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Abstract— This paper deals with the problem of obtaining
a stable triangular approximation for a linear, square, stable,
discrete-time MIMO system. We solve this problem through
an analytic procedure that yields an explicit solution of a
convex optimization problem. The optimized quantity is the
L2 norm of the relative modelling error. An interesting feature
of the proposed methodology is that, if the MIMO system has
nonminimum phase zeros near the stability boundary, then the
derived approximation has, at least, a set of zeros close to
them. The usefulness of our result comes mainly from its use
as nominal model in triangular controller design procedures
based on a triangular plant model.

I. INTRODUCTION

In the control of some multi-input multi-output (MIMO)

systems, triangular structures appear as a convenient con-

troller structure, as happens for example in serial processes

[1] and vehicle formation [2]. The design of this type of

controllers is usually based on a triangular plant model [3].

One of the key reasons behind this approach is the fact that,

when using a triangular nominal model, an optimal control

approach for triangular controller design yields convex opti-

mization problems [4], [5].

Choosing a triangular model for a MIMO system can be

seen as a model reduction class problem, in which the term

reduction refers not to lowering the order of the involved

dynamical system, but to the simplification of the model

structure, that is, the pattern of dependencies of plant outputs

on its inputs. In the sequel, we will refer to this problem as

that of triangular approximation problem.

In the current literature, the triangular approximation prob-

lem has been traditionally tackled in two stages. Firstly, by

means of a suitable interaction measure such as the Relative

Gain Array [6] or the Participation Matrix (PM) [3], the

dominant scalar (SISO) subsystems of the MIMO system

are identified. Then, in a second stage the model is obtained

by eliminating those SISO subsystems that do not affect the

MIMO dynamics considerably. This approach is can be seen

as a triangular approximation by truncation of the original

system.

The ability of the triangular model to capture some key

dynamical features of the system will reflect on the degree

of robustness of the design. In other words, the performance

of the control loop where the triangular controller will be
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used to control the plant will be substantially determined by

the fidelity of the triangular model.

On the other hand, it has been shown [7], [8], [9] that the

best achievable performance in the control of linear MIMO

plants, depends on certain dynamical features of the plant. In

the stable case, one of the most influential of those features is

the location of the nonminimum phase (NMP) transmission

zeros; in particular, in the discrete-time framework, the

optimal performance is severely limited by those NMP zeros

which are close to the point z = 1. From other research work

it is also known that those NMP zeros close to the stability

boundary may impose fundamental control limitations [10].

It is then natural to look for a triangular approximation pro-

cedure which, in some sense, preserves these characteristics.

Otherwise, the nominal triangular model will mislead the

design, making highly likely that the controller will perform

poorly when controlling the true plant. Of course, the most

critical situation is when the controller is unable to stabilize

the plant.

As a motivational example, consider the discrete-time

transfer matrix

G(z) =




z − 0.5 0.55

1 1




1

z2
, (1)

with a PM given by

Φ =




0.245 0.1

0.327 0.327



 . (2)

The small value in Φ12 suggests that a lower-left triangular

model should perform good as a nominal model for control

design. G(z) has a single NMP zero located at z = 1.05
and, according to the previous discussion, it is known that

this zero imposes serious performance limitations and hence,

it is a dynamical feature that should be taken into account in

the controller design process. On the other hand, the lower-

left triangular truncation of G(z), i.e. a model identical to

G(z) but with a 0 in its (1, 2) entry, is minimum phase,

having a single zero at z = 0.5. Hence, the information

regarding the harmful NMP zero is completely lost when

truncating G(z).

We focus our attention on the ability of the triangular

approximation procedure to capture the nature of those NMP

transmission zeros which are the key limiters of the loop

performance. In this framework we must distinguish two

cases:

• transmission zeros with canonical directions, that is,
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those values of z which make the transfer function

singular due to one or more columns or rows are

entrywise zero.

• transmission zeros with non canonical directions, that

is, those values of z which make the transfer function

singular, although no row nor column is entrywise zero.

