always an iterative process [3] in which the performance

of different control structures must be compared with the

given specifications. A key stage in the controller design

procedure is controller structure selection, i.e., determining

which measurements will be used to build which plant input

(see, e.g., [4] and the references therein).

In the particular case of serial processes, it is possible to

classify the entries of the MIMO controller C(z) in three

categories, as described in [5]:

1) Local control: the entries on the diagonal of C(z)
controller attempt to control the output of subsystem

Si, yi, by means of manipulating ui. Therefore, this

control action can be seen as a local control architecture

of output yi.

2) Feedforward action: the entries below the main diagonal

of C(z) relate the input of each subsystem to the

outputs of upstream subsystems. Therefore, they can

be interpreted as forming a feedforward based control

architecture.

3) Feedback action: the entries above the main diagonal

of C(z) relate the input of the each subsystem to the

outputs of downstream subsystems. Therefore, they can

be interpreted as forming a downstream feedback based

control architecture.

Different combinations of the control actions described above

yield different controller structures. The choice of a particular

structure may have a major impact on the performance of

the overall control system, which will depend mainly on the

interactions between the input/output channels of the plant.

. . .
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Fig. 1. Standard serial process.
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The extremal cases are centralized or full MIMO controllers,

which have all the aforementioned control actions and hence

use all measurements to build the control input, and decen-

tralized controllers, which have diagonal transfer matrices,

so they just provide local control for each of the outputs.

A family of MIMO controllers that lies between these two

extremals are lower triangular controllers, which provide

both local control and feedforward action.

Since the transfer matrix of a serial process has a lower

triangular structure, it seems natural to use the same struc-

ture for the controller. Nevertheless, it is also true that a

full MIMO controller provides a richer interaction structure

among the measurements and the plant inputs. Therefore,

the achievable performance of a control system for a serial

process should, in principle, be improved when considering

a full MIMO controller, instead of a triangular one. This

leads us to the main problem addressed in this paper: for

the control of a serial process, under which conditions is

it advisable to use a full MIMO controller instead of a

triangular controller? Or, stated differently, when does the

restriction of the controller to be triangular not constraint

the achievable performance? Providing an accurate answer

to this questions will shed light on when is it advisable to

include downstream feedback action in the controller besides

local and feedforward control.

The issues described in the previous paragraph have been

extensively discussed from an intuitive perspective in [5].

In that work, the authors state that, leaving aside imple-

mentation issues, the use of downstream feedback action is

recommended just in certain cases, depending mainly on the

subsystems’ delays.

The main contribution of this paper is to tackle this issue

in an analytical fashion. We determine precise conditions

on plant dynamic features under which the inclusion of

the downstream feedback action is advisable. In particular,

considering a standard H2 measure for loop performance,

and assuming that the control loop provides perfect steady

state tracking for constant reference signals, we derive simple

necessary and sufficient conditions on the unstable poles,

non minimum phase (NMP) zeros and delays of the discrete

time plant model that ensure no penalization on the best

achievable performance when restricting the controller to be

triangular. To illustrate the results, we particularize them to

a relevant class of serial processes and we provide two il-

lustrative examples. The derived conditions provide a formal

complement to the discussion given in [5] and, in our view,

may be useful for both process design and control system

design.

zero
order
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y
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Fig. 2. One degree of freedom sampled data control loop.

The rest of the paper is organized as follows: Section

II presents some preliminaries and states the general as-

sumptions considered in this work. Section III defines the

problem of our interest. Section IV reviews known results

on H2 optimal performance for general (i.e., not necessarily

triangular) plants and, in Section V, those results are used to

derive the main result in this paper. Section VI particularizes

the results to an application relevant class of serial processes.

Finally, Section VII presents the conclusion of this work.

II. PRELIMINARIES AND GENERAL ASSUMPTIONS

We will denote the set of n × n discrete-time transfer

matrices in the complex variable z as R, the set of stable

and proper discrete-time transfer matrices as RH∞, the set

of stable and strictly proper transfer matrices as RH2 and

its orthogonal complement as RH⊥

2 . The transfer matrix

G(z) ∈ R has a zero at z = c ∈ C if and only if

G(c) is singular. This kind of zeros is usually termed in the

literature as transmission zeros. If |c| ≥ 1, the zero is called

nonminimum phase (NMP), otherwise, it will be referred as

minimum phase (MP). Similarly, a transfer matrix having at

least one NMP zero is called NMP, otherwise, is termed as

MP.

Given any nonsingular almost everywhere (a.e.) transfer

matrix A(z) ∈ RH∞, we will refer to ξL(z) ∈ R as a gen-

eralized left unitary interactor (GLUI) for A(z) if and only if

ξL(z) is non singular a.e., MP, satisfies ξL(z−1)T ξL(z) = I
and ξL(0) = I , and is such that the transfer matrix

Ã(z) = ξL(z)A(z) (1)

is biproper, stable and MP (see [6] and the references

therein). A GLUI for A(z) exists only if A(z) does not have

zeros on the unit circle and can be proven to be unique [7].

An algorithm to build such interactor matrices can be found

in [6]. Similarly, we can define a generalized right unitary

interactor (GRUI), ξR(z). In this case, we require the transfer

matrix A(z)ξR(z) to be biproper, stable and MP (compare

to (1)). Clearly, a GRUI for A(z) is the transpose of a GLUI

for A(z)T , and vice versa.

In this paper we assume that the plant model G(z) is such

that it satisfies the following:

Assumption 1: G(z) is real rational, proper, square, hav-

ing non singular DC-gain (i.e., G(1) is non singular) and

without poles nor zeros on the unit circle.

We note that the condition of G(1) being non singular

is necessary for being able to track arbitrary step references

or compensate for arbitrary step disturbances [8]. On the

other hand, the assumption regarding the absence of poles

and zeros in the unit circle is rather technical, and we could

remove it at the expense of more involved calculations.

Hence, the most restrictive assumption relates to the fact that

we are only considering square plants.

Since G(z) is real rational, it admits coprime matrix

fraction descriptions (MFD) in RH∞ given by [9]

G(z) = DI(z)−1NI(z) = ND(z)DD(z)−1, (2)
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where DI(z),NI(z),ND(z) and DD(z) are all in RH∞.

In this description, every NMP zero of G(z) is also a zero of

ND(z) with the same algebraic and geometric multiplicity

[10]. Similarly, every unstable pole of G(z) is a zero of

DI(z). We note that Assumption 1 guarantees the existence

of a GLUI for ND(z) and a GRUI for DI(z), denoted by

ξc(z) and ξp(z), respectively.

III. PROBLEM DEFINITION

In this paper we consider serial processes with the struc-

ture depicted in Figure 1, where every signal ui and yi is

scalar. The continuous time input-output relation of each

subsystem is assumed to be given by

Y1(s) = H1(s)U1(s)

Yi(s) = Hi(s)Ui(s) + Hdi(s)Yi−1(s), i = 2, . . . n, (3)

where upper case denotes Laplace transform in the complex

variable s, and Hi(s) and Hdi(s) are scalar and proper

transfer functions. It is straightforward to see that the output

of each subsystem, yi, is related to the subsystems inputs,

{u1, u2, . . . , un}, by

Y1(s) = H1(s)U1(s), (4)

Yi(s) =

i−1
∑

j=1





i
∏

ℓ=j+1

Hdℓ(s)



 Hj(s)Uj(s) + Hi(s)Ui(s),

(5)

for all i = 2, 3, . . . , n.

The elements of the discrete time transfer matrix G(z)
will be denoted by Gij(z). Without loss of generality, we

write

Gij(z) =































1

zdi
Ĝii(z) if j = i

1

zdij
Ĝij(z) if j < i

0 if j > i,

(6)

where 0 < |Ĝij(0)| < ∞, for all i, j, and dij (resp. di)

denotes the pure time delay in Gij(z) (resp. Gii(z)).
The triangular structure of (6) suggests that it is natural

to consider local control enhanced by feedforward of the

upstream outputs. The question we seek to answer is when

is it advisable to include, in addition, downstream feedback

action in the controller. Using intuitive arguments, it seems

reasonable to conjecture that, if di ≤ dij for all i, j,

then downstream feedback may not be necessary. Indeed,

the aim of downstream feedback is to add information to

upstream controllers so that they can, indirectly via the off

diagonal terms in G(z), correct deviations in the back-fed

measurement. If the delays in the off diagonal terms in the

same row as the back-fed measurement (i.e., dij) are greater

than the delay in the diagonal term in the same row (i.e., di),

then the corrective action achieved by downstream feedback

will always have more delay that the corrective action of

the local controller. Therefore in such cases the inclusion of

the downstream feedback might not give any performance

improvements. A complementary discussion around these

arguments can be found in [5].

