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Abstract: This paper proposes a design methodology of triangular controllers
for full MIMO stable plants. The procedure is based on an optimal design for
a triangular model of the plant. Stability and appropriate performance can be
achieved by adjusting a set of design parameters involved in a weighting function.
The resulting controller provides integration and can be computed analytically.
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1. INTRODUCTION

Classical multivariable (MIMO) control sys-
tem design strategies (Goodwin et al., 2001; Sko-
gestad and Postlethwaite, 1996) do not take into
account structural restrictions on the controller.
This means that these controllers generate the
control inputs based on information from every
measurement of the process, i. e. these techniques
deliver full MIMO controllers. However, different
practical reasons (ease of tuning, maintenance,
cabling, etc.) may make full MIMO controllers
unsuitable for certain applications (Salgado and
Conley, 2004) and hence, the need of imposing
structural constraints on the controller appears
naturally. The structural restrictions in which we
are interested are those known as sparse struc-
tural constraints (Rotkowitz and Lall, 2002). This
class of structural constraints refer to which pro-
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cess measurements are used to build each control
input. Common control structures in this class
are the decentralised (diagonal) and triangular
structures. The first stage in designing a structure
restricted controller is the controller structure se-
lection (Salgado and Conley, 2004). This task is
usually accomplished with aid of interaction mea-
sures such as the RGA and the PM (see (Salgado
and Conley, 2004) and the references therein). In
spite that there are many studies regarding this
topic, the lack of results on restricted structure
controller design methodologies is evident. The
main difficulty behind this is that an optimal
control approach yields a nonconvex optimisation
problems (Qi et al., 2004).

In the case of triangular controller structure,
some interesting results are reported in (Qi et
al., 2004; Claveau and Chevrel, 2005), where nu-
merical methodologies are developed to build tri-
angular design procedures. However, those meth-
ods rely on the assumption that the plant is also



triangular and do not make any considerations on
how to use the proposed techniques in the full
MIMO case.

This paper proposes a novel methodology
for the design of linear discrete time triangular
controllers for full MIMO stable systems. The
proposed design procedure is based on computing
an optimal triangular controller for a triangular
model of the plant. This triangular controller pro-
vides integration and can be computed explicitly.
The stability and performance on the loop built
around the full MIMO plant can be achieved by
an appropriate adjustment of a weighting function
involved in the optimisation problem.

The text is organised as follows: Section
2 defines the main notation and mathematical
preliminaries to be used on the remaining of the
paper. In Section 3 the main problem is defined.
Sections 4 and 5 describe the design methodology
proposed in this paper. Finally, Sections 6 and 7
expose some illustrative examples and concluding
remarks, respectively.

2. NOTATION AND PRELIMINARIES

Most of the notation used throughout this
paper is standard. The (i, j)th element and the ith

column of a given matrix A are denoted as Aij (or
[A]ij for clarity) and A∗i respectively. The n× n

null matrix is denoted as 0n and the ith element
of the canonical base of Rn is denoted as en

i . The
complex function spaces (R)L2, (R)H2, (R)H⊥2 )
and (R)H∞ are defined as usual (Silva and Sal-
gado, 2005). The norm in L2 is called 2-norm and
denoted as ||·||2. Given A(z) ∈ Cn×n, we define its
`th submatrix as A`(z) ∈ C(n−`+1)×(n−`+1) such
that

[A`(z)]ij = A(i+`−1)(j+`−1)(z),
∀i ≤ n− ` + 1
∀j ≤ n− ` + 1

(1)

Note that according to this definition, A1(z) =
A(z) and An(z) = Ann(z). Given a stable trans-
fer matrix A(z), we define its generalised left
unitary interactor (GLUI), ξA(z), as a minimum
phase matrix such that the product ξA(z)A(z) is
biproper, minimum phase and stable. Note that
since ξA(z) is unitary, then ||ξA(z)A(z)||22 =
||A(z)||22. An algorithm to build such interac-
tor matrices can be found in (Silva and Sal-
gado, 2005). In this paper we assume that all

systems are linear, time invariant and discrete
time.