When the triangular approximation is performed through

truncation, we have that only the NMP transmission zeros

with canonical directions are preserved (both location and

direction). Hence, the information regarding the remaining

NMP transmission zeros is generally lost in the truncation

procedure.

In this paper a novel approach to the triangular approxi-

mation problem for linear, time invariant, stable and discrete-

time MIMO systems is presented. Namely, assuming that an

interaction measure suggests a triangular structure as domi-

nant, we do not choose the triangular model by truncation,

but by minimizing the L2 norm of the relative modelling

error. This optimality criterion is such that, if G(z) has NMP

zeros near the stability boundary, then the optimal triangular

model has, at least, a set of NMP zeros close to them. The

proposed methodology is the main contribution of this work

but, we also stress that, to the authors’ knowledge, dealing

with the triangular approximation problem with a procedure

distinct from the traditional truncation is a novel approach

in the literature.

The paper is organized as follows: Section II presents the

notation and defines the standard concepts used throughout

the article. The main result of this work is detailed in Section

III. Finally, Section IV and V present an illustrative example

and the concluding remarks of this work.

II. NOTATION AND GENERAL DEFINITIONS

We denote the set of m × n real, rational and discrete-

time transfer matrices by Rm×n. For any A(z) ∈ Rm×n,

[A(z)]ij = Aij(z) denotes its (i, j)th element and [A(z)]∗j

denotes its jth column. The transfer matrix G(z) ∈ Rp×p

has a zero at z = c ∈ C if and only if G(c) is singular.

This kind of zeros is usually termed in the literature as

transmission zeros. If |c| ≥ 1, the zero is called nonminimum

phase (NMP), otherwise, it will be referred as minimum

phase (MP). Similarly, a transfer matrix matrix having at

least one NMP zero is called NMP, otherwise, is termed as

MP.

The spaces RL2, RH2 and RH⊥
2 are defined as usual [8].

The prefix R denotes that we restrict ourselves to the real

rational case. The norm in RL2 is called L2 norm and is

denoted as ||·||2. Any matrix function A(z) ∈ RL2 admits

an orthogonal decomposition of the form

A(z) = {A(z)}2 + {A(z)}
⊥

, (3)

where {A(z)}2 ∈ RH2 and {A(z)}
⊥
∈ RH⊥

2 , i.e. {A(z)}2

is stable and strictly proper and {A(z)}
⊥

is biproper or im-

proper having only unstable poles. Since this decomposition

is orthogonal, it always holds that

||A(z)||
2
2 = ||{A(z)}2||

2
2 + ||{A(z)}

⊥
||

2
2 . (4)

We say that A(z) is unitary if it satisfies A(z)∼A(z) = I ,

where A(z)∼ = A
(
z−1

)T
and I denotes the identity ma-

trix. If A(z) is unitary, then it holds that ||A(z)M(z)||2 =
||M(z)||2 for any M(z) ∈ RL2. Additionally, we denote

the space RH∞ as that of all stable and proper transfer

matrices.

Every stable and biproper transfer matrix A(z) ∈
Rm×n, m ≥ n with full column rank for |z| = 1 admits

a factorization of the form [11]

A(z) = Wi(z)Wo(z), (5)

where Wi(z) ∈ Rm×q is an inner function (Wi(z) ∈ RH∞

and is unitary) and Wo(z) ∈ Rq×n is an outer function

(stable and right invertible in RH∞). If G(z) has full column

rank almost everywhere (a.e.), then Wo(z) is also square.

Such a decomposition is known as inner-outer factorization.

If A(z) ∈ RH∞ is square and does not have zeros on |z| =
1, then a somewhat similar factorization can be done as

A(z) = Ã(z)E(z)−1, (6)

where Ã(z) is square, stable and minimum phase (hence,

invertible in RH∞) and E(z) ∈ RH⊥
2 is unitary satisfying

E(z)−1 ∈ RH∞ and E(1) = I . We will refer to E(z) as

the generalized right unitary interactor (GRUI) of A(z). An

algorithm to build GRUI can be found in [9].

III. TRIANGULAR APPROXIMATION OF MIMO SYSTEMS

This section deals with the problem of finding a triangular

transfer matrix GT (z) ∈ RH∞ which is close to a full

MIMO transfer matrix G(z) ∈ RH∞. An essential as-

sumption in our derivations is that some interaction measure

of G(z), such as the PM defined in [3], suggests that a

triangular model is a sensible choice to represent the whole

MIMO dynamics.

Without loss of generality, we deal only with the case of

lower-left triangular models, i.e. those models belonging to

the set:

T =
{
X(z) ∈ Rp×p : Xij(z) ≡ 0∀1 ≤ i ≤ p, i < j ≤ p,

}
.

(7)

In the sequel the term triangular matrix will refer to those

matrices belonging to T . Additionally, for further reference

we define the triangular truncation of G(z) ∈ RH∞ as

GT T (z) ∈ RH∞ such that

[GT T (z)]ij =







[G(z)]ij , i = 1, 2, . . . , p, j ≤ i

0 , i = 1, 2, . . . , p, j > i
(8)

The fact that we are seeking for GT (z) that approaches

G(z) in some sense suggests to choose GT (z) in such a

way that a certain optimality criterion is minimized. The

optimality index must be meaningful in terms of measuring

the closeness of GT (z) and G(z), so it is natural to think

in finding GT (z) such that a measure of magnitude of the

modelling error is kept minimal. As a first approach, we can

tackle this issue by defining the additive modelling error
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[12], [13] as

Gǫ(z) = G(z) − GT (z), (9)

and solve the problem

arg min
GT (z)∈RH∞∩T

||Gǫ(z)||
2
2 . (10)

The solution to this problem can be easily obtained, as next

lemma shows.

Lemma 1: Let G(z) ∈ RH∞, then

GT T (z) = arg min
GT (z)∈RH∞∩T

||Gǫ(z)||
2
2 . (11)

Proof:: From standard properties of the L2 norm we have

that

||Gǫ(z)||
2
2 =

p
∑

i=1

p
∑

j=1

∣
∣
∣

∣
∣
∣[Gǫ(z)]ij

∣
∣
∣

∣
∣
∣

2

2
. (12)

Since GT (z) ∈ T , last equation yields

||Gǫ(z)||
2
2 =

p
∑

i=1

p
∑

j=i+1

||Gij(z)||
2
2 + (13)

p
∑

i=1

i∑

j=1

∣
∣
∣

∣
∣
∣Gij(z) − [GT (z)]ij

∣
∣
∣

∣
∣
∣

2

2
,

which can be minimized over RH∞ by setting the second

term to zero, that is, according to the definition in (8) we

simply choose GT (z) = GT T (z).

���

According to last lemma, the triangular approximation that

minimizes the L2 norm of the additive modelling error is

precisely the triangular truncation of the plant and hence,

this formulation may exhibit the inconveniences previously

discussed. In other words, this approach does not capture the

essential features of G(z) that we want to preserve in the

triangular approximation.

According to the discussion given in the Introduction, we

are interested in triangular models for G(z) that preserve the

information regarding the NMP zeros that are close to the

stability boundary. For that purpose, we find convenient to

choose a measure of the magnitude of the relative modelling

error [12], [13] as the target function to be optimized. We

define the relative modelling error as

G∆(z) = G(z)−1 (GT (z) − G(z)) , (14)

and propose finding the following optimal triangular approx-

imation of G(z):

Go

T
(z) = arg min

GT (z)∈RH∞∩T
||G∆(z)||

2
2 (15)

= arg min
GT (z)∈RH∞∩T

∣
∣
∣
∣G(z)−1GT (z) − I

∣
∣
∣
∣
2

2
︸ ︷︷ ︸

J

.

(16)

Since the value of J grows as the zeros of G(z) approach the

stability boundary, it is interesting to notice that this novel

approach is equivalent to include a frequency weighting func-

tion G(z)−1 in (10) such that the minimization is stressed

near the zeros of interest. The definition of J requires G(z)
to be invertible, which is always the case, provided that

G(z) is non singular a.e.. This assumption poses no severe

limitation to our results since it is always satisfied when

G(z) has non singular DC gain, which in turn is a necessary

condition for being able to track step reference signals, a

standard objective in many control problems.

We emphasize that solving this optimization problem

leads to solutions with NMP zeros that are close to those

NMP zeros of G(z) located near the stability boundary.

In fact, since the L2 norm computation involves evaluating

the argument in the unit circle then, if G(z) has a zero at

z = c near |z| = 1, then J will have a large value, unless

GT (z) has a NMP zero located near z = c. Additionally,

the cost functional J is an appropriate measure of quality of

the approximation since it quantifies, in a quadratic sense,

the closeness of the product G(z)−1GT (z) to the identity,

which is conceptually equivalent to the measure defined in

(10).

Next theorem gives the solution to the problem of mini-

mizing J . To keep the notation simple, let us define the ℓth

column of GT (z) as

[GT (z)]
∗ℓ =







g1(z) , ℓ = 1
[

01×(ℓ−1) gℓ(z)T

]T

, ℓ = 2, 3, . . . , p

(17)

where gℓ(z) ∈ R(p−ℓ+1)×1. Also, as in (16), in the sequel

we use a superscript o to denote optimality..

Theorem 1: Let G(z) ∈ RH∞ be non singular a.e.,

without zeros in |z| = 1 and consider the notation defined

in (16) and (17). Define the matrix Mℓ(z) ∈ Rp×(p−ℓ+1)

as the resultant from deleting the first ℓ − 1 columns of

G̃(z)−1 = (G(z)E(z))
−1

, with E(z) being the GRUI

of G(z). Let Mℓ(z) = Wiℓ(z)Woℓ(z) be an inner-outer

factorization of Mℓ(z). Then,

go

ℓ
(z) = zWoℓ(z)−1F2ℓ(z), (18)

where

F2ℓ(z) =

{
1

z
Wiℓ(z)∼

[
E(z)−1

]

∗ℓ

}

2

. (19)

Proof:: We can introduce the GRUI of G(z) in J such

that

J =
∣
∣
∣

∣
∣
∣G̃(z)−1Ḡt(z) − E(z)−1

∣
∣
∣

∣
∣
∣

2

2
, (20)

where G̃(z) = G(z)E(z) is stable and invertible in RH∞,

and E(z) is the associated GRUI of G(z). Using elementary

properties of the L2 norm and following the notation defined

in (17) it follows that

J =

p
∑

ℓ=1

∣
∣
∣
∣Mℓ(z)gℓ(z) −

[
E(z)−1

]

∗ℓ

∣
∣
∣
∣
2

2
, (21)

where the matrix Mℓ(z) ∈ Rp×(p−ℓ+1) results from deleting

the first ℓ − 1 columns from G̃(z)−1. From the definition
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of G̃(z) and the nonsingularity a.e. of G(z), it holds that

Mℓ(z) is stable, biproper and has full column rank a.e.

Hence, we can perform an inner-outer factorization of the

form Mℓ(z) = Wiℓ(z)Woℓ(z), with Wiℓ(z) stable, unitary

and biproper, and Woℓ(z) square, stable and invertible in

RH∞. Now define the unitary transfer matrix

Γ(z) =




Wiℓ(z)∼

I − Wiℓ(z)Wiℓ(z)∼



 , (22)

Introducing (22) in (21) and after some algebraic manipula-

tion it follows

J =

p
∑

ℓ=1

∣
∣
∣
∣(I − Wiℓ(z)Wiℓ(z)∼)

[
E(z)−1

]

∗ℓ

∣
∣
∣
∣
2

2
+

p
∑

ℓ=1

∣
∣
∣
∣Woℓ(z)gℓ(z) − Wiℓ(z)∼

[
E(z)−1

]

∗ℓ

∣
∣
∣
∣
2

2

︸ ︷︷ ︸

J ′

.

