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Abstract

In this paper we study an adaptive additive-increase multiplicative-decrease
congestion control strategy that supports small network queues while utilising
the available network bandwidth efficiently. This is achieved without adversely
affecting the manner in which bandwidth is shared amongst competing flows
(network fairness), or the rate at which flows acquire their share of available
bandwidth (the rate of network convergence). We develop a number of an-
alytic tools to study the dynamic properties of the adaptive algorithm. In
particular we give conditions, in both deterministic and stochastic contexts,
for the existence of a unique fixed point for such networks and demonstrate
that this equilibrium is globally exponentially stable. Finally, simulation and
experimental results are presented to illustrate the effectiveness of the pro-
posed algorithm.

1 Introduction

An important issue in the design of internet routers is the issue of buffer provision-
ing. Router buffers are usually designed with two objectives in mind.

(i) Accommodating bursty packet arrivals. Should packets arrive in a burst the
router may be unable to immediately process all of the packets. The first task
of the router buffer is to temporarily accommodate these packets in a queue
until they can be serviced.

(ii) A second issue in the design of router buffers arises from the desire to keep
the link served by the router operating close to 100% utilisation.

Router buffers are designed with both of these objectives in mind: the buffer size
should be large enough to accommodate typical packet bursts in the network and
should also be chosen to so that the queue does not empty when TCP responds to
network congestion. The typical rule of thumb in the design of router buffers is to
provision the buffer to be equal to the bandwidth of the link served by the router
(measured in packets per second) multiplied by the average round trip time of the
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flows utilising the router (RTTav.): the Delay-Bandwidth Product (DBP). While
provisioning network buffers in this manner has served the networking community
well in the past, it has already been argued by several authors that provisioning
router buffers according to the DBP rule will not be realistic in future network sce-
narios and several alternative strategies for buffer provisioning have been suggested.
Typically, the approach taken by these authors is to exploit statistical multiplexing
effects of TCP packets arriving at network buffers to justify arguments in favour of
smaller buffer sizes; see the recent paper by Appenzeller et al. for such a strategy
and a summary of related work [1]. While approaches of this type are of merit and
certainly provide key insights into the behaviour of real networks, it is nevertheless
not difficult to demonstrate that they are fatally dependent upon the assumption
that the buffer of interest serves a large number of TCP flows at any instant of
time; if this assumption does not hold provisioning network buffers in this manner
will lead to poor utilisation of the bottleneck link bandwidth.

In this paper we consider an alternative approach to the ‘buffer-provisioning’ prob-
lem. Rather than designing buffers to accommodate the TCP congestion control
algorithm, we suggest simple modifications to the TCP algorithm itself in order
adapt automatically to the level of buffer provisioning in the network. We shall see
that such a strategy leads naturally to adaptive AIMD congestion control whereby
network sources ‘tune’ their AIMD parameters to ensure efficient bottleneck link
utilisation. each source.

The principle objective of this paper is to present the basic idea underlying Adaptive
AIMD Congestion Control and to introduce a number of tools for analysing networks
in which this algorithm is deployed. In particular, we focus on the stability and
convergence properties in both deterministic and stochastic contexts.

2 Provisioning of queues in AIMD networks

A communication network consists of a number of sources and sinks connected
together via links and routers. In this paper we assume that these links can be
modelled as a constant propagation delay together with a queue, that the queue is
operating according to a drop-tail discipline, and that all of the sources are oper-
ating a Additive-Increase Multiplicative Decrease (AIMD) -like congestion control
algorithm. AIMD congestion control operates a window based congestion control
strategy. Each source maintains an internal variable cwndi (the window size) which
tracks the number of sent unacknowledged packets that can be in transit at any
time, i.e. the number of packets in flight. On safe receipt of data packets the des-
tination sends acknowledgement (ACK) packets to inform the source. When the
window size is exhausted, the source must wait for an ACK before sending a new
packet. Congestion control is achieved by dynamically adapting the window size
according to an additive-increase multiplicative-decrease law. Roughly speaking,
the basic idea is for a source to probe the network for spare capacity by increasing
the rate at which packets are inserted into the network, and to rapidly decrease the
number of packets transmitted through the network when congestion is detected
through the loss of data packets. In more detail, the source increments cwndi(t) by
a fixed amount αi upon receipt of each ACK. On detecting packet loss, the variable
cwndi(t) is reduced in multiplicative fashion to βicwndi(t).