3. PROBLEM DEFINITION

Optimal controllers must be thought in
terms of the minimisation of a cost functional
that is meaningful for the control objectives. A
common choice (Goodwin et al., 2001; Skoges-
tad and Postlethwaite, 1996) is to consider the
weighted loop sensitivity function, i. e. minimise

J (G, W ) =
∣∣∣∣
∣∣∣∣So(z)

W (z)
z − 1

∣∣∣∣
∣∣∣∣
2

2

, (2)

where So(z) is the loop sensitivity function and
the matrix W (z) is biproper, stable, minimum
phase and such that

W (z) = diag {W1(z), W2(z), . . . , Wn(z)} . (3)

The weighting matrix W (z) is usually chosen to
define the bandwidth of the different channels of
the control loop. This can be done with a diagonal
W (z), so that (3) does not pose any serious limi-
tation to the generality of the control problems
encompassed by minimisation of (2). Moreover,
the weighting factor (z − 1)−1 in (2) makes the
functional J (G, W ) well defined if and only if
So(1) = 0, which is equivalent to consider only
controllers that provide integration and hence,
allow perfect steady state tracking of constant
reference signals.

If the plant G(z) is stable, the Youla
parametrisation of all stabilising and proper con-
trollers (Goodwin et al., 2001), leads to the loop
sensitivity function

So(z) = I −G(z)Q(z), (4)

where Q(z) ∈ RH∞. A necessary and sufficient
condition for the controller to have integral action
is to force Q(1) = G−1(1). Thus an additional
assumption is necessary.

Assumption 1. The plant has non singular DC
gain, i. e. det G(1) 6= 0.

Additionally, we are interested in triangular con-
trollers belonging to the class St defined as follows

St =
{
X(z) ∈ Cn×n : Xij(z) ≡ 0∀j > i

}
. (5)

Without loss of generality, we assume that the
transfer matrices in St are lower triangular.



If the controller C(z) is constrained to be
lower triangular. This is equivalent to ensure

Q(z) (I −G(z)Q(z))−1 ∈ St. (6)

Using (2),(4) and (6), the optimal control prob-
lem of interest can be stated as that of finding
Qt opt(z) such that

Qt opt(z) = arg min
Q∈RH∞∩Ω

∣∣∣∣
∣∣∣∣
I −G(z)Q(z)

z − 1
W (z)

∣∣∣∣
∣∣∣∣
2

2

,

(7)

where Ω is the set of all transfer matrices
Q(z) such that (6) holds. The set Ω is noncon-
vex (Rotkowitz and Lall, 2002; Qi et al., 2004;
Rotkowitz, 2005). This poses a serious difficulty
to the computation of an explicit solution of the
problem, so that the use of numerical search algo-
rithms seems inescapable in the general formula-
tion given by (7) (Qi et al., 2004).

Previous research work (Silva et al., 2005)
show that for the stable case, if the plant is trian-
gular itself and non singular a. e., then problem
(7) is convex and can be restated as

Qt opt(z) = arg min
Q∈RH∞∩St

∣∣∣∣
∣∣∣∣
I −G(z)Q(z)

z − 1
W (z)

∣∣∣∣
∣∣∣∣
2

2

(8)

This formulation is restricted only to those plants
belonging to St, but its convexity allows to obtain
an explicit solution to the optimisation problem.

4. OPTIMAL DESIGN FOR TRIANGULAR
MODEL

Next lemma gives a preliminary result which
is necessary for the derivation of the main theorem
of this section.

Lemma 2. Let G(z) ∈ RH2 be a transfer matrix
without zeros on the region |z| = 1 and let W (z)
be a scalar, biproper, stable and minimum phase
transfer function. Consider the cost functional
J (G,W ) defined in (2), then

Qopt(z) = arg min
Q(z)∈RH∞

J (G, W ) (9)

=
(
G̃(z)W (z)

)−1 {
[ξG(z)W (z)]⊥|z=1

+ [ξG(z)W (z)]2} , (10)

where G̃(z) = ξG(z)G(z), ξG(z) is the GLUI of
G(z) and [·]2 ([·]⊥) denotes the portion in RH2

(RH⊥2 ) of the argument.