The rest of this paper is devoted to the analytical justifi-

cation of the conclusions drawn in the previous paragraph.

Using a standard quadratic performance measure, we explore

whether it is possible to improve the best performance

achievable by a lower triangular controller by enhancing it

with downstream feedback (i.e., considering a full MIMO

controller). In this way, our results provide a formal com-

plement to the intuitive arguments given in [5] regarding the

inclusion of downstream feedback action in the design of

controllers for serial processes.

IV. H2 OPTIMAL PERFORMANCE FOR GENERAL PLANTS

This section reviews known facts about H2 optimal per-

formance of feedback control systems. We measure the per-

formance of the loop in Figure 2 by means of the weighted

H2 norm of the loop sensitivity function [11]

So(z) = (I + G(z)C(z))
−1

. (7)

In particular, we define the functional

J =

∣

∣

∣

∣

∣

∣

∣

∣

So(z)

z − 1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (8)

Given the fact that G(1) is assumed to be non singular,

it follows that J is well defined. We note that J can be

interpreted as the reference-direction averaged energy of the

tracking error for step references [12].

A key step in the minimization of J is the appropriate

parameterization of So(z). Usually this has been made

using the Youla parameterization of all stabilizing controllers

[8], [9], [11]. Here we consider an alternative formulation,

originally described in [12]. If we consider G(z) satisfying

Assumption 1, and denote by Soo(z) any admissible1 sen-

sitivity function for G(z), then every admissible sensitivity

function for G(z) can be written as

So(z) = Soo(z) − ξc(z)−1X(z)ξp(z)−1, (9)

where X(z) ∈ RH∞ is a free parameter.

Equation (9) allows one to write the cost functional as

J =

∣

∣

∣

∣

∣

∣

∣

∣

Soo(z) − ξc(z)−1X(z)ξp(z)−1

z − 1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (10)

Defining the optimal parameter Xopt(z) as

Xopt(z) = arg min
X(z)∈RH∞

J, (11)

it is possible to prove the following lemma [12].

Lemma 1: Consider G(z) satisfying Assumption 1. Then,

Xopt(z) = F⊥(1) + F∞(z), (12)

1A sensitivity function is called admissible if and only if it is generated
by a proper and stabilizing controller.
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where F⊥(z) ∈ RH⊥

2 and F∞(z) ∈ RH∞ are such that

F⊥(z) + F∞(z) = (I − ξc(z)Too(z)) ξp(z) , F (z),
(13)

with Too(z) = I − Soo(z).
Given (7), (9) and (11) we have that the controller that

minimizes J is given by

Copt(z) , min
C(z)∈S

J (14)

= G(z)−1 [(Soo(z)

−ξc(z)−1Xopt(z)ξp(z)−1)−1 − I
]

, (15)

where S is the set of stabilizing and proper controllers for

G(z). It is worth noting that, since we have not imposed

any specific structure on Xopt(z), Copt(z) is, in general,

a full MIMO controller. For further reference we define the

performance achieved by the optimal controller as

Jopt , min
X(z)∈RH∞

J = min
C(z)∈S

J. (16)

V. H2 OPTIMAL PERFORMANCE FOR TRIANGULAR PLANT

MODELS AND TRIANGULAR CONTROLLERS

So far we have not included any structural constraints on

the optimal controller Copt(z). We are now interested in an

optimal controller with triangular structure, i.e., a controller

defined by

C
opt
t (z) = arg min

C(z)∈St

J, (17)

where St is the set of triangular, stabilizing and proper

controllers for G(z).
We define the performance achieved by the optimal trian-

gular controller as

Jopt
t = min

C(z)∈St

J. (18)

Results in [2], [13] show that, since G(z) is triangular, the

optimization problem whose solution leads to C
opt
t (z) can

be recast as a convex problem and, hence, it can be solved

with standard techniques.

