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Abstract

Providing fairness among users with different levels of ag-
gressiveness and different levels of responsiveness is neces-
sary for efficient network flow control. Current solutions
require keeping explicit per-flow states, multiple queues,
or a change in IP architecture. In this paper we propose
two new First Come First Serviced approaches for solv-
ing this fairness problem without keeping explicit per flow
state. In the first approach, a spectrum of stateless AQM
schemes that are similar in spirit to CHOKe are presented.
We refer to these AQM’s as MLC (multi-level comparison)
AQM’s. We show that using MLC, bandwidth allocation
amongst TCP users in the network can be made arbitrarily
close to max-min fairness by adjusting the MLC parame-
ters. Our second strategy, called MAY (Markov Active
Yield), is an AQM that keeps a history of packets that
have been dropped from the queue and uses this list to
determine which future packets should be dropped. Sur-
prisingly, we show that this approach leads to max-min
fair bandwidth allocation among an arbitrary number of
AIMD flows. The properties of both MLC and MAY are
evaluated and characterized theoretically using a Markov
chain model, and experimentally using packet level ns-2
simulations.

1 Introduction

Active queue management (AQM) has been a topic of re-
search in the networking community for over a decade. The
potential benefits of AQM are compelling: (i) efficient uti-
lization of network resources; (ii) friendliness to short-lived
flows; (iii) the potential to accommodate bursty network
traffic without excessive network delays; (iv) the ability
to implement QoS strategies; and (v) the ability to police
networks and provide fairness among users. Despite these,
and over a decade of active research on this topic, AQM
based routers have yet to be widely deployed in the inter-
net. More worrying, there also does not yet appear to be
a general consensus in the community as to whether AQM
brings any real benefits to communication networks. The
inability of the research community to reach a consensus
appears, at least in part, to be due to two reasons. Firstly,
it seems to be the case, that while AQM’s that achieve some

of the above network properties are relatively straightfor-
ward to realize, realizing AQM’s to achieve other network
properties is extremely difficult. For example, stabilizing
the average queue length (and hence network jitter and la-
tency) in RED has to-date proved to be an elusive goal in
AQM research. It appears that lack of progress with some
of these more difficult problems has been perceived in an
overly negative manner by the community and has caused
some of the other more easily realisably benefits of AQM
to be overlooked. A second problem appears to be a gen-
eral lack of understanding as to how many AQM’s actually
work in terms of throughput allocation among users. De-
spite a decade of research, little supporting theory exists
to support their design, and their construction, while often
ingenious, are more often ad-hoc than principled.

One of our objectives in this paper is to address the sec-
ond of these issues. We are mainly concerned with char-
acterizing the throughput and fairness properties of net-
works of TCP flows that compete for bandwidth via AQM
based routers with certain characteristics. By developing,
and analyzing Markov chain models, that describe certain
classes of AQM’s, we partially achieve this objective and
obtain formulae that accurately characterize the asymp-
totic throughput of TCP users in networks employing cer-
tain AQM’s. We also show that our results can be used to
support the design of new AQM’s with pre-defined levels of
network fairness, and demonstrate how these can be imple-
mented without using explicit per-flow state information.

1.1 Background and main contributions

Allocating bandwidth fairly amongst competing users in
the Internet is important task. The central point in the
current Internet is the fact that most of traffic is generated
by responsive TCP users. However, the level of responsive-
ness of an individual user might depend on implementation
of transport protocol as well as global characteristics of flow
such as round trip time or queueing delays. Schemes to en-
sure fair bandwidth allocation would play a role of protect-
ing less aggressive users from aggressive ones and therefore
would allow existence of various end-to-end congestion con-
trol algorithms. Motivated by the widespread deployment
of highspeed links, many new aggressive congestion con-
trol protocols have been recently proposed [14, 13]. Such
protocols are known to be very aggressive when competing
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with standard TCP, and in such environments, it is likely
that some form of forced fairness is necessary to protect
less aggressive flows. Thus, if we assume networks with
heterogenous end-to-end congestion control strategies, the
only way to control fairness in the network is to do it at
routers using some form of queue management.

The design of router queue management algorithms has
been a very active research area during last decade. Typ-
ically, a number of separate strategies can be discerned
when reviewing this work; those strategies that use a single
queue and do not require the router to process state infor-
mation; those that require the router to process some state
information and/or may utilize multiple router queues; and
those that require changes to existing IP infrastructure.
We use the term (AQM) to refer to the first of these, Fair
Queueing to refer to the second of these, and New Archi-
tecture Proposals to refer to the last of these.

(1) Active Queue Management(AQM) : Traditional AQM’s
[2, 3, 4, 5] have been designed with the ultimate goal of
providing high link utilization, low queueing delays, and
small number of packet losses. A key issue in the design
of AQM schemes is the complexity of their implementation
and the requirement that they should be implementable on
a wide range of Internet routers. As most AQM schemes
do not differentiate packets from different flows, bandwidth
allocation among users is mainly determined by end-to-end
congestion control policies. For example, over routers with
constant loss probability, the amount of bandwidth that
standard TCP user obtain is proportional to inverse of its
round-trip time[24, 23].

(1a) CHOKe : CHOKe is an example of an AQM that
differentiates packets from different flows; flows with higher
bandwidth are punished more than in RED or BLUE for
example. This has the effect of improving fairness amongst
responsive users, and the degree of improvement for some
AQM schemes based on the basic Choke idea will be ex-
amined in Section 2

(2) Fair Queueing : Fair queueing mechanisms, like FQ,
DRR or FRED [6, 7, 8], require the router to maintain some
per-flow state information and to use this information to
manage arriving packets. Although they achieve excellent
fairness, they are not widely deployed in real networks,
mainly because high computational costs associated with
obtaining, processing and managing this state information.

(3) New Architecture Proposals : Several new proposals,
including CSFQ[9], XCP[10] and MaxNet[11], require changes
to the packet IP header. Although they perform quite well
in terms of fairness and resource utilization, they assume
cooperation of most (if not all) routers in the entire net-
work which is clearly quite restrictive.

In this paper we will develop Active Queue Manage-
ment(AQM) schemes that can help less aggressive users
to achieve their fair1 share of bandwidth without keeping

1Throughout this paper, we use term fair share to refer to well
known max-min fair bandwidth allocation, see [21]

explicit per-flow state information. To do so, one has to
differentiate between packets from different flows. We shall
see that probabilistic CHOKe-like techniques are extremely
effective in doing just this and in developing AQM’s that
serve to protect less aggressive flows.

In Section 2 we extend the basic idea from CHOKe and
propose a new AQM called Multi-level comparison (MLC).
We shall see that MLC belongs to a class of AQM that
are CHOKe-like. A given AQM is said to be CHOKe-like
(CL) if a router drops a packet from a flow with current
throughput U with probability ρ0U

l−1, where ρ0 is variable
controlled by router and l is a positive integer that is called
the index of the CL scheme. We propose a model that
captures fairness properties of network of TCP users and
routers operating CL AQM’s with an any given index l. In
particular, we use this model to prove the following results.

CL-AQM: Single bottleneck case. For N TCP users
with heterogenous RTT’s traversing a single bottleneck
router that employs a CHOKe-like AQM with index l, we
show (Theorem 2.2) that the asymptotic throughput of the
i’th network flow can be approximated by

Ūi ≈ CCL
1

RTT
2

l+1
i

, (1)

where Ūi denotes the time-averaged throughput of the i’th
flow and CCL is a constant that is independent of i.

CL-AQM: General network case. For a given net-
work of TCP users and routers operating CL-AQM’s, each
with index l, the share of bandwidth amongst the TCP
users can be made arbitrary close to the max-min fair share
by choosing l to be large enough (Theorem 2.3).

MLC appears to be difficult to implement for values of
index greater than 2. In order to validate our mathematical
results for general CL-AQMs with large values of l, we fol-
low the approach of Core Stateless Fair Queueing (CSFQ)
and describe another CHOKe-like scheme, that assumes
information on throughput is explicitly written in packet
header.

Both MLC and CC have a more theoretical than practi-
cal value: MLC because its high computational cost, and
CC because it requires an additional field in the IP header.
In Section 3 we develop another AQM called MAY (Markov
Active Yield) that does not suffer from same complexity is-
sues that are inherent in MLC nor requires changes in IP
infrastructure. Briefly, MAY compares each packet that
arrives at the queue with a number of random packets that
are drawn from a historical record of previous packet drops.
Based on this comparison(s), a decision is made and the ar-
riving packet is either dropped or enqueued. To study fair-
ness properties of TCP, and more eneral AIMD users, over
a link that operates MAY AQM, we develop a stochastic
model and under some assumptions we prove the following.

MAY, Single bottleneck case. For N -TCP users
with heterogenous RTT’s traversing a link with a MAY
queue, the asymptotic throughput of the i’th network flow
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can be approximated by

Ūi ≈ CMAY (2)

where Ūi again denotes the time-averaged throughput of
the i’th flow, and CMAY is a constant that is indepen-
dent of i. Furthermore, we also show that (2) holds in
this case irrespective of the AIMD parameters of the indi-
vidual flows. This property of MAY is probably the most
surprising theoretical result of the present paper.

Although we are unable to develop a model that would
capture fairness properties in general network topologies,
and therefore are unable to prove formal results on band-
width allocation for general networks with MAY queues,
our experiments suggest that MAY enforces bandwidth al-
location that is to max-min among AIMD users in general
network topologies. In Section 4 we present packet level
simulation results that validate our theoretical results us-
ing ns-2.

2 CHOKE-like AQM schemes

It has been noticed in many studies that both drop tail and
RED routers have large bias against large-RTT flows. For
example Lakshman&Madhow [16] have made the empirical
observation that for a drop-tail router and two flows with
round trip times RTT1 and RTT2, the ratio of asymptotic
throughput of the first and the second flow is in the ra-
tio (RTT2/RTT1)a for some a ∈ (1, 2). Similarly, it has
also been noticed in a number of studies, that RED-like
AQM schemes (RED [2], BLUE [3]) which attempt to esti-
mate the loss probability for a given traffic pattern and to
drop packets according to this estimation, share bandwidth
among competing users with round trip times RTT1 and
RTT2 in the ratio RTT2/RTT1, [24, 23]. In this section
we will investigate RTT unfairness characteristics for more
general AQM schemes. In particular, we shall characterise
the fairness properties of CHOKe-like AQM schemes.

Definition 2.1. An AQM is CHOKe-like if it drops a
packet from a flow with current throughput2 U with proba-
bility ρ0U

l−1, where ρ0 is variable controlled by router and
l positive integer called index of given CHOKe-like AQM.

Comment : With l = 1 this corresponds to a router
which drops packets with loss probability ρ0, exactly as
BLUE in steady state. The case when l = 2 is similar to
CHOKe in the limit when the average queue size does not
go the below minimum threshold, and in addition, when
there is neither a RED nor an overflow drop. Indeed, com-
paring a packet at the entrance of queue with a packet from
the queue and making drop-decision based on this compar-
ison is actually dropping a packet with probability which
is proportional to current throughput of the flow.

In this section we will describe a class of CHOKe-like
AQM’s called Multi Level Comparison (MLC) AQM’s. In

2Throughput is measured in packets per unit of time.

particular, we will describe and analyse the fairness char-
acteristics of this queueing discipline for TCP flows com-
peting for bandwidth.

Definition 2.2. Let f : R+ → R+. We say that an AQM
scheme is f-RTT-fair if two flows with round trip times
RTT1 and RTT2 which have single bottleneck operating
with given AQM, obtain bandwidth in ratio: f(RTT1)/f(RTT2).

We will see that the MLC scheme with index l achieves
1/RTT 1/(l+1)-fairness under the assumption of low loss
probability. More generally, Theorem 2.3 shows that in-
creasing l leads to fairness among TCP users arbitrary close
to max-min in general network topologies.

2.1 Description of MLC

The basic strategy in MLC is to develop the core idea from
CHOKe of comparing of a packet arriving at the queue with
packets which are already in queue; these stored packets are
a measure of the proportion of bandwidth used by certain
flow. In MLC, each packet is compared with l − 1 other
randomly chosen packets from the queue; if all l packets are
from same flow, the arriving packet is dropped, otherwise
it is enqueued. MLC also maintains a variable hM which
is used to control the probability of dropping an arriving
packet. In particular, if one trial represents a l-level com-
parison, hM is the number of trials that are conducted for
each arriving packet. Consequently, if the link is under-
utilized hM should be decreased in order to decrease prob-
ability of dropping packets, on another hand if aggregate
traffic on link is grater then link capacity, hM should be
increased.

At this point it is important to emphasize two crucial
differences between MLC and CHOKe. First, note that
CHOKe makes a comparison only when link is already
congested (when average queue size becomes greater than
minth), and therefore its performance depends mainly on
number of users. Clearly, a small number of users will affect
synchronization of losses, while for large number of users,
the number of CHOKe-drops will be much less then num-
ber of RED-drops and therefore the effect of CHOKe will
be negligible. Second, in MLC, if a packet is not dropped
at the entrance of the queue it will not be dropped latter
while in the queue. On the other hand original CHOKe al-
gorithm allows dropping both arriving packet and packet(s)
from the queue.

Controlling the variable hM : MLC uses a parameter
SampleT ime to affect changes in the variable hM (in our
simulations this is set to 100ms). hM is adjusted once
per SampleT ime using a MIMD (Multiplicative Increase -
Multiplicative Decrease) scheme; see Figure 1 . Namely, if
within the previous SampleT time the link was idle, hM is
set to γhM for some γ ∈ (0, 1), otherwise hM is adjusted
as hM := hMδ for some δ > 1. The identification of idle
periods is determined by weighted average queue size avgq.
Thus, if within one period avgq < minth at all times, then
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If (now - last_update)>SampleTime
if (Link was idle)

h_M := h_M*gamma
last_update = now

otherwise
h_M := h_M*delta
last_update = now

end
end

Figure 1: Control of hM

we assume that this period is idle, otherwise we assume
that the aggregate traffic is greater than link capacity3.

Comment : