
1

H-TCP: A framework for congestion control in
high-speed and long-distance networks

D.J. Leith, R.N. Shorten, Y.Lee
Hamilton Institute, NUI Maynooth

Abstract— In this paper we present a new AIMD congestion
control algorithm, H-TCP, that is suitable for deployment in
high speed and long distance networks as well as conventional
networks. H-TCP generalises the AIMD strategy to significantly
improve the manner in which responsiveness and efficiency
scale with path bandwidth-delay product and level of queue
provisioning within the network. The performance of H-TCP
is demonstrated via experimental measurements across a range
of network conditions.

I. INTRODUCTION

The topic of congestion control for high speed and long
distance networks is currently the subject of much debate
in the networking community. This debate has been driven
by the realisation that TCP in its current form performs
poorly in such networks, and has led to the development of
several new congestion control algorithms. Examples include
High-Speed TCP[1], Scalable TCP[2], FAST-TCP[3] and
BIC-TCP[4]. Unfortunately, despite much effort, none of the
proposed algorithms have yet provided compelling evidence
to suggest that they are suitable for general deployment.
The basic design requirement is that a number of important
performance criteria must be satisfied by any new congestion
control algorithm. To date, designing an algorithm that
satisfies all of these criteria has been difficult to achieve.

While a consensus on what exactly constitutes a good
set of performance criteria to support the design of new
congestion control algorithms has yet to be agreed by the
networking community, any new algorithm should have
certain basic properties. For example, high-speed algorithms
should be backward compatible with legacy TCP, their fair-
ness properties should be well understood and they should
strive to acquire and release bandwidth rapidly as network
conditions change. The primary aim of the present paper is to
relate each of these properties to the dynamics of the AIMD
algorithm and use this knowledge to support a principled
design of new congestion control algorithms.

II. MOTIVATION: BRIEF CASE
STUDIES

It has been well documented in several case studies
that current TCP congestion control algorithms can perform
poorly over high-speed and long distance paths [2], [1],

[4]. On such paths the bandwidth-delay product (BDP) can
be very large. As a result flows may take an unacceptably
long time to recover their window size after a congestion
event. An obvious solution that addresses this problem is to
redesign the congestion avoidance mode of TCP with the
specific objective of keeping the time between congestion
events small. This is the basic strategy that has been pursued
by almost all researchers working in the area and is easily
achieved by adjusting the additive increase parameter α to be
greater for flows that travel over paths with large bandwidth-
delay product. This solution, in combination with the design
of additional modes of operation to ensure backward compat-
ibility with legacy TCP, provides a mechanism for solving
several of the issues associated with TCP for high speed
networks.

The logic that orchestrates switching between the normal
and high speed modes of operation can clearly be designed
several ways. One approach is to use the current value
of the congestion window cwnd as an indicator of the
path BDP. That is, the AIMD increase parameter α is
increased as cwnd increases thereby resulting in an additive
increase algorithm that directly scales with the bandwidth-
delay product. This is precisely the approach adopted in
the High-Speed TCP [1] and Scalable TCP [2] proposals
for high BDP networks. In addition to adjusting the AIMD
increase parameter α as a function of cwnd, these proposals
also increase the multiplicative decrease factor β to further
increase the aggressiveness of a flow1.

While such modifications might appear straightforward,
and a logical amendment to TCP for high BDP paths, they
dramatically alter the behaviour of networks of TCP flows.

Specifically, adjusting the AIMD parameters of a particu-
lar flow based on the flow state cwnd creates a fundamental
asymmetry in the network that can lead to undesirable net-
work behaviour. Figure 1 illustrates the behaviour of High-
Speed TCP following startup of a new flow. It can be seen
that the convergence of the cwnd’s following this change in
network conditions is extremely slow. The slow convergence
arises from the aforementioned asymmetry; specifically, in
the manner in which competing flows acquire and release

1On multiplicative decrease, cwnd is updated to β× cwnd. We use this
definition of the backoff factor β throughout this paper.

Fig. 1: Example of two High-Speed TCP flows illustrating
slow convergence to fairness. (NS simulation, 500Mb bot-
tleneck link, 100ms delay, queue 500 packets)

bandwidth. Paradoxically, flows with a large cwnd release
bandwidth (due to increased β) more slowly than those with
a smaller cwnd, and acquire bandwidth at a faster rate (due
to a larger α). Newly started flows are consequently placed
at a disadvantage against established flows. 2

In Scalable TCP, the AIMD increase parameter is selected
to be proportional to the instantaneous cwnd value. This
has the effect of making the duration of a congestion epoch
invariant with congestion window size. The impact, however,
of this change on the behaviour of Scalable TCP flows
following startup of a second flow is illustrated in Figure 2. It
can be seen that the flows do not convergence to fairness. In
fact, the Scalable TCP algorithm is a multiplicative-increase
multiplicative-decrease (MIMD) algorithm as opposed to an
additive-increase multiplicative-decrease (AIMD) one. It has
been known for many years [5] that MIMD algorithms need
not converge to fairness under drop-tail queueing.

Evidently, TCP congestion control algorithms must be
designed with a number of multiple objectives in mind. In
particular, adequately addressing all of the following issues
seems to be a minimum requirement in the design of any
TCP protocol that is suitable for deployment in high BDP
networks.
(i) Friendliness with legacy TCP. In low speed environ-

ments new variants of TCP should behave similarly
to legacy TCP traffic. In high-speed environments,
legacy TCP traffic should not be completely starved of
bandwidth.

(ii) Efficiency. TCP should ensure efficient use of network
resources. In particular, TCP flows should strive to

2In the example shown the second flow experiences a packet drop early in
slow-start. While slow-start might be amended to improve start-up perfor-
mance, as noted previously this does not remove the difficulties associated
with the slow responsiveness of the congestion avoidance algorithm.

Fig. 2: Example of two Scalable TCP flows illustrating
lack of convergence to fairness. (NS simulation, 500Mb
bottleneck link, 100ms delay, queue 500 packets)

efficiently utilise available bandwidth.
(iii) Fairness. We refer here to fairness between competing

flows that utilise the same TCP algorithm. We expect
that new variants of TCP should be not be significantly
more unfair than current TCP (e.g. RTT unfairness
should be no worse than that exhibited by current TCP
algorithms).

(iv) Responsiveness. That is, how quickly flows respond
to changes in network conditions such as the starting
or stopping of a network flow.

Our objective in the remainder of this paper is to devise
a congestion control algorithm for high-speed networks that
performs well according to all of the above criteria.

III. NETWORK DYNAMICS

The AIMD algorithm that is used in TCP has two key
features that underpin its convergence behaviour. Firstly,
flows increase their cwnd at the same rate 3 and seize
bandwidth at the same rate. That is, we have symmetry in
the flow increase rates. Secondly, the backoff mechanism
is multiplicative. Hence, following congestion, flows with
a larger cwnd will reduce this cwnd by more, in absolute
terms, than flows with a smaller cwnd. That is, larger flows
yield more bandwidth than smaller flows. Flows with smaller
cwnd thereby gain a certain advantage over flows with larger
cwnd, and it is this that enables flows with small cwnd to
seize bandwidth from flows with large cwnd until balance
is reached in the network.

We can express this mathematically as follows. Let wi(k)
denote the cwnd value of flow i immediately before backoff

3We assume for the moment that flows have the same round-trip time.
This simplifies the discussion, but the arguments presented carry over to
the more general case, see later.

2

Fig. 3: Illustration of TCP convergence rate (NS simulation,
αi = 1, βi = 0.5, dumb-bell with 10Mbs bottleneck
bandwidth, 100ms propagation delay, 40 packet queue).

with k indexing the congestion events. Let αi(k) and β be
the AIMD increase and decrease parameters of the i’th flow,
and let T (k) be the interval between congestion events k
and k +1. We measure T (k) in seconds and define αi(k) =
(wi(k + 1) − βwi(k))/T (k) which is simply the effective
increase rate in packets/s. Note one can often approximate
αi(k) by 1/RTTi where RTTi is the round-trip time of flow
i. From the AIMD algorithm we have that

wi(k + 1) = βwi(k) + αi(k)T (k) (1)

And for two flows i and j that experience congestion it
follows that

wi(k + 1)− wj(k + 1) = β(wi(k)− wj(k)) (2)

After n congestion events we have

wi(k + n)− wj(k + n) = βn(wi(k)− wj(k)) (3)

Since β < 1, we can see that the congestion windows wi

and wj must eventually converge to the same values.
It follows immediately from this analysis that the number

of congestion epochs that flows take to converge is deter-
mined by the backoff parameter β. With β = 0.5, after 2.3
congestion epochs the difference in flow congestion windows
will have reduced to less than 20%, and after approximately
4 congestion epochs to less than 5%. This behaviour is
illustrated, for example, Figure 3.

While β determines the number of congestion epochs for
convergence, the duration of the congestion epochs obviously
depends on both β and α. Increasing β and/or increasing
α reduces the congestion epoch duration. Note, however,
that adjusting β to reduce congestion epoch duration results
in a corresponding (exponential) increase in the number of
congestion epochs before convergence.

A second key insight that can be gained from the foregoing
analysis is that symmetry in the increase rates of the compet-
ing flows plays a central role in ensuring convergence to a
fair equilibrium. In one sense this observation is unsurprising
- it has been known for many years that asymmetry created
by differences in RTT (leading directly to differences in
increase rate) creates unfairness. However, other types of
asymmetry, such as that created by the High-Speed TCP
algorithm where the increase rate is coupled to cwnd size,
can evidently induce both unfairness and complex transient
behaviour.

Comment: Different RTTs. The foregoing analysis can
be extended to include flows with different round-trip times
as follows. Let zi = wi/αi be the congestion window
normalised by the increase rate. It follows that zi(k + 1) =
βzi(k) + T (k) and zj(k + 1) = βzj(k) + T (k). Hence,
zi(k + 1) − zj(k + 1) = β(zi(k) − zj(k)) similarly to (2).
In equilibrium zi = zj ; that is, wi/wj = αi/αj . Recalling
that αi ≈ 1/RTTi we have wi/wj ≈ RTTj/RTTi.

Comment: Network equilibrium. More generally, in
equilibrium we have that wi = αiT (k)

1−βi
. Hence, for two flows

i and j, wi

wj
= αi(1−βj)

αj(1−βi)
. This analysis indicates that fairness

is ensured when the ratio αi

1−βi
is the same for all flows.

Since in the case of standard TCP we have that αi = 1,
βi = 0.5, the requirement for fairness with standard TCP
flows is that αi = 2(1− βi).

Comment: Symmetry. It is easily observed that the
foregoing analysis is not only valid for conventional AIMD
networks, but also extends to any network type in which
flows update their congestion windows according to

wi(k + 1) = βwi(k) + kif(T (k)), (4)

where ki is some constant, and f(T (k)) is any function that
is the same for all flows i.e ensuring symmetry between
flows.

Comment: Unsynchronised drops. In equation (3) we
have implicitly assumed that flows i and j both experience
drops at every congestion event i.e that they flows are syn-
chronised. The analysis can be extended to unsynchronised
flows but at the price of a more involved development, see
[6], [7] for details. The qualitative insights relating to the
influence of the AIMD parameters remain unchanged in the
unsynchronised case.

IV. GENERALISING AIMD

We consider generalising the AIMD algorithm by allowing
the increase parameter to vary as a function of the elapsed
time since the last congestion event. Specifically, if we let
∆ denote the time in seconds that has elapsed since the last
congestion event experienced by a flow, we adjust the AIMD
increase parameter according to some function which we
denote ᾱ(∆). To provide backward compatibility with legacy

3

Fig. 4: Convergence of flows where AIMD increase param-
eter is varied as a function of elapsed time since last backoff
according to (7). (NS simulation, 500Mb bottleneck link,
100ms delay, queue 500 packets)

TCP flows we consider adjusting the increase parameter as
follows

ᾱ(∆) =
{

1 ∆ ≤ ∆L

ᾱH(∆) ∆ > ∆L (5)

where ∆L is the threshold for switching from stan-
dard/legacy operation to the new increase function, ᾱH(∆).
Here we use the overstrike on ᾱ to indicate that this is
the increase rate measured in packets/RTT as opposed to
packets/sec; that is, we would update cwnd to cwnd +

¯α(∆)/cwnd on receipt of each TCP ACK packet. The
choice of function ᾱH(∆) is governed by the rate at which
bandwidth should be acquired. Note that when ᾱH(∆) = 1
we recover the standard AIMD algorithm.

We can immediately make the observation that, because
the adjustment is based on time since the last back-off, flows
already in high speed mode are not awarded a long-term
advantage over newer flows. When drops are synchronised,
flows grab bandwidth at the same rate. When drops are
not synchronised, flows grab bandwidth at the same rate
on average, provided their probability of backing off on
congestion is the same.

It follows from the results of the previous section that the
number of congestion epochs for convergence is determined
by the backoff factor β. This is illustrated in Figure IV
which shows convergence following startup of a second flow.
The backoff factor here is the standard TCP value of 0.5
and it can be seen that convergence takes approximately 4
congestion epochs, as with standard TCP (Figure 3).

Note that from a user perspective, the issue of interest
is the convergence rate in seconds rather than the conver-
gence rate measured in congestion epochs. To improve the
responsiveness of a network we therefore need to choose the

increase function ᾱH(∆) such that the duration of the con-
gestion epochs remains reasonably small as the bandwidth-
delay product on a path increases. The congestion epoch
duration is given by the solution to the implicit equation

α(k)T (k) = w(k + 1)− βw(k) (6)

where α(k) =
R T (k)
0 ᾱ(t)dt
T (k)RTT . Choosing, for example,

ᾱH(∆) = 1 + 10(∆−∆L) + (
∆−∆L

2
)2. (7)

and ∆L = 1s yields a polynomial increase in cwnd over
a congestion epoch and by adjusting the polynomial we
can adjust the congestion epoch duration. In particular, the
increase function (7) yields the congestion epoch duration for
a single flow, as a function of congestion window size, shown
in Figure 5. It can seen that the congestion epoch duration is
around 10s for a bandwidth-delay product of 10,000 packets,
yielding a convergence time to 20% of final value of 25s,
and a convergence time to 5% of final value of 40s. This
choice of convergence time is somewhat arbitrary and other
choices of increase function would yield different values.
However, the precise responsiveness requirement in future
networks is currently not well defined and so we leave this,
and the associated specific choice of increase function, as a
question for further debate. The increase function (7) is used
in the rest of this paper merely as an illustrative example that
yields convergence times that seem reasonable.

Detailed experimental results measuring the performance
of the proposed increase law are presented in later sec-
tions. Here, however, we can briefly make some preliminary
observations. Figure IV illustrates the congestion window
evolution obtained using the increase function (7).
(i) Response function. It is readily shown that (7) has a

response function similar to that proposed by Floyd [1].
(ii) Friendliness. Define the effective linear increase as

(w(k + 1)−w(k))/T (k). This is the value of increase
parameter in conventional AIMD that corresponds to the
increase function (7). The effective increase parameter
in units of packets/RTT is shown in Table I for a range
of bandwidth-delay products. This an indication of the
number of standard TCP flows (neglecting statistical
multiplexing of backoffs) whose aggregate would be
equivalent to a flow using increase function (7).

(iii) RTT unfairness. Using a similar argument to that
in the previous section, namely working in terms of
normalised congestion windows, we can see that the
degree of RTT unfairness is similar to that with standard
TCP.

(iv) RTT scaling. Recall that for standard TCP we have
that the effective increase rate is inversely proportional
to round-trip time. A similar situation holds for the
increase function (7). In both cases, we note that the
additive increase law can be effectively made invariant

4

with round-trip time by simply scaling α by the round-
trip time4 in which case the convergence time also
becomes invariant with round-trip time. Such RTT
scaling also can be expected to reduce the level of
unfairness experienced between competing flows with
different round-trip times.

Congestion Effective number
window of standard TCP flows
(packets)

10ms 100ms 250ms
RTT RTT RTT

10 1 1 1
100 1 2 5

1000 3 12 22
2000 4 19 32
5000 8 33 55
10000 12 49 82
20000 19 72 123
50000 32 122 208

TABLE I: Effective increase parameter (packets/RTT) vs
window size.

Fig. 5: Peak window size achieved vs duration of congestion
epoch with standard TCP and with αH selected according
to (7)

V. ADAPTIVE BACKOFF

While the AIMD increase parameter α has a relatively
straightforward impact on network behaviour (provided care
is taken to maintain the appropriate symmetry) the influence
of the backoff factor β is more complicated. With regard
to responsiveness, changes to β impact both the conges-
tion epoch duration and the number of congestion epochs
before convergence. Further, the choice of backoff factor
has a significant impact on throughput efficiency and queue
requirements within the network.

4It is of course prudent to restrict such scaling to lie in some interval,
say [0.5,10], to prevent misbehaviour on paths with very short or very long
round-trip times.

A. Throughput Efficiency

While the basic function of congestion control is to
regulate network congestion, it is clearly desirable to also
ensure that the network flows, on aggregate, fully utilise the
available network resources. Consider, initially, a network
with a single bottleneck link (multiple bottlenecks will be
considered later). When the network experiences congestion
the link buffer is full and the network bottleneck is nec-
essarily operating at link capacity. The corresponding data
throughput through the bottleneck link is given by

R(k)− =
n∑
i

wi(k)
Ti + qmax

B

= B (8)

where B is the link capacity, qmax is the bottleneck buffer
size, Ti is the round-trip-time experienced by the i′th source
when the bottleneck queue is empty. We let βi(k) = βi if
flow i experiences a loss at the k’th congestion event and
otherwise βi(k) = 1 (i.e. flow i does not backoff). Then,
following congestion, the data throughput is given by

R(k)+ =
n∑
i

βi(k)wi(k)
Ti

(9)

under the assumption that the bottleneck buffer empties5. If
the sources backoff too much, data throughput will suffer
as the queue will empty for a period of time and thus the
link will operate below its maximum rate. A simple method
to ensure maximum throughput is to equate the rates R(k)−

and R(k)+. This can be achieved by enforcing the following
constraint,

βi ≥
Ti

Ti + qmax

B

=
RTTmin,i

RTTmax,i
. (10)

For a given choice of βi one may seek to choose qmax

such that R(k)+ = R(k)− for all k. Evidently, for the case
of networks employing standard TCP, namely βi = 0.5, it
follows qmax ≥ BTi. This is, at least in part, the origin of
the bandwidth-delay product (BDP) rule. The BDP rule is,
however, only one of many strategies that could be adopted
to ensure that Equation (10) is satisfied. In particular, for any
given queue size qmax one may simply set

βi =
RTTmin,i

RTTmax,i
(11)

for all i; thereby ensuring that R(k)+ = R(k)− for all
k. The effect of this AIMD modification can be seen in
Figure 6. In this example the queue provisioning is less
than the bandwidth-delay product and the queue empties
for a substantial period following backoff by a factor of 0.5
(see the first backoff event in the figure) with an associated
reduction in link utilisation. Once the flow adjusts its backoff

5This assumption merely streamlines the presentation. If the queue does
not empty at the k’th congestion event, we have trivially that R(k)+ =
R(k)− and link utilisation is 100%.

5

factor to the level of buffer provisioning we can see that the
queue now just empties following a backoff event and the
link continues to operate at capacity as desired. With this
approach, rather than designing buffers to accommodate the
TCP AIMD algorithm, we modify the AIMD algorithm to
accommodate the buffers in the network. This is particularly
relevant in high-speed environments where queues are often
relatively small relative to the delay-bandwidth product.

Fig. 6: Congestion window and queue occupancy time histo-
ries with adaptive backoff. The delay bandwidth product is
85 packets. (NS simulation, bandwidth 10Mbs, RTT 100ms,
queue 25 packets)

.

Comment: Primal-Dual Strategies. The BDP-rule and
the adaptive backoff strategy proposed above may be thought
of as, respectively, primal and dual methods. The BDP
strategy requires correct sizing of the network buffers. The
adaptive backoff strategy requires that each source adjust its
backoff factor appropriately.

Comment: Statistical Multiplexing. The BDP rule is
derived from consideration of link utilisation in the worst
case where all flows backoff at each congestion event. This
situation applies when only a single TCP flow is present
and also occurs with many flows provided that the flows are
synchronised i.e. every flow experiences a loss at every con-
gestion event. When flows are not synchronised, by definition
only a proportion of flows backoff at each congestion event.
Thus on average more packets remain in flight than in the
synchronised case and so the queue is less likely to empty.
Consequently, under unsynchronised conditions we expect
that the link utilisation will be strictly greater than under
synchronisation (assuming the queue is sized less than the
BDP - otherwise the utilisation is trivially always 100%).
Studies that we have carried out indicate that the statistical
multiplexing gain with adaptive backoff behaves similarly to
that with standard TCP; that is, the buffering requirement is

approximately inversely proportional to
√

n where n is the
number of competing flows (see Appenzeller et al[8]).

Comment: Implementation. We note that the feasibility
of obtaining reliable measurements of instantaneous RTT is
an open question and do not propose use of this quantity. We
have found that minimum and maximum RTT are, however,
relatively straightforward to estimate.

B. Efficiency vs Responsiveness

It is important to be aware that adjusting the flow backoff
factors can be expected to have an impact on network respon-
siveness. Indeed, within the AIMD paradigm the foregoing
analysis seems to indicate that a tradeoff of sorts exists
between responsiveness and link utilisation. Increasing the
backoff factor β to improve efficiency decreases responsive-
ness (as measured by number of congestion epochs before
convergence6). Conversely, decreasing the backoff factor in-
creases responsiveness but decreases efficiency, at least when
queues are small. Note that large queues resolve this tradeoff
in favour of using a small backoff factor. However, when
queues are small the situation is less clear. One approach
is to restrict the backoff factor to an interval [0.5, βmax].
The value selected for βmax then reflects the preferred com-
promise between efficiency and responsiveness. We suggest
that a reasonable choice for βmax in current networks might
be 0.8 for the following two reasons: (i) a backoff factor
of 0.8 ensures 100% link utilisation with queues sized at
only 25% of the bandwidth-delay product7 which is already
a fairly large reduction in the buffering requirement, and
(ii) a backoff factor of 0.8 corresponds to a convergence
time of 7 congestion epochs for 80% convergence and 12
congestion epochs for 95% convergence and so the slow
down in responsiveness is relatively small. While this value
is used in the rest of this paper, other choices of backoff limit
are certainly possible and the final choice is left as future
work.

C. Maintaining Fairness

Adjustment of the flow backoff factors βi can lead to
unfairness between competing flows. The analysis in Section
IV shows, however, that fairness can be restored by adjusting
αi such that αi = 2(1 − βi)8. This yields the following

6Increasing β decreases the congestion epoch duration while increasing
the number of congestion epochs for convergence. Typically, however,
it is the latter effect that dominates as the number of epochs increases
exponentially with β whereas the epoch duration only decreases linearly.

7This is the worst case buffering requirement and is reduced by statistical
multiplexing of flow backoffs.

8This yields fairness in the sense that flow congestion windows are equal.
We use this notion of fairness as it naturally arises in describing network
behaviour in terms of congestion events. Other forms of fairness could, of
course, also be used and the backoff scheme modified appropriately.

6

adaptive backoff algorithm

βi(k) =
RTTmin,i(k)
RTTmax,i(k)

;

αi(k) = 2(1− βi(k))

The effect of adjusting αi in this manner is illustrated in
Figure 7, where in a network of 25 flows the proportion of
standard and adaptive AIMD flows is varied. It can be seen
that the ratio of the mean peak congestion windows of the
standard and adaptive flows always stays close to unity.