We are interested in determining when the full MIMO

controller Copt(z) outperforms the triangular controller

C
opt
t (z). It should be clear that, since St ⊂ S, then in

general Jopt ≤ Jopt
t . This is intuitively reasonable because

a full MIMO controller has a richer interaction structure

among measurements and control signals as compared to a

triangular one. The previous fact might lead one to think

that optimal performance can always be improved using a

full MIMO controller instead of a triangular one. However,

results in [13] show that this is not always the case. In

particular, if G(z) is triangular and stable, then Jopt = Jopt
t

if and only if the plant NMP zeros satisfy certain algebraic

condition that is equivalent to having a diagonal GLUI for

G(z). In those cases, using a full MIMO controller does not

provide any improvement in the best achievable performance,

as measured by J .

We next present a definition taken from [13], which is key

to the derivation of the main result of this paper.

Definition 1: Consider any n×n transfer matrix A(z) ∈
R. A zero at z = c of A(z), with algebraic multiplicity αc,

is said left canonical if and only if

αc =

n
∑

i=1

mc
i , (19)

where mc
i is such that the ith row of A(z) satisfies

[A(z)]i∗ =







(z − c)mc
i F c

i (z) if |c| < ∞

1

zmc
i
F c

i (z) if c = ∞
, (20)

and 0 <
∣

∣

∣

∣F c
i (c)T

∣

∣

∣

∣ < ∞.

Last definition encompasses those NMP zeros of a transfer

matrix that are concentrated by rows. In an analogous

fashion, we can define the notion of right canonical zeros in

terms of the columns of the transfer matrix. For the purposes

of this paper it suffices to note that a zero of A(z) is left

(resp. right) canonical if and only if it is a right (resp. left)

canonical zero of A(z)T . This consideration, together with

the MFD in (2) allow one to state the following definition:

Definition 2: Consider a real rational plant model G(z) ∈
R with coprime MFD as in (2). Then:

1) A NMP zero of G(z) is said left canonical if and only

if it is a left canonical zero of ND(z).
2) An unstable pole of G(z) is said right canonical if and

only if it is a left canonical zero of DI(z)T .

Next theorem extends some results in [13] to unstable

plant models, and constitutes the main result in this paper.

Theorem 1: Consider a lower triangular plant model

G(z) satisfying Assumption 1.

1) If, in addition, G(z) admits a stabilizing and proper

triangular controller Coo(z), then Jopt
t = Jopt if every

NMP zero of G(z) is left canonical and every unstable

pole of G(z) is right canonical.

2) If, in addition, G(z) is stable, then Jopt
t = Jopt if and

only if every NMP zero of G(z) is left canonical.

Proof:

1) Since Coo(z) and G(z) are triangular, it follows that

both Soo(z) = (I + G(z)Coo(z))
−1

and Too(z) =
I − Soo(z) are triangular. On the other hand, since

every NMP zero of G(z) is left canonical and every

unstable pole of G(z) is right canonical, it follows from

Lemma 1 in [13] that both ξc(z) and ξp(z) are diagonal.

Therefore, F (z) defined in (13) is triangular and so are

F⊥(z) and F∞(z). As a consequence, Xopt(z) in (12)

is triangular. Upon using (15) and the fact that triangular

matrices are closed under inversion and standard matrix

product, we have that Copt(z) is triangular.

From the previous paragraph, it turns out that Copt(z)
is inherently triangular when all the NMP zeros of

G(z) are left canonical and all the unstable poles of

G(z) are right canonical. Therefore, it follows that in

those cases constraining the structure of the controller

to be triangular does not have any deleterious effect on

the best achievable performance and, as a consequence,

Jopt = Jopt
t .
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2) Due to length constraints, we refer the reader to [13].