While the basic function of congestion control is to regulate network congestion,
it is also desirable to ensure that the network flows, on aggregate, utilise fully
the available network resources. When the network experiences congestion the
network bottleneck is necessarily operating at link capacity. The corresponding
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data throughput through the bottleneck link is given by

R(k)− =
∑n

i wi(k)
Tdi

+ qmax

B

= B (1)

where k indexes the congestion events and wi denotes the value of cwndi when
congestion is detected. B is the link capacity, qmax is the bottleneck buffer size,
Tdi

is the round-trip-time experienced by the i′th source when the bottleneck queue
is empty and Tdi

+ qmax/B is the round-trip time when the queue is full. After
backoff, the data throughput is given by

R(k)+ =
∑n

i βiwi(k)
Tdi

(2)

under the assumption that the bottleneck buffer empties. If the sources backoff
too much, data throughput will suffer as the queue will empty for a period of time
and thus the link will operate below its maximum rate. A simple method to ensure
maximum throughput is to equate the rates R(k)− and R(k)+. This can be achieved
by enforcing the following constraint,

βi ≥ Tdi

Tdi + qmax

B

=
RTTmin,i

RTTmax,i
. (3)

Comment 1: Responding to congestion in the manner suggested by Equation (3)
may be realised in several ways.

(i) For a given choice of βi one may seek to choose qmax such that R(k)+ =
R(k)− for all k. Evidently, for the case of networks employing standard TCP
congestion control with βi = 0.5, it follows that we require qmax = BTdi . This
is the origin of the DBP rule.

(ii) Alternatively, for any given qmax one may simply set βi = RTTmin,i

RTTmax,i
for all i;

thereby ensuring that R(k)+ = R(k)− for all k. The effect of this modification
can be seen in Figure 1. In this example the queue provisioning is less than
the delay-bandwidth product and the queue empties for a substantial period
following backoff by a factor of 0.5 (see the first backoff event in the figure)
with an associated reduction in link utilisation. Once the flow adjusts its
backoff factor to the level of buffer provisioning we can see that the queue
now just empties following a backoff event and the link continues to operate
at capacity as desired.

Figure 1: Congestion window and queue occupancy time histories with adaptive
TCP backoff. The delay bandwidth product is 85 packets. (NS simulation, band-
width 10Mbs, RTT 100ms, queue 25 packets).

Comment 2: Note that the DPB-rule discussed in Item (i), and the strategy
proposed in Item (ii), may be thought of as duals of one another. They both seek
to ensure that R(k)+ = R(k)− at each congestion event; (i) proceeds by adjusting
the network routers while (ii) makes adjustments at the network edges.

Comment 3: The foregoing discussion considers the problem of ensuring efficient
utilisation of a single link shared by a n network flows. While the case of general
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networks with multiple bottleneck links is beyond the stated scope of this paper, we
briefly note that it is straightforward to extend our arguments to the case networks
of multiple congested links; the interested reader is referred to [2] for further details.

We argue that the dual strategy in Item (ii) above offers many advantages over the
DBP rule as a means to ensuring efficient bottleneck link utilisation. With this
dual approach, network queues are provisioned to accommodate the level of packet
burstiness and to meet latency and jitter requirements, rather than to accommodate
the TCP AIMD parameters, thereby improving scalability and simplifying network
management. It has, however, been well documented that even small modifications
to the TCP AIMD algorithm can have a large impact on network fairness and
convergence behaviour. In the next section we demonstrate that increasing the
AIMD backoff factor to improve link utilisation can negatively impact network
responsiveness and, indeed, that in AIMD networks a fundamental trade-off seems
to exist between efficiency and responsiveness. This leads naturally to consideration
of a novel decentralised switching solution that automatically adjusts the backoff
factor to prevailing performance requirements, and it is the analysis and design of
this adaptive algorithm that is the main subject of this paper.