Fig. 7: Fairness of adaptive and conventional TCP flows
vs number of adaptive AIMD flows (out of 25 flows in
total, remaining flows are conventional TCP flows). NS
simulation, 155Mb bottleneck link, 120ms delay, queue
125 packets. Network includes background web traffic of
approximately 1% link bandwidth.

D. Multiple Bottlenecks

It is easy to see that the proposed adaptive backoff
strategy readily extends to paths with multiple congested
links. Assume, for the moment, the worst case from a link
utilisation viewpoint) situation where flows are synchronised.
At congestion we have that

R(k)− =
n∑

i=1

wi(k)∑m
j=1(Ti + qj(k)/Bj)

= B (12)

where m is the number of links at which packets are queued,
qj(k) is the queue occupancy of the j such link and Bj the
bandwidth. Selecting the backoff factor as

βi(k) =
Ti

Ti +
∑m

j=1
qj(k)
Bj

=
RTTmin,i

RTTmax,i
(13)

then after backoff,

R(k)+ =
n∑
i

Ti

Ti +
∑m

j=1
qj(k)
Bj

wi(k)
Ti

= B (14)

That is, the TCP flows adapt their backoff factors to just
empty all of the queues that they see along the end-to-end
path.

Comment: Number of Bottlenecks. Note that this anal-
ysis encompasses situations where different flows may see
different numbers of backlogged queues along their respec-
tive network paths.

Comment: Variation in Bottleneck Number. The anal-
ysis also extends to situations where, for example as flows
start and stop, the number of bottleneck links may vary. To
implement the backoff calculation in (13), we use RTTmin,i

RTTmax,i

as before. Increases in the number of bottleneck links
generally lead to an increase in round-trip time and this
will be immediately reflected in the value of RTTmax,i. To
capture changes that lead to a reduction in the round-trip
time, we add exponentially fading memory to our estimate
of RTTmax,i, namely at each congestion event we reset our
RTTmax,i estimate according to

RTTmax,i = RTTmin,i + a(RTTmax,i −RTTmin,i) (15)

with a < 1. We have not found the performance of the
algorithm to the especially sensitive to the value of a used
and suggest that a reasonable value is a = 7/8, which
corresponds to the fading memory already used in the
smoothed RTT calculation in TCP.

VI. H-TCP

We can directly combine the foregoing techniques for
adjusting the AIMD increase rate and backoff factor to im-
prove the responsiveness and efficiency of TCP in high-speed
networks. This yields the following complete algorithm.
(a) On each acknowledgement:

ᾱ ← 2(1− β)ᾱ(∆) (16)
cwnd ← cwnd + ᾱ/cwnd (17)

(b) On each congestion event:

β ← RTTmin

RTTmax
, β ∈ [0.5, 0.8], (18)

cwnd ← β × cwnd (19)

where

ᾱ =
{

1 ∆ ≤ ∆L

1 + 10(∆−∆L) + (∆−∆L

2)2 ∆ > ∆L (20)

and ∆ is the time in seconds since the last congestion
event, ∆L = 1s and RTTmin

RTTmax
is the ratio of minimum and

maximum RTT’s of the flow.
As discussed previously, by scaling ᾱ with round-trip

time we can optionally make the increase rate effectively

7

invariant with round-trip time, in which case convergence
time is also invariant with round-trip time. RTT unfairness
between competing flows is also mitigated when RTT scaling
is employed.

VII. EXPERIMENTAL EVALUATION

It is well known that even small modifications to the
basic TCP algorithm can have a large impact on network
behaviour. Although insight from analysis can assist in
developing new algorithms and avoiding known pitfalls, it
is essential to carry out experimental tests to help us gain
confidence in the correct operation of an algorithm. To
this end, we have defined a collection of benchmark tests
that exercise many of the major aspects of TCP congestion
control behaviour.

As we have already discussed, the basic performance of
any proposed congestion control algorithm, can be captured
to some degree by evaluating its performance according
to the following criteria; fairness (between like flows),
friendliness (fairness with legacy TCP flows), efficiency (use
of available network bandwidth) and flow responsiveness.
Rather than trying to define a single metric to capture
performance, our approach is to devise a number of tests to
measure protocol behaviour according to the above criteria.
In this context we use the behaviour of standard TCP as
the baseline against which to assess the performance of
any new protocol. Since the behaviour of TCP is known
to be dependent on factors including queue provisioning,
link bandwidth, round-trip time and difference in round-trip
time (for competing flows) we evaluate the impact of these
factors on performance. Number of flows is also known to
be an important factor in TCP performance. Owing to space
constraints, in this paper we only present results for two
competing flows; our experience indicates that this is suffi-
cient to highlight many issues of interest (RTT unfairness,
convergence times, TCP friendliness etc). We have obtained
similar results for > 2 flows.

Although it is not our objective to evaluate and comment
on other recent alternative high BDP protocol proposals,
results are included for High-Speed TCP, Scalable TCP, BIC-
TCP and FAST TCP to properly benchmark H-TCP.

A. Experimental Setup

Our test network consists of six Linux Xeon 2.8HGz
servers with PCI-X Intel Pro 1000 NICs and a similarly
specified router running FreeBSD 4.8 and using DummyNet
to emulate specified network propagation delays. The servers
are specified to ensure that throughput is limited by network
bandwidth rather than NIC performance. We use a Linux
2.6.6 kernel with web100 extensions. This baseline kernel
includes implementations of High-Speed TCP and Scalable
TCP. The kernel has been modified by us to implement the

H-TCP algorithm and to import a beta release implementa-
tion of FAST TCP provided by Caltech and a release of Bic-
TCP provided by the group at North Carolina9. Hence, all
comparisons are carried out using a common network stack
implementation to provide a level playing field for comparing
congestion control algorithms.