(23)

According to last expression, the first sum does not depend

on the unknowns, hence the vectors gℓ(z) that minimize J ,

also minimize J ′. We next introduce a scalar unitary factor

z−1 in J ′ and perform an orthogonal decomposition of the

second term as

1

z
Wiℓ(z)∼

[
E(z)−1

]

∗ℓ
= F2ℓ(z) + F⊥ℓ(z), (24)

with F2ℓ(z) ∈ RH2 and F⊥ℓ(z) ∈ RH⊥
2 . Substituting (24)

in J ′ yields

J ′ =

p
∑

ℓ=1

∣
∣
∣
∣

∣
∣
∣
∣

1

z
Woℓ(z)gℓ(z) − F2ℓ(z) − F⊥ℓ(z)

∣
∣
∣
∣

∣
∣
∣
∣

2

2

. (25)

Since Woℓ(z) is outer and gℓ(z) ∈ RH∞ it holds that

z−1Woℓ(z)gℓ(z)−F2ℓ(z) is stable and strictly proper, hence

it belongs to RH2 and an orthogonal decomposition can be

done in J ′ as

J ′ =

p
∑

ℓ=1

||F⊥ℓ(z)||
2
2 +

p
∑

ℓ=1

∣
∣
∣
∣

∣
∣
∣
∣

1

z
Woℓ(z)gℓ(z) − F2ℓ(z)

∣
∣
∣
∣

∣
∣
∣
∣

2

2

.

(26)

The optimal vectors go

ℓ
(z) are such that set the second term

of (26) to zero and thus (18) follows. Since Woℓ(z) is

invertible in RH∞ and F2ℓ(z) is stable and strictly proper,

then gℓ(z) ∈ RH∞ and GT (z) ∈ RH∞.

���

An interesting feature of our result is that the fist column

of the optimal triangular approximation GT (z) is always

identical to that of G(z). Indeed, using Theorem 1 with

ℓ = 1, i.e. we are interested in determining the first column of

GT (z), it follows that M1(z) = G̃(z)−1 = (G(z)E(z))
−1

,

which is stable and invertible in RH∞ and hence, an

outer transfer matrix. Thus, it follows that Wi1(z) = I ,

Wo1(z) = G̃(z)−1 and

go

1(z) = zG̃(z)

{
1

z

[
E(z)−1

]

∗1

}

2

, (27)

= [G(z)]
∗1 , (28)

which confirms our initial statement.

The procedure of Theorem 1 allows to obtain a triangular

reduced model of a stable MIMO system. The main advan-

tage of this result over the traditional triangular truncation

is that, if G(z) has any non canonical NMP zeros near the

unit circle, then (some of) the zeros of GT will certainly be

close to them. This feature, as previously discussed, may not

be attained by a triangular truncation GT T (z).
From a controller design point of view, using GT (z) as

nominal model rather that GT T (z) can have an important

impact on the performance of the real control loop. The key

issue behind this idea is that, since GT (z) has information on

those dynamical features of G(z) that impose performance

limitations, the designed control law will be, in general, more

conservative than a design that uses GT T (z) as nominal

model. This is turns implies that the real loop is more likely

to perform as the nominal design when using GT (z) rather

than GT T (z) as model.

An insightful way of assessing the advantages of this pro-

cedure with respect to triangular truncation, is to compare the

best achievable performance for G(z), GT (z) and GT T (z)
using the results in [9]. In the context of this benchmark,

if we denote these quantities as Jopt, JTopt and JTTopt,

respectively, the proposed approach will hopefully lead to

|Jopt − JTopt| < |Jopt − JTTopt|. (29)

The previous inequality is an indicator of effectiveness of

this approach. Additionally, it should be pointed out that

our procedure may yield a triangular model GT (z) with

additional zeros and/or poles which are not present in G(z).
This feature appears inherently in the minimization of the

proposed cost functional and, if these extra zeros are NMP,

then the design will turn to be even more conservative.