Proof: According to (2) and introducing the
GLUI of G(z), the cost functional can be written
as

J (G,W ) =

∣∣∣∣∣

∣∣∣∣∣
ξG(z)W (z)− G̃(z)W (z)Q(z)

z − 1

∣∣∣∣∣

∣∣∣∣∣

2

2

,

(11)

where it has been used the fact that W (z) is scalar
and G̃(z) = ξG(z)G(z). An orthogonal decom-
position (Goodwin et al., 2001) of the product
ξG(z)W (z) can be made as

ξG(z)W (z) = [ξG(z)W (z)]⊥ + [ξG(z)W (z)]2 .

(12)

Substituting (12) in (11) and using the orthogonal
separation of the 2-norm, it follows that

J (G,W ) = ||A(z)||22 + ||B(z)||22 , (13)

where the matrix A(z) is independent of Q(z) and

B(z) =
∣∣∣∣
∣∣∣∣
[ξG(z)W (z)]⊥|z=1

+ [ξG(z)W (z)]2
z − 1

−G̃(z)W (z)Q(z)
z − 1

∣∣∣∣∣

∣∣∣∣∣

2

2

. (14)

Then, the optimal Youla parameter that minimi-
ses (13) is such that sets B(z) to zero, i. e.

Qopt(z) =
(
G̃(z)W (z)

)−1 {
[ξG(z)W (z)]⊥|z=1

+ [ξG(z)W (z)]2} ∈ RH∞, (15)

and the result follows. 2

Lemma 2 gives an explicit solution to the
problem of minimising the cost functional in (2)
with a scalar weighting function and without
structural restrictions on the controller.

Suppose that a triangular model Gt(z) ∈ St

of the full MIMO plant G(z) is available. Then
Lemma 2 allows to solve the optimisation problem
(8) for Gt(z) and hence, to obtain the optimal
triangular controller for the triangular model. The
following theorem is the key idea leading to the
main result of this paper.

Theorem 3. Let Gt(z) ∈ RH2 ∩ St be a trans-
fer matrix without zeros in the region |z| = 1
and W (z) = diag {W1(z),W2(z), . . . , Wn(z)}
a biproper, stable and minimum phase transfer
matrix such that Wi(z) is scalar ∀i = 1, 2, . . . , n.
Define Qi opt(z) as the unrestricted optimal so-
lution of the optimisation problem in Lemma 2
using the functional J (Gi,Wi), where Gi(z) is
the ith-submatrix of Gt(z), i. e.



Qi opt(z) = arg min
Q(z)∈RH∞

J (Gi,Wi) . (16)

Then

Qt opt(z) = arg min
Q(z)∈RH∞∩St

J (Gt,W ) (17)

=
n∑

i=1

diag {0i−1, Qi opt(z)}1ii, (18)

where the special matrix 1ii ∈ Cn×n has zeros in
all of its elements, except in the (i, i)th, in which
has a 1.
Proof: Using elementary properties of the 2-
norm and taking advantage of the facts that W (z)
is diagonal and G(z) ∈ St, the cost functional
J (G,W ) can be vectorised (Goodwin et al., 2001)
and expressed as

J (G,W ) =
∣∣∣∣
∣∣∣∣
Λ−GA(z)Qvec(z)

z − 1

∣∣∣∣
∣∣∣∣
2

2

, (19)

where

Λ(z) =
[
Λ1(z) Λ2(z) · · · Λn(z)

]T

, (20)

Qvec(z) =
[

Q∗1
T (z) Q22(z) Q32(z) · · ·

Qn2(z) · · · Qnn(z)
]T

, (21)

GA(z) = diag {G1(z)W1(z), G2(z)W2(z)