It is known [10] that the efficiency of the existing network
stack implementation, in particular the SACK processing
overhead, becomes the main constraint on performance on
large bandwidth-delay product paths. The network stack has
therefore been modified to use a more efficient SACK pro-
cessing algorithm with computation burden that scales with
number of lost packets rather than with number of packets
in flight. A number of features of the Linux implementa-
tion that are known to degrade performance in high-speed
environments are also disabled (packets-in-flight limiting,
partial rather than full undo). We use delayed acking and
implement appropriate byte counting as per RFC 3465. For
further details, see patches available at www.hamilton.ie/net/.

The reported measurements are averages taken over at
least 5 test runs each of at least 10 minutes duration.

B. Flows with Same RTT

We consider initially the case where all TCP flows operate
the same congestion control algorithm, have the same round-
trip time and share a common bottleneck link. Although this
is a simple test case, it provides a useful starting point for
evaluating algorithm performance.

Under these conditions, we expect that competing flows
will, on average, attain the same average throughput. Figure
8 plots measurements of the ratio of flow goodputs as the
network propagation delay is varied from 16ms to 162ms.
Results are shown for a 10Mbs bottleneck link and for a
250Mbs link, roughly corresponding to low-speed and high-
speed network environments (similar results are obtained for
other link speeds). In these plots the network buffers are
sized at 20% of the BDP. We have also studied other buffer
sizes, but space constraints limit what we can include and
the 20% BDP results seem particularly relevant as high-speed
paths commonly have relatively small queues. Under these
conditions, the standard TCP congestion control algorithm
consistently ensures that each flow achieves the same (to
within less than 5%) average throughput. However, the
measurements indicate that many of the proposed protocols
exhibit substantial unfairness under the same conditions.
While both FAST-TCP and Scalable-TCP display very large
variations in fairness, BIC-TCP and HS-TCP also display
significant levels of unfairness. Our purpose in this pa-
per is not to analyse or explain the behaviour of these

9We note that the implementation of Bic-TCP included in the standard
Linux 2.6.6 kernel distribution is known [9] to be incorrect (this has
subsequently been corrected). In our tests we use a corrected implementation
based upon the original Linux patch developed by the BIC-TCP authors.

8

algorithms. We note briefly, however, that Scalable TCP
is a multiplicative-increase multiplicative-decrease algorithm
and as such it is known that it may not to converge to
fairness. The unfairness exhibited by HS-TCP and Bic-TCP
is associated with slow convergence following startup of a
second flow - the results presented are for 10 minute test runs
and convergence times frequently exceed this duration. These
HS-TCP results are consistent with the simulation results
reported in [11] , while the slow convergence of Bic-TCP
seems consistent with data on the Bic-TCP authors web site.
Convergence times are discussed in more detail below.

The throughput efficiency of standard TCP depends upon
the level of queue provisioning. When queues are sized at
the bandwidth-delay product, queues do not empty following
backoff of the AIMD algorithm and link utilisation is 100%.
For smaller queue sizes the link utilisation decreases (as
we are considering only two flows, statistical multiplexing
effects are insignificant). Figure 9(a) plots measurements of
aggregate goodput vs queue provisioning. The results shown
are for two TCP flows in a network with 82ms propagation
delay and 100Mbs bottleneck bandwidth (we obtain similar
results for other network conditions). As a validation check,
also plotted on Figure 9(a) is the efficiency for standard
TCP predicted by NS simulations. It can be seen that
the experimental and simulation throughputs are in good
agreement. Note that data goodput is shown and hence the
efficiency cannot exceed 94% owing to the ethernet framing
and packet header overheads.

It can be seen that, as expected, for standard TCP the
throughput efficiency falls as the queue size is reduced.
While the theoretical analysis indicates a minimum through-
put efficiency of 75% (or 70% when framing and header
overheads are taken into account) when the queue size is
zero, in practice it can be seen that the efficiency rapidly
decreases as the queue size fall below around 3% of the BDP
(or less than about 8% in the case of FAST TCP). Further
investigation indicates that this is associated with microscale
packet bursts (associated with ACK clocking and scheduling
granularity within the end hosts) flooding the queue. All
of the protocols proposed for high-speed networks achieve
greater throughput efficiency than standard TCP, with H-TCP
attaining the maximum achievable throughput for queue sizes
above 25% BDP in line with the analysis in Section V-B.

Another issue related to throughput efficiency is the
packet loss overhead generated by a congestion control
algorithm. Since TCP is a reliable transport protocol, packet
losses result in the retransmission of the packets concerned.
Trivially, an algorithm can attain maximum throughput by
sufficiently overloading the network but this is unacceptable
if it entails unduly high packet loss rates. Figure 9(b) shows
the measured packet retransmission overhead versus queue
provisioning. With the notable exception of FAST-TCP, it can
be seen that as expected the new protocols behave similarly
and uniformly carry a greater overhead than standard TCP.

The packet loss overhead of FAST-TCP is observed to be
strongly dependent on queue provisioning: with small queues
FAST-TCP has the largest overhead, while for large queues
FAST-TCP has smallest overhead.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
m

bi
t/s

ec
)

Queuesize (Fraction of BDP)

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

StandardTCP NS2

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01 0.1 1

F
ra

ct
io

n
B

yt
es

 R
et

ra
ns

m
itt

ed
 p

er
 M

bi
t/s

ec

Queuesize (Fraction of BDP)

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

Fig. 9: Throughput and packet loss overhead vs queue pro-
visioning (as a proportion of the bandwidth-delay product)
for two TCP flows. Both flows have end-to-end round-trip
propagation delays of 82ms and the bottleneck bandwidth is
100Mb/s; BDP is 683 packets.. Throughput measured is data
payload and excludes ethernet framing and TCP/IP header
overhead; maximum achievable data throughput is therefore
94% link bandwidth.