3 Performance trade-offs in AIMD congestion con-
trol

Before proceeding, we briefly summarise recently obtained analytic results for net-
works of TCP flows. We begin our discussion by considering communication net-
works for which the following assumptions are valid: (i) at congestion every source
experiences a packet drop; and (ii) each source has the same round-trip-time (RTT)1.
In this case an exact model of the network dynamics may be found as follows [3].

Normalised Time


w

i


t

b


w

i

(k)


w

i

(k+1)


t

c


k'th congestion epoch


k'th congestion


event


t

a


Figure 2: Evolution of window size

Let wi(k) denote the congestion window size of source i immediately before the k’th
network congestion event is detected by the source. Over the k’th congestion epoch

1One RTT is the time between sending a packet and receiving the corresponding acknowledge-
ment when there are no packet drops.
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three important events can be discerned: ta(k), tb(k) and tc(k); as depicted in Figure
2. The time ta(k) denotes the instant at which the number of unacknowledged
packets in flight equals βiwi(k); tb(k) is the time at which the bottleneck queue is
full; and tc(k) is the time at which packet drop is detected by the sources, where
time is measured in units of RTT2. It follows from the definition of the AIMD
algorithm that the window evolution is completely defined over all time instants by
knowledge of the wi(k) and the event times ta(k), tb(k) and tc(k) of each congestion
epoch. We therefore only need to investigate the behaviour of these quantities.

We assume that each source is informed of congestion one RTT after the queue at
the bottleneck link becomes full; that is tc(k)− tb(k) = 1. Also,

wi(k) ≥ 0,

n∑

i=1

wi(k) = P +
n∑

i=1

αi, ∀k > 0, (4)

where P is the maximum number of packets which can be in transit in the network
at any time; P is usually equal to qmax + BTd where qmax is the maximum queue
length of the congested link, B is the service rate of the congested link in packets
per second and Td is the round-trip time when the queue is empty. At the (k +1)th
congestion event

wi(k + 1) = βiwi(k) + αi[tc(k)− ta(k)]. (5)

and

tc(k)− ta(k) =
1∑n

i=1 αi
[P −

n∑

i=1

βiwi(k)] + 1. (6)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi∑n

j=1 αj
[

n∑

i=1

(1− βi)wi(k)] (7)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (8)

where WT (k) = [w1(k), · · · , wn(k)], and

A =




β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn


 (9)

+
1∑n

j=1 αj




α1

α2

· · ·
αn




[
1− β1 1− β2 · · · 1− βn

]
.

The matrix A is a positive matrix (all the entries are positive real numbers) and it
follows that the synchronised network (8) is a positive linear system [4].

The following important theorem follows directly from basic properties of column
stochastic matrices.

2Note that measuring time in units of RTT results in a linear rate of increase for each of the
congestion window variables between congestion events.
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Theorem 3.1 [3, 5] Let A be defined as in Equation (9). Then A is a column
stochastic matrix with Perron eigenvector xT

p = [ α1
1−β1

, ..., αn

1−βn
] and whose eigen-

values are real and positive. Further, the network converges to a unique stationary
point Wss = Θxp, where Θ is a positive constant such that the constraint (4) is sat-
isfied; limk→∞W (k) = Wss; convergence is geometric and the rate of convergence
of the network to Wss is bounded by the second largest eigenvalue of A; the second
largest eigenvalue of A lies in the interval [β1, β2] where the network backoff factors
are ordered as β1 ≥ β2 ≥ .....βn.

In the context of synchronised communication networks, Theorem 3.1 has the fol-
lowing implications for the discussion presented in Section 2.

(i) Fairness: Window fairness at each congestion event is achieved when the
Perron eigenvector xp is a scalar multiple of the vector [1, ..., 1]; that is, when
the ratio αi

1−βi
does not depend on i. Further, since it follows for conventional

TCP-flows ( α = 1, β = 1/2) that α = 2(1 − β), any new protocol operating
an AIMD variant that satisfies αi = 2(1 − βi) will be TCP-friendly (i.e. fair
with legacy TCP flows), see Figure 3.
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Figure 3: Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10Mb bot-
tleneck link, 100ms delay, queue 40 packets.)