, . . . , Gn(z)Wn(z)} , (22)

and Λi(z) = Wi(z)en−i+1
1 . Expression (19)

allows to separate the optimisation problem (17)
in n independent problems of lower dimensions.
In fact, using properties of the 2-norm, (19) can
be rewritten as

J (G, W ) =
n∑

i=1

∣∣∣∣
∣∣∣∣
Λi(z)−Gi(z)Wi(z)Qi

vec(z)
z − 1

∣∣∣∣
∣∣∣∣
2

2

(23)

where Qi
vec(z) ∈ Cn−i+1 is a column vector con-

taining every nonzero element of the ith column
of Q(z), i. e.

Qi
vec(z) =

[
Qii(z) Q(i+1),i(z) · · ·Qni(z)

]
. (24)

Since Λi(z) ∈ RH2, ∀i = 1, 2, . . . , n, a procedure
similar to the one in Lemma 2 can be done
in each term of (23). As a matter of fact, by
introducing the GLUI ξGi(z) of each submatrix
Gi(z) and making the appropriate orthogonal
decompositions on each term it follows

J (G,W ) =
n∑

i=1

{
||Mi(z)||22 + ||Ni(z)||22

}
, (25)

where Mi(z) is independent of Qi
vec(z) and

Ni(z) =
[ξGi(z)Λi(z)]⊥|z=1

+ [ξGi(z)Λi(z)]2
z − 1

− G̃i(z)Wi(z)Qi
vec(z)

z − 1
, (26)

with G̃i(z) = ξGi
(z)Gi(z). Since the product

G̃i(z)Wi(z) is biproper and minimum phase, then

the matrix
(
G̃i(z)Wi(z)

)−1

∈ RH∞ and the

optimum Qi
vec opt(z) is such that sets Ni(z) to

zero, i. e.

Qi
vec opt(z) =

(
G̃i(z)Wi(z)

)−1

{[ξGi
(z)Λi(z)]2

+ [ξGi
(z)Λi(z)]⊥|z=1

} ∈ RH∞.

(27)

Substituting the definition of Λi(z) in the last ex-
pression, the result of Lemma 2 can be recognised
as

Qi
vec opt(z) =

(
G̃i(z)Wi(z)

)−1

{[ξGi(z)Wi(z)]2

+ [ξGi(z)Wi(z)]⊥|z=1

}
en−i+1
1

(28)

= Qi opt(z)en−i+1
1 , (29)

where

Qi opt(z) = arg min
Q(z)∈RH∞

J (Gi,Wi) . (30)

Finally, the optimal triangular Youla parameter,
Qt opt(z), can be reconstructed with an appropri-
ate arrangement of the vectors Qi

vec opt(z) as

Qt opt =
n∑

i=1

diag {0i−1, Qi opt(z)}1ii ∈ RH∞,

(31)

and the result follows. 2

The form of (18) puts on evidence that the
optimal triangular controller is built upon the full
MIMO optimal controllers for every submatrix
Gi(z) of Gt(z) considering the scalar weighting
function Wi(z) on each cost functional. Moreover,
(18) shows that

[Qt opt(z)]nn = arg min
Q(z)∈RH∞

J(Gnn,Wn), (32)

which means that the (n, n)th element of the
optimal triangular Youla parameter must be built
based on an optimal SISO loop around Gnn(z).
This makes sense by noting that in a triangular
system, the nth input is the only input that affects
a single output.



5. TRIANGULAR CONTROL OF FULL
MIMO SYSTEMS

This section deals with the problem of using
the triangular controller defined by Qt opt(z) in
Theorem 3 to build a closed loop around the
full MIMO plant G(z). Since the optimisation
procedure is done considering only the triangular
portion of G(z), neither performance nor sta-
bility are guaranteed when using Qt opt(z) to
control G(z). However, it should be noticed that
Qt opt(1) = Gt

−1(1), which implies that the
triangular controller of the previous section gua-
rantees integration in the loop around G(z) (the
proof is omitted due to lack of space).