Figure 10 shows measurements of the convergence time
following startup of a second flow. The convergence time is
plotted versus path propagation delay (both flows have the
same propagation delay in this experiment) and results are
presented for link rates of 10Mb/s and 250Mb/s. It can be
seen that HS-TCP, Bic-TCP ans Scalable TCP exhibit slow
convergence, in line with the discussion in Section 2 above.
The convergence time of H-TCP remains essentially constant
at 25s for round-trip times above 40ms and this reflects the
use of RTT scaling of the increase function. Convergence
times are faster for smaller RTT’s owing to the [0.5,10]
clamp on RTT scaling used in these tests (these clamp values
are used only to illustrate the impact of clamping).

9

Fig. 8: Ratio of throughputs of two flows under symmetric conditions (same propagation delay, shared bottleneck link,
same congestion control algorithm) as path propagation delay is varied. Results are shown for 10Mbit/sec and 250Mbit/sec
bottleneck bandwidths. The bottleneck queue size is 20% BDP. Observe that while standard TCP and H-TCP are essentially
fair (the competing flows achieve, to within 5%, the same average throughput) under these conditions.

C. Flows with Different RTT

The manner in which competing TCP flows interact with
each other is known to depend on their round-trip times.
In particular, flows with shorter round-trip times are able
to gain greater throughput than those with longer round-
trip times. In this section we present measurements obtained
with competing flows operating the same congestion control
algorithm but having different round-trip times.

Figure 11 plots measurements of the ratio of the goodputs
of two flows as the network propagation delay of the second
flow is varied from 16ms to 162ms (the delay of the first
flow is held constant at 162ms). Results are shown for a
10Mbs bottleneck link and for a 250Mbs link.

Comment: As a validation check, also plotted on Figure
11 are the throughputs for standard TCP predicted by the
theoretical analysis in [7]. Namely, the throughput given by

the expression

ūi =
α

λiTi(1− β))
(21)

where α and β are the AIMD increase and decrease
parameters (having values of 1 and 0.5, respectively, for
standard TCP), Ti is the round-trip time of flow i, λi is
the synchronisation factor i.e. the proportion of network
congestion events at which the flow i experiences a packet
drop and backs off its cwnd (λi is estimated from the
measured cwnd time histories). It can be seen that the
experimental and theoretical throughputs are in good
agreement.

With the exception of H-TCP it can be seen from Figure
11 that all of the new proposals exhibit significantly greater
RTT unfairness than standard TCP. The degree of unfairness

10

 1

 10

 100

 10 100

C
on

ve
rg

en
ce

 T
im

e
(s

ec
)

RTT (msec)

0.8 Convergence Time with 10 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

 1

 10

 100

 10 100

C
on

ve
rg

en
ce

 T
im

e
(s

ec
)

RTT (msec)

0.8 Convergence Time with 250 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

Fig. 10: 80% Mean 80% convergence time following startup
of a second flow. Results are shown for 10Mbit/sec (top)
and 250Mbit/sec (bottom) bottleneck bandwidths. Both flows
have same RTT. Queue size is 20% BDP. Missing points
along the ordinate axis indicate that the flows did not
converge to within the 80% fairness ratio over the 10 minute
duration of the test – this is especially evident with Scalable-
TCP and standard TCP for long delays at 250Mb/sec.

can be nearly an order of magnitude greater than that with
standard TCP and is such that long round-trip time flows
may be essentially starved of bandwidth. With regard to HS-
TCP, these RTT unfairness measurements are in line with
results reported elsewhere [4] and can be understood by
noting that the unfairness in standard AIMD associated with
flows having different RTTs is amplified in HS-TCP by the
adjustment of the AIMD increase parameter as a function
of cwnd. The RTT unfairness between competing H-TCP
flows is somewhat less than that of standard TCP owing to
the RTT scaling used (without RTT scaling the measured
RTT unfairness is very similar to that of standard TCP).

D. TCP Friendliness

In high-speed network conditions where legacy TCP flows
are unable to make efficient use of the available bandwidth,
we assume that a degree of unfairness is permitted. However,

 0.001

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (msec)

Fairness with 10 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

StandardTCP Theory

 0.001

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (msec)

Fairness with 250 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

StandardTCP Theory

Fig. 11: Ratio of throughputs of two competing flows as
the propagation delay of the second flow is varied. Results
are shown for 10Mbit/sec (top) and 250Mbit/sec (bottom)
bottleneck bandwidths. Flow 1 has RTT of 162ms, the RTT
of Flow 2 is marked on the x-axis of the plots. Queue size
is 20% BDP.

it is important that modifications to the TCP congestion con-
trol algorithm do not lead to an excessive level of unfairness
when operating in a heterogeneous environment that includes
legacy TCP flows. Figure 12 plots measurements for two
competing flows where one flow is standard TCP and the
second uses a modified congestion control algorithm. It can
be seen that Scalable TCP and FAST TCP exhibit the greatest
degree of unfairness in both low and high-speed conditions.

E. Scope of our results

Our principal consideration in this paper is networks that
employ drop-tail queueing as this is prevalent in current
networks. The experimental results that we have presented
are for a number of precisely defined network scenarios.
Clearly, these results do not amount to proof of the correct
operation of any algorithm studied. However, we argue that
such tests are nevertheless useful as a screening tool that
is both systematic and provides useful insight. The tests
used are, for example, sufficient to reveal many of the issues
already known to affect recent TCP proposals.

11

 0.001

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (msec)

Fairness with 10 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

 0.001

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (msec)

Fairness with 250 Mbit/sec Bottleneck

StandardTCP
BicTCP

FAST
HSTCP

HTCP
ScalableTCP

Fig. 12: Ratio of throughputs of competing New-TCP and
standard TCP flows as path propagation delay is varied.
Results are shown for 10Mbit/sec (top) and 250Mbit/sec
(bottom) bottleneck bandwidths. Both flows have the same
RTT. Queue size is 20% BDP.

With regard to H-TCP, our experimental measurements do
seem to be consistent with the analysis presented in earlier
sections and therefore provides a degree of confidence in the
viability of the proposed approach. We argue that the results
presented justify further testing of the H-TCP framework,
in particular wider testing in live network environments. We
have already carried out initial tests over production paths
between Dublin (Ireland), CERN (Geneva, Switzerland),
Starlight (Chicago) and SLAC (California). However, these
results are for a single flow and it is clear from our lab tests
that it is important to perform tests between a number of
competing flows as it is only under these conditions that
issues such as fairness, RTT unfairness, friendliness and
responsiveness can be studied. In cooperation with other
groups we are currently working on creating a suitable
infrastructure with multiple servers at multiple sites that
would allow such tests.

VIII. RELATED WORK

H-TCP is derived from the basic TCP algorithm by
modifying the manner in which a flow’s window variable

increases between congestion events, and by modifying the
manner in which flows backoff at congestion events. Both of
these borrow heavily from concepts that have been explored
extensively in the TCP-literature.

We have already mentioned that several competing con-
gestion control protocols, BIC-TCP, Scalable TCP, and HS-
TCP, move from a linear additive increase law to a non-
linear additive increase law. Some of these protocols also
employ RTT-scaling to mitigate the extreme effect of RTT-
unfairness that arises in large BDP networks. The novelty
in our approach is that H-TCP’s increase law is designed
to maintain symmetry in the manner in which competing
flows acquire available bandwidth by increasing the additive
increase rate as a function of the time since the last backoff.

Similarly, the idea of modifying the TCP congestion
control to improve throughput efficiency is not new and dates
back at least to the work of Brakmo et al on TCP Vegas [12].
In TCP Vegas, and more recently FAST TCP [3], the TCP
transmission rate is adapted in response to changes in round-
trip delay with the aim of maintaining queue occupancy
at a small, but non-zero, value thereby improving link
utilisation while also avoiding the packet drops associated
with the probing action of AIMD congestion control. This
is a paradigm change in congestion control with a shift
from use of packet drops as an indicator of congestion
to use of delay as a congestion indicator. In the present
paper we are seek instead to stay within the well tested
AIMD paradigm. In the context of wireless networks and
error-prone links (so-called “leaky dynamic pipes”), Gerla
et al [13] consider a TCP variant denoted TCP-Westwood
that proposes modifying the AIMD backoff factor based on
an on-line estimate of the bandwidth available on a path.
However, the strategy presented in the present paper differs
from TCP-Westwood not only in the manner in which the
AIMD backoff factor is adjusted (e.g. we make no attempt to
estimate the per-flow packet rate of the bottleneck link and
our adaptation scheme does not require complex adaptive
filtering strategies) but also in our adjustment of the AIMD
increase parameter according to αi = 2(1 − βi) in order to
maintain network fairness and friendliness.

IX. CONCLUSIONS

In this paper we have considered the problem of designing
a congestion control protocol that is suitable for deployment
in high-speed and long distance networks. The main contri-
bution of our work is to consider this problem from the point
of view of a number of basic constraints that must be satisfied
by any new protocol. Arising from these considerations, we
suggest a new high speed protocol, H-TCP. Results from an
experimental testbed are given to demonstrate the efficacy
of H-TCP and to compare its performance with competing
proposals.

One of our objectives in writing this paper is to initiate a
discussion as to what constitutes a good congestion control

12

protocol for large BDP networks. In this paper we focus
our attention on a number of obvious features that might be
deemed desirable for any new congestion control algorithm.
It is reasonable to expect that algorithms should be fair when
competing with each other, be friendly toward legacy TCP
flows, provide a certain degree of backward compatibility
with legacy TCP, should strive to utilise network resources
efficiently, should also acquire and release bandwidth quickly
in response to changing network conditions, and should be
suitable for deployment in a variety of network types (not
just large BDP networks). We show that at least one conges-
tion control protocol, H-TCP, can be realised that satisfies all
of these objectives in a straightforward manner. The design
criteria that we have considered represent a minimum set of
requirements that we expect must be satisfied from the point
of view of efficient network design. Many other potentially
important design criteria have not been considered in this
paper. For example, much of our discussion is concerned
with the behaviour of long lived flows. Little attention has
been paid to the behaviour of short-lived H-TCP flows,
to the manner in which high-speed protocols interact with
non-responsive flows and active queuing disciplines, and to
the manner in which packet bursts are generated in these
networks. Our hope is that this paper will initiate debate on
the topic as to what exactly are the desirable features of large
BDP protocols.

ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
grants 00/PI.1/C067 and 04/IN3/I460.

REFERENCES

[1] S. Floyd, “High speed TCP for large congestion windows.” RFC 3649,
Experimental, December 2003.

[2] T. Kelly, “On engineering a stable and scalable TCP variant,” tech.
rep., Cambridge University Engineering Department Technical Report
CUED/F-INFENG/TR.435, 2002.

[3] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Al-
gorithms, Performance.” Caltech CS Report CaltechCSTR:2003:010,
2003.

[4] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast long-distance networks.” Proceedings of IEEE INFOCOM,
2004.

[5] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks
and ISDN Systems, vol. 17, 1989.

[6] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of
synchronised communication networks,” in Proceedings of 12th Yale
Workshop on Adaptive and Learning Systems, 2003.

[7] R. Shorten, F. Wirth, and D. Leith, “Positive matrices and the internet.”
IEEE Transactions on Networking, to appear, 2005.

[8] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in In Proceedings of ACM SIGCOMM ’04, August /September 2004.,
2004.

[9] Y. Lee and D. Leith, “BicTCP implementation in
linux kernels.” Hamilton Institute Technical Report,
www.hamilton.ie/net/LinuxBicTCP.pdf, 2004.

[10] D. Leith, “Linux implementation issues in high-
speed networks.” Hamilton Institute Technical Report,
www.hamilton.ie/net/LinuxHighSpeed.pdf, 2003.

[11] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of
synchronised communication networks.” Automatica, 2003.

[12] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM,
pp. 24–35, 1994.

[13] M. Gerla, N. B., M. Sandaidi, M. Valla, and R. Wang, “TCP Westwood
with adaptive bandwidth estimation to improve efficiency/friendliness
tradeoffs,” Computer Communication Journal, 2003.

13