(ii) Network responsiveness: The magnitude of the largest backoff factor β1

bounds the convergence rate of the entire network, with the 95% rise time
measured in congestion epochs bounded by log 0.05/ log β1. Consequently, fast
convergence to the equilibrium state (the Perron eigenvector) is guaranteed if
the largest backoff factor in the network is small.
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3.1 Effect of adaptive TCP on the network dynamics

It follows from the foregoing analysis that congestion control strategies that reduce
the network backoff factors to achieve high utilisation of network resources will: (i)
result in an unfair network equilibrium unless all sources satisfy αi = Kλi(1 − βi)
for some global constant K (K = 2 if some of the sources are standard TCP
sources); and (ii) can result in slowing of the rate of convergence of the network to
its equilibrium. For example, see Figure 4 - the backoff factor here is 0.75 for which
the foregoing analysis indicates a 95% rise time of 10 congestion epochs (compared
with only 4 congestion epochs when the backoff factor is 0.5) and it can be seen
from the figure that this is in good agreement with packet-level simulation results.
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Figure 4: Illustrating poor responsiveness with larger backoff factors using an NS
network simulation of a network with a 20Mb bottleneck link, a 150ms delay, a
maximum queue size of 50 packets and backoff factor of 0.75.

4 Switched Adaptive AIMD congestion control

An immediate consequence of the previous discussion is that for synchronised net-
works in which the source AIMD parameters are fixed, high network utilisation
can in general only be achieved at the expense of fast network convergence. This
fundamental constraint suggests that we must design a number of controllers to
address the different performance requirements (a controller to ensure high network
utilisation, a controller to ensure rapid convergence) and switch between these as
network conditions change3. Adaptive algorithms that involve mode switching are

3Note that TCP currently includes a slow start mode to accelerate convergence at startup of a
new flow. However, slow start action is essentially confined to the first congestion epoch following
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known to be difficult to design and to analyse [6]. In the case of designing adaptive
algorithms to control network congestion, we must ensure that any algorithm results
in a network that is (i) stable, (ii) converge rapidly, (iii) are fair and TCP-friendly,
(iv) can be realised in a decentralised manner. In this section we consider ways in
which these issues can be resolved in the context of AIMD congestion control.

Start-up or responding to a network


disturbance


No network disturbances


Mode A


Fast network


convergence


Mode B


Efficient link


utilisation


Figure 5: Switched adaptive congestion control algorithm.

4.1 Mode switch design

The following theorem is key to the design of a decentralised mode switch.

Theorem 4.1 Consider a network of the form described in (8). Let wi(0) =
wi(∞) + δi δi ∈ IR denote the initial condition of the i’th flow wi(k), and wi(∞)
denote the asymptotic value. Let the network backoff factors be ordered according
to β1 ≥ β2 ≥ .. ≥ βn, with βi = β for all i ∈ [m + 1, n]. Suppose that ‖ β−βj

1−βj
‖≤ 1

for all j ∈ [1,m]. Then the following statements are true.

(P1) Invariance.
Let δ = sup{ |w1(0)−w1(∞)|

w1(∞) , ..., |wm(0)−wm(∞)|
wm(∞) }. Then |wi(k)−wi(∞)|

wi(∞) ≤ δ for all
k > 0 and for i ∈ [1, m].

(P2) Convergence.
|wi(k)−wi(∞)|

wi(∞) ≤ |βkδi|+ |δ| for all k > 0, i ∈ [m + 1, n].

Proof 4.1 We prove each of our claims in turn. For convenience we assume with-
out any loss of generality that wi(∞) = αi

1−βi
.

Property P1 : Denote the i’th component of the vector AW (0) by vi where 1 ≤ i ≤
m. We have:

vi − wi(∞)
w(∞)

= βiδ+(1− βi)
m∑

j=1

β − βj

1− βj
αjδj

= βiδi + (1− βi)∆

flow startup and cannot be invoked to deal with the effect of network disturbances during the
‘congestion avoidance’ phase of TCP.
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Since βi ∈ [0, 1] it follows from convexity that

|vi − wi(∞)
w(∞)

| ≤ max{|δi|, |∆|},

for all 1 ≤ i ≤ m. Now assume that β and βj are chosen such that ‖ β−βj

1−βj
‖≤ 1

for all 1 ≤ j ≤ m. One can see that this is always possible since β is fixed, and the
other βj are upper bounded by β1. Then

|
m∑

j=1

β − βj

1− βj
αjδj | ≤ max{|δj |}, (10)

for all 1 ≤ j ≤ m. Hence, it follows that

|vi − wi(∞)
w(∞)

| ≤ |δ|,

for all 1 ≤ i ≤ m.

Property P2 : In the spirit of P1 we have that

|wi(k)− wi(∞)
w(∞)

| ≤ |βkδi|+ (1− βk)|δ|,

for all m + 1 ≤ i ≤ n and for all k > 0. It follows that

|wi(k)− wi(∞)
w(∞)

| ≤ |βkδi|+ |δ|,

as claimed.

To see how we might use Theorem 4.1, let us partition the network flows into two
classes (i) flows with congestion window wi lying within a δ neighbourhood of the
equilibrium value wi(∞) i.e. with |wi−wi(∞)|

wi(∞) ≤ δ and (ii) other flows. Select the
backoff factors of class (i) flows to be βi ≤ β̄. Select the backoff factors of class (ii)

flows to be a small value β such that |β−β

1−β
| ≤ 1. Then we have from property (P1)

that the class (i) flows will remain within a δ neighbourhood of the equilibrium
for all time while from property (P2) we have that class (ii) flows will converge
geometrically to a δ neighbourhood of the equilibrium at rate β. Notice that the
latter convergence rate is determined solely by the backoff factor β of the class (ii)
flows; choosing β = 0.5 we recover the convergence rate of standard TCP. In other
words, we may select a β̄ and β (largest and smallest backoff factor) and specify
a disturbance threshold δ. Any source whose perturbation from the equilibrium is
within this threshold will remain in this bounded region and can choose their backoff
factors freely (in particular, they can choose their backoff factors to maximise link
utilisation). Sources that are perturbed outside of this region can ensure rapid
convergence to the region as k increases by selecting a small backoff factor.

This yields the following decentralised switching strategy,

βi(k + 1) =
{

βi |δi| ≤ δ
β otherwise. (11)

where βi = min[ RTTmin,i

RTTmax,i
, β], δi = |wi−wi(∞)|

wi(∞) and β, β are selected to satisfy

|β−β

1−β
| ≤ 1.
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Comment 4: Typically we might use β = 0.5 and β = 0.75.

Comment 5: The switching threshold δ is a design parameter that determines the
performance trade-off between efficiency and responsiveness. When δ is large, the
mode switch is rarely invoked and the switching strategy reduces to the previously
discussed adaptive backoff strategy. When δ = 0, the switching strategy corresponds
to the standard TCP strategy with backoff factor β.

Comment 6: This decentralised switching strategy requires that the ith flow can
measure or infer distance from the equilibrium congestion window wi(∞). In current
networks wi(∞) generally cannot be measured and so this distance must be esti-
mated. There are many ways in which such estimation might be carried out. One
simple approach is to estimate the distance from the magnitude of wi(k+1)−wi(k).

4.2 Convergence to unique fixed point

Adaptation of some or all of the (αi, βi), i ∈ {1, ..., n} via the above decentralised
mode switch results in a network whose dynamics are now time-varying:

W (k + 1) = A(k)W (k), A(k) ∈M = {A1, .., Am}, (12)

Time-varying systems are well known to be difficult to analyse and it remains to
show that networks of this type converge to a unique fixed point. We exploit the
fact that all of the matrices in the set M are column stochastic and use this to
show that all of the matrices in the set have a common n− dimenional invariant
subspace. Conditions for convergence to a unique fixed point then follow from this
observation.

We begin formally by denoting for any T ∈ Rn×n, T ∗ as the restriction of T to n−1
dimensional subspace S that is orthogonal to vector yT = [1, 1 . . . , 1]. Recall that
if T is column stochastic and positive then T ∗ is contraction on S and therefore
‖T ∗‖ < 1 [7].

Theorem 4.2 Let {A(k)}k∈N be a stochastic process which corresponds to synchro-
nized, time-varying, network (this means that A(k) is a positive matrix and is am
element of a finite set of positive matrices M). If all matrices in M have com-
mon right Perron eigenvector xp then W (k) converges to xpy

T W (0). Moreover
convergence is geometrical with convergence rate not larger then

µ = max{‖M∗‖ : M ∈M}

Proof 4.2 Note first, that since that all A(k) are positive products A(k)∗A(k −
1)∗ · · ·A(1)∗ converge to zero. Let z ∈ Rn be arbitrary. Then z = txp + z′ for some
t ∈ R and z′ ∈ S and

lim
k→∞

A(k) · · ·A(1)z = lim
k→∞

A(k) · · ·A(1)(txp + z′) =

= txp + lim
k→∞

A(k)A(k − 1) · · ·A(1)z′ = txp.

Thus limk→∞A(k)A(k− 1) · · ·A(1) = xpy
T . Speed of convergence is determined by

speed of convergence of A(k)A(k − 1) · · ·A(1). But

‖A(k) · · ·A(1)‖ ≤ ‖A(k)‖ · · · ‖A(1)‖ ≤ µk.
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Theorem 4.2 states that the network (12) will converge to a unique fixed point if each
of the matrices in the set M has the same Perron eigenvector. Consider the family
Σ(A), A ∈M of time-invariant systems Σ(A) : W (k+1) = AW (k). The equilibrium
point of Σ(A) is determined by the Perron eigenvector of A. The requirement that
the A share the same Perron eigenvector is equivalent to the requirement that the
Σ(A) share the same equilibrium point.

4.3 Fairness and Friendliness

It follows from the discussion in Section 3 that the A ∈M matrices share a common
Perron eigenvector [x1...xn]T when

αi(A)
1− βi(A)

= xi (13)

where αi(A), βi(A) denote the AIMD parameters used in matrix A ∈ M for the
ith flow. Equation (13) states that to ensure a common Perron eigenvector we
require that variations in the AIMD parameters αi, βi of the ith flow be constrained
such that the ratio αi/(1 − βi) remains constant. Observe that we have that this
ratio is 2 for standard TCP. We therefore have immediately that constraining the
ratio αi(A)/(1− βi(A)) to have the value 2 for all flows simultaneously yields (i) a
common Perron eigenvector that ensures a unique fixed point that is fair and (ii)
ensures backward compatibility and TCP friendliness.

The complete switched adaptive AIMD algorithm is therefore

βi(k + 1) =
{

βi |δi| ≤ δ
β otherwise. (14)

αi(k + 1) = 2(1− βi(k + 1)) (15)

where βi = min[ RTTmin,i

RTTmax,i
, β], δi = |wi−wi(∞)|

wi(∞) and β, β are selected to satisfy

|β−β

1−β
| ≤ 1.

4.4 Example

The impact on responsiveness of introducing a mode switch is illustrated in Figure
6. The network conditions are identical to those in Figure 4, with a backoff factor
β of 0.75 for efficient link utilisation. The additive increase parameter α is adjusted
with β such that α/(1− β) = 2 and so α reduces when β increases, as is evident in
the figure. When a second flow starts at 75s, each flow decreases its backoff factor to
0.5, reverting to 0.75 when the congestion window is within 10% of its equilibrium
value. The 95% rise time to this boundary region is 4 congestion epochs owing
to the 0.5 backoff factor used, compared to 11 congestion epochs when the backoff
factor is 0.75. Note that while in this example both flows switch to small backoff
factors in response to the change in network conditions, in general only those flows
that are perturbed outside the boundary region need adjust their backoff factors
to ensure fast convergence. This is illustrated, for example, in Figure 7 where a
network of 10 flows subject to a cross-flow disturbance between 200s and 205s is
considered. After the cross-flow disturbance ends at 205s, it can be seen that the
network rapidly converges back to equilibrium. In this example only 5 out of the
10 flows move outside the boundary region and reduce their backoff factors to 0.5.
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Figure 6: Improvement in responsiveness with adaptive mode switch compared
with Figure 4. (NS simulation, 20Mb bottleneck link, 150ms delay, queue size 50
packets).