Assume that the procedure given in the pre-
vious section delivers a Youla parameter Qt opt(z)
that does not stabilise the plant G(z). It is known
that since G(z) is stable, this problem can be
solved by reducing the bandwidth of Qt opt(z)
(Goodwin et al., 2001). From (18) we have that
every zero of W (z) is also pole of Qt opt(z). This
means that the bandwidth of Qt opt(z) can be
arbitrarily diminished by choosing the zeros of
W (z) sufficiently close to z = 1. This analysis
implies that a convenient generic form for each
element of W (z) is

Wi(z) =
z − ai

z(1− ai)
, (33)

where ai ∈ [0, 1 [ and i = 1, 2, . . . , n. The stability
of the closed loop can then be attained by an
appropriate election of the set of design parame-
ters {ai}, i. e. {ai} must be chosen sufficiently
close to z = 1 such that, at least, stability
is achieved. When this is accomplished, a fine
tuning of the design parameters may be done in
order to obtain certain loop performance. This
procedure requires that the chosen interaction
measure suggests that a triangular plant model
is a sensible choice.

6. ILLUSTRATIVE EXAMPLES

Example 4. Consider a plant modeled by the
transfer matrix

G(z) =

[
z−1.5

z2(z−0.9)
−0.25(z−5)

z2

z−1.7
z(z−0.9)

1
z−0.9

]
. (34)

The Participation Matrix (PM) (Salgado and
Conley, 2004) associated to G(z) is
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Fig. 1. Step responses for different triangular
designs in Example 4.

Φ =

[
0.23 0.05
0.32 0.4

]
. (35)

The small value of Φ12 suggests that a the use of
lower triangular plant model for controller design
is a sensible choice. Hence, we consider Gt(z)
as the lower triangular portion of G(z). A first
attempt to the triangular design may consider
a1 = a2 = 0 which is equivalent to choose
W (z) = I. It can be verified that the controller
defined by Qt opt(z) on a closed loop around G(z)
does not stabilise the system. The bandwidth
of Qt opt(z) can be reduced by choosing a1 =
a2 = {0.7, 0.8, 0.9}. The closed loop is stable for
the three choices of the parameters and the step
responses of each design are shown in Fig. 1.
These results verify the bandwidth reduction as
the design parameters approach z = 1.

Example 5. Consider the simplified model of a
high purity distillation column of eq. (12.17) in
(Skogestad and Postlethwaite, 1996) and its zero
order hold discrete time equivalent given by

G(z) =
1

z − 0.9934

[
0.58339 −0.57408
0.71893 −0.72824

]
, (36)

where the chosen sampling time is 0.5[min]. The
PM associated to G(z) is

Φ =

[
0.198 0.192
0.29 0.31

]
, (37)

so that using a triangular plant model is a rea-
sonable choice. As in the previous example, the
triangular model Gt(z) is the lower triangular
portion of G(z) and, on first instance, we can
use a1 = a2 = 0 in Theorem 3 to compute
Qt opt(z). It can be verified that, in this case, the
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Fig. 2. Step responses for different triangular
designs in Example 5.

controller defined by Qt opt(z) on a loop around
G(z) stabilises the plant. If it is needed, we can
perform a fine tune on a1 and a2 to achieve a
desired performance. Different choices for a1 and
a2 are made and the step responses for each one
are shown in Fig. 2. The results are satisfactory
since we are able to modify the bandwidth of the
design and hence, tune the performance to satisfy
some additional transient requirements that could
arise depending on the application.

7. CONCLUSIONS

This paper proposes a new methodology for
the design of triangular discrete time controllers
for full MIMO stable plants. The method is in-
herently suboptimal since the optimisation proce-
dure is formulated considering only the triangular
portion of the plant. The full MIMO nature of
the plant is taken into account by adjusting the
loop bandwidth through the weighting function
in the cost index. The proposed method yields an
explicit solution for the controller, which provides
integral action.
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