Remark 1: The results presented in this paper deal only

with the case of lower-left triangular models (i.e., the T
set). However, it is worth mentioning that there is no loss

of generality in our approach since, if another triangular

structure is suggested by the PM, then we can always

perform a set of input/output permutations such that the

permuted system has a PM suggesting a model in T .

To illustrate the proposed triangular approximation proce-

dure, an example is presented next.

IV. EXAMPLE

Consider the system

G(z) =




z − 0.5 a

1 1




1

z2
. (30)

This system has a zero at z = a + 0.5, so that if a > 0.5,

that zero is NMP. In this case, GT T (z) is MP for any value

of a. Hence, when the NMP zero approaches z = 1, the
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model GT T (z) lacks key input/output information on G(z).
We can apply the procedure of Theorem 1 in order to obtain

a more accurate triangular model of G(z). For instance, if

a = 0.55 then the zero is located at z = 1.05 (this is the

same case as in the introduction of this paper) and the PM

suggests that a lower left triangular model is sensible. Using

Theorem 1 yields

GT (z) =





(z−0.5)
z2 0

1
z2

−0.034(z+6.27)(z−3.436)(z−1.046)
z2(z−0.365)





(31)

From this result we have that indeed, GT (z) has a zero

near z = 1.05, namely at z = 1.046. Also, as mentioned

before, three additional poles and two NMP zeros appear in

the optimal triangular approximation. It can be verified that,

if the optimal performance triangular controller1 of [?] is

used to control G(z), the real loop is unstable when using

GT T (z) as nominal model, but this problem is overcome

when the design is based on GT (z).
The closeness of the smallest NMP zero of GT (z) to

the one of G(z) is shown in Fig. 1 as a function of the

zero location. It can there be noticed that this deviation

increases as the zero moves away from the unit circle, which

is consistent with our previous discussion on the properties

of the minimized cost functional. Additionally, the best

achievable performance for G(z) and GT (z) are computed

using the results in [9] as a function of the zero location.

The relative difference between both quantities is plotted in

Fig. 2(b). Note that in this example the optimal performance

for GT T (z) is given by JTTopt = 3, independently of a. A

simple comparison between Figs. 2(a) and 2(b) confirms the

inequality (29). It is worth mentioning that it may be verified

that, in all the range spanned by a in Figs. 1 and 2, the PM

suggests that a lower left triangular model is sensible, so that

our essential assumption holds.

V. CONCLUSIONS

In this paper a method for deriving a triangular model

of a given stable MIMO transfer matrix is proposed. The

approach is novel in the literature in the sense that the

triangular model of the plant is chosen such that a measure

of the modelling error is kept minimal. Unlike the classical

truncation method, which gives a model that usually loses

important dynamical features of the plant, the proposed

approximated model preserves key information regarding the

nonminimum phase zeros close to the stability boundary.

Since these zeros impose severe limitations to the perfor-

mance of a closed loop control scheme, this feature can be

significant if the model is used for control design purposes.

Further research should explore additional properties of

the solution, such as the appearance of extra zeros and/or

poles in the optimal solution, and the extension to the case of

unstable plants. Also, it is noted that the proposed procedure,

1This optimal triangular controller is such that minimizes the L2 norm
of the loop sensitivity function and provides integral action.
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Fig. 1. Absolute deviation of the NMP zero of GT (z) with respect to
z = a + 0.5.

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0.75

0.8

0.85

0.9

0.95

1

|J
T

T
o
p
t−

J
o
p
t|/

J
o
p
t

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0.06

0.08

0.1

0.12

0.14

0.16

Zero location

|J
T

o
p
t−

J
o
p
t|/

J
o
p
t

(a)

(b)

Fig. 2. Relative difference of the best achievable performance for: (a) G(z)
and, (b) GT T (z), with respect to the one of G(z).

with mild modifications, can also be used to derive sparse

structured approximations other than triangular.
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