5 Unsynchronised networks

The foregoing discussion relates to so-called synchronised networks. Unfortunately,
the assumptions of source synchronisation and uniform RTT, are quite restrictive
(although they may, for example, be valid in many long-distance networks [8]). It
is therefore of interest to extend our approach to more general network conditions.
As we will see, much of the analysis for synchronised networks carries over directly
to the unsynchronised case provided we now work in terms of the average conges-
tion window. To distinguish variables, we will from now on denote the nominal
parameters of the sources used in the previous section by αs

i , β
s
i , i = 1, . . . , n. Here

the index s may remind the reader that these parameters describe the synchronized
case, as well as that these are the parameters that are chosen by each source.

It is shown in [9] under the assumption of a single bottleneck link that unsynchro-
nised networks of AIMD flows can be modelled as a switched linear system of the
form

W (k + 1) = A(k)W (k), (16)
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Figure 7: Adaptive mode switch for multiple flows subject to a cross-flow distur-
bance from 200s to 205s. (NS simulation, 10 flows, 20Mb bottleneck link, 150ms
delay, queue size 50 packets).

where

A(k) =




β1(k) 0 · · · 0
0 β2(k) 0 0
... 0

. . . 0
0 0 · · · βn(k)


 +

1∑n
j=1 γjαj




α1

α2

· · ·
αn


 [γ1(1− β1(k)), . . . , γn(1− βn(k))]

where k denotes the k’th congestion event and where, depending respectively on
whether flow i experiences a packet drop or not, βi(k) is either βs

i (the backoff
factor of the i’th source) or 1; αi now denotes the rate at which the congestion
window of flow i increases per second (rather than per RTT as previously). Since
the βi(k) can take either of two values, we have m = 2n − 1 possible matrices
associated with the system (16). These correspond to the different combinations of
source drops that are possible and we denote the set of these matrices by A.

Evidently, unsynchronised networks may exhibit complex behaviour. Nevertheless,
it is possible to analyse the dynamic behaviour of such networks from a probabilistic
viewpoint. We proceed by making the following assumptions.

Assumption 5.1 Let A = {A1, .., Am}. Then, we assume that the probability that
A(k) = Ai in (16), is independent of k and equals ρi.

Given the probabilities ρi for Ai ∈ A, one may then define λj , the proportional of
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congestion events at which source j experiences a backoff, as follows:

λj =
∑

ρi ,

where the summation is taken over those i which correspond to a matrix in which
the j’th source sees a drop. Or to put it another way, the summation is over those
indices i for which the matrix Ai is defined with a value of βj 6= 1.

Assumption 5.2 We assume that λj > 0 for all j ∈ {1, ..., n}.

Simply stated, this assumption requires that almost surely all flows must see a drop
at some time (provided that they are of long enough duration).

It is shown in [9] that the stochastic behaviour of (16) under these assumptions
accurately captures the behaviour of networks carrying a mix of FTP and web
traffic. Given these assumptions the following result follows directly.

Theorem 5.1 [9] Consider the stochastic system defined in the preamble. Let Π(k)
be the random matrix product arising from the evolution of the first k steps of this
system:

Π(k) = A(k)A(k − 1)....A(0).

Then, the expectation of Π(k) is given by

E(Π(k)) = (
m∑

i=1

ρiAi)k; (17)

and the asymptotic behaviour of E(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (18)

with xp = Θ( α1
λ1(1−βs

1) , ...,
αn

λn(1−βs
n) ), yT

p = (γ1, ...., γn) where Θ ∈ R is some con-
stant. Furthermore, the rate of convergence of the network to its stochastic equilib-
rium is bounded by the second largest eigenvalue γ2 of the positive matrix

∑m
i=1 ρiAi.

It can be seen from Theorem 5.1 that, provided we work in terms of the average
congestion window and the associated average matrix

∑m
i=1 ρiAi, a close link exists

between the analysis of unsynchronised networks and that of synchronised networks.
Indeed, under the transformation Γ = diag[γ1, ..., γn] we have for A ∈ A, determined
by a choice of parameters β1(A), . . . , βn(A), that

ΓAΓ−1 =




β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)




+
1∑n

j=1 α̂j




α̂1

α̂2

· · ·
α̂n




[
(1− β1(A)), · · · , (1− βn(A))

]

where we have used α̂j := γjαj , j = 1, . . . , n. It follows immediately that
∑m

i=1 ρiΓAiΓ−1

is of the same form as the synchronised matrix A in equation (9) provided we use
as the increase parameters α̂j and as backoff factors β̂j =

∑m
i=1 ρiβ

i
1. Hence, work-

ing in terms of the transformed state co-ordinates ΓW (k) and in terms of average
quantities almost all the analysis in the preceding sections for synchronised networks
carries over directly to unsynchronised networks. Specifically, it follows that
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(i) Fairness: Window fairness at each congestion event is achieved when the
Perron eigenvector xp is a scalar multiple of the vector [1, ..., 1]T ; that is,
when the ratio αi

λi(1−βs
i ) does not depend on i.