Last theorem states that, if the unstable poles and NMP

zeros of a given triangular plant model are sufficiently simple

(i.e., all NMP zeros and unstable poles are left and right

canonical, respectively), then the restriction of the controllers

to be lower triangular poses no limit on the achievable per-

formance, as measured by J . It should be emphasized that,

as shown in [13], the aforementioned condition on the plant

NMP zeros and unstable poles is equivalent to requiring that

the right numerators (ND(z)) and left denominators (DI(z))
of G(z) admit diagonal GLUI and GRUI, respectively. In

those cases we have that the full MIMO optimal controller

Copt(z) will not outperform the triangular optimal controller

C
opt
t (z). In other words, if the conditions of Theorem 1

are satisfied, the inclusion of downstream feedback is, in

principle, not required.

Theorem 1 provides an interesting link between the loss

in the optimal performance due to the triangular controller

constraint and dynamic plant features such as unstable poles

and NMP zeros (including time delays as a special case of

these). We stress that Theorem 1 is a formal complement to

the arguments given in [5] regarding conditions under which

it is advisable to include downstream feedback action in a

controller for serial processes.

A direct consequence of Theorem 1 is that, in the cases

in which the conditions of the result are not met, the

performance loss in which it is incurred by constraining the

controller to be lower triangular, i.e., the quantity Jopt
t −Jopt,

should only depend on the existence of non canonical NMP

zeros and non canonical unstable poles. As a matter of fact,

this feature is revealed by the results in [13], where an

explicit form for Jopt
t − Jopt is derived for the stable case.

VI. APPLICATION TO A CLASS OF SERIAL PROCESSES

The results presented in the previous section considered

general triangular plant models, without any specific dynami-

cal structure. In this section we turn our attention to a specific

class of serial processes.

Consider a serial process as in (3) such that

Hi(s) =
kie

−θis

τis + 1
, (21)

Hdi(s) =
kdie

−θdis

τdis + 1
, (22)

with ki 6= 0, τi ≥ 0, τdi ≥ 0, θi ≥ 0 and θdi ≥ 0.

These models, although very simple, are commonly used

for pH-neutralization processes [1] and other application

relevant cases such as heat exchangers [14]. Assuming that

the process is sampled every T time units, and that

T = riθi = r′iθdi, ∀i = 1, 2, . . . , n, (23)

for some ri, r
′
i ∈ N, then the (i, j)th entry of the discrete

time transfer matrix G(z) can be computed as

Gij(z) =







































Ki

zθi/T (z + αi)
, ∀j = i

Bij(z)

zθij/T Aij(z)
, ∀j < i

0, ∀j > i

(24)

where the constants Ki and αi, as well as the polynomials

Bij(z) and Aij(z), depend on the original subsystem param-

eters and

θij = θj +
i

∑

ℓ=j+1

θdℓ. (25)

We note that A(0) 6= 0, Ki 6= 0 for all i, and that Gij(z) is

stable for all (i, j).

We now draw conclusions regarding controller structure

selection for the class of serial processes defined above:

Theorem 2: Consider a serial process as in Figure 1,

satisfying (3), (21), (22) and (24), with ki 6= 0, τi ≥ 0,

τdi ≥ 0, θi ≥ 0 and θdi ≥ 0. Assume a sampling period

T satisfying (23). Then, Jopt
t = Jopt if and only the time

delays of each subsystem satisfy

θi ≤ θij , (26)

where i = 2, 3, . . . , n and j = 1, 2, . . . , i − 1.

Proof: The proof follows from a straightforward appli-

cation of Theorem 1, and the structure of the plant model

G(z) for the class of systems under consideration. From (24)

it can be noticed that all the NMP zeros of Gii(z) are located

at infinity and that there are no unstable poles. Hence, using

the definition of left canonical NMP zeros and Part 2) of

Lemma 1, it follows that Jopt
t = Jopt if and only if

reld {Gii(z)} ≤ reld {Gij} , (27)

for i = 2, 3, . . . , n and j = 1, 2, . . . , i − 1. In (27),

reld {Gij(z)} denotes the relative degree of Gij(z) [11].

The result follows using the definitions of Gij(z) in (24).

Theorem 2 relates the loss in the optimal performance due

to the triangular controller constraint and the time delays in

each subsystem of Figure 1, for the class of systems defined

in (21) and (22). The derived condition is simple and allows

one to determine whether the inclusion of a downstream

feedback action in the control law may or may not improve

the overall achievable performance, as measured by J . More-

over, in the context of application relevant processes such

as pH-neutralization tanks [1], condition (26) may reveal

useful ideas for both process design and process control.

We note that Theorem 2 formally justifies the argumentation

made in Section III regarding conditions on the delays of the

subsystems in a serial process, under which it is advisable

to include downstream feedback action in the controller. We

note, however, that the discussion in Section III is far from

being complete: it only considers delays, whilst, as Theorem

1 shows, NMP zeros and unstable poles may also play a role.
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We next present two simple examples to illustrate our

results.

Example 1: Consider a serial process satisfying (21) and

(22) with 3 inputs and 3 outputs. A straightforward use

of Theorem 2 implies that better loop performance may be

achieved with a full MIMO controller instead of a triangular

one if and only if any of the following inequalities is satisfied

θ2 > θ1 + θd2,

θ3 > θ1 + θd2 + θd3,

θ3 > θ2 + θd3.

Conversely, if no one of these conditions is met, then the

best achievable performance can be attained with a triangular

controller and hence, the inclusion of a downstream feedback

does not lead to any improvement in the best achievable

performance, as measured by J .

Example 2: A relevant case in which the results of

this paper apply relates to pH-neutralization processes. For

simplicity we consider a 2 × 2 case, which arises when

considering two cascaded mixing tanks, as shown in Figure

3 [1].

In Figure 3, u1 and u2 correspond to the reagent flows

that neutralize the pH of the inlet flow d1, which acts as

an input disturbance to the first tank. The outputs y1 and

y2 are defined as the deviation of the output flow pH from

the neutral condition (pH = 7). The control objective in

this system is to ensure that the output flow pH is a pre-

specified constant. This must be done by means of adjusting

the reagent flows to achieve the desired output pH, while

compensating2 the variations in the pH of the inlet flow.

According to the results in [1], a suitable model for the

linearized dynamics of each tank is given by (3), (21) and

(22). We can then use Theorem 2, so that from (26) it follows

that downstream feedback leads to an improvement in the

best achievable performance if and only if

θ2 > θ1 + θd2. (28)

Consider the numerical parameters k1 = k2 = 3160,

kd2 = 1580, τ1 = τ2 = 300[s], θ1 = θd2 = 1[s] and

T = 1[s]. For this set of parameters, Figure 4 shows the

relative optimal performance degradation, i.e., 100 · (Jopt
t −

Jopt)/Jopt, when using a triangular controller instead of a

full MIMO one, as a function of θ2. It can be appreciated that

when θ2 > θ1+θd2 = 2, the performance achieved by a trian-

gular controller is significatively worse than the full MIMO

performance. This result validates our theoretical conclusion

in (28). Moreover, as it could be expected, when θ2 grows,

the performance loss increases monotonically. Consequently,

as θ2 becomes larger, the inclusion of downstream feedback

in the controller becomes more and more advisable.

2This is a simplified example, since we are not considering other
disturbances in the system that may be important, such as variations in
the inlet flow pH and reagent pH. For details see [1].

d1 u1

y2

u2y1 = d2

Fig. 3. Schematic diagram of a two-stage pH-neutralization process.
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Fig. 4. Relative performance degradation when using a triangular optimal

controller (∆J , J
opt
t − Jopt).

VII. CONCLUSIONS

This paper studied the control of serial processes and, in

particular, addressed the determination of conditions under

which the best performance achievable by a full MIMO

controller is better than the best performance achievable

by a triangular controller, i.e., conditions under which the

inclusion of downstream feedback is advisable. We derive

simple sufficient (and in the case of stable plant models also

necessary) conditions on the unstable poles, non minimum

phase (NMP) zeros and delays of the discrete time plant

model that ensures no penalization on the achievable per-

formance, when restricting the controller to be triangular.

We believe that the derived conditions could be useful in

both process design and control system design, serving as a

guideline for controller structure selection.

Several questions remain open. An interesting one relates

to whether the conclusions of this paper also hold in the

face of model uncertainty. In addition, it would be useful to

develop a more comprehensive framework that encompasses
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plants and controllers with several structures, not only trian-

gular ones.
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