(ii) Network responsiveness: The magnitude of the second largest eigenvalue
of the matrix

∑m
i=1 ρiAi bounds the convergence properties of the stochastic

network. This eigenvalue depends on the backoff factors βs
i of the network.

(iii) Invariant set Theorem 4.1 carries over directly to the unsynchronised case.
This implies that the rationale underlying the proposed adaptive mode switch
in the context of synchronised networks remains unchanged when we move to
unsynchronised networks.

As in the case of synchronised networks, the price of efficient utilisation is slower
network convergence. However, owing to the invariance and partitioned convergence
properties of the network the adaptive mode switch proposed in Section 4 can be
used to recover fast convergence in the face of disturbances.

The impact on responsiveness of introducing a mode switch is illustrated in Figure
8. The network topology is identical to that in Figure 4, with a backoff factor β of
0.75 for efficient link ulitisation. The results show convergence following the startup
of a second FTP flow. In addition to the two FTP flows, there are 10 HTTP sessions
running in the network. After the startup of the second FTP flow, it can be seen
that the network rapidly converges to equilibrium. For comparison, Figure 9 shows
the corresponding results for adaptive backoff without the mode switch.

6 Related work

The algorithm presented in this paper is related to several other AIMD algorithms
that have been proposed in the TCP literature. In particular, the fact that we tune
the AIMD parameters to reflect prevailing network conditions, suggests similarities
with adaptive TCP algorithms such as TCP-Westwood [10]. The basic idea in
TCP-Westwood is that each network source regulates its congestion window based
upon its estimated share of bottleneck link bandwidth. More specifically, in TCP-
Westwood, the bandwidth of a TCP connection is continuously estimated as the
share of the available bandwidth of a link that is being used by a particular source.
If the bandwidth estimate for the ith flow is denoted (BWEi), then the TCP-
Westwood strategy is to reset the congestion window after a congestion event to
wi(k) → BWEi × RTTmin. To see how this algorithm relates to our proposed
strategy, consider replacing BWEi with an estimate of the throughput for source i at
the k′th congestion event: wi(k)

RTTmax,i
. Then, using the expression BWEi = wi(k)

RRTmax,i
,

and using the TCP-Westwood formula, the congestion window immediately after a
packet drop is:

wi(k) → wi(k)
RTTmin,i

RTTmax,i
, (19)

and our backoff method arises. There are however a number of crucial differences be-
tween TCP Westwood and our proposed scheme. While network fairness and friend-
liness properties are guaranteed in our scheme by controlling the Perron eigenvector
of the network matrix (e.g. adjusting the parameters according to αi = 2(1− βi)),
controlling these network properties in a satisfactory manner using Westwood has
proved problematic to-date [10] using only the network backoff factors βi. Further,
TCP-Westwood is concerned solely with link utilisation and makes no attempt to
control the network convergence rate.
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Figure 8: Ensemble average convergence with adaptive mode switch. The dashed
lines mark a 10% region about the network equilibrium. (NS simulation, 2 FTP
flows, 10 HTTP flows, 20Mb bottleneck link, 150ms delay, queue size 50 packets).

7 Concluding remarks

In this paper we have presented and analysed an adaptive congestion control algo-
rithm that is suitable for deployment in communication networks that carry AIMD
traffic. We have shown that adaptation can be used to achieve high aggregate
throughput through the bottleneck link, rapid network convergence, and maintain
the network fairness properties for networks of ling lived flows. Further, a number
of analytic results have been presented to characterise the existence and qualita-
tive properties of network equilibria, as well as a number of simulation results to
demonstrate the efficacy of the design.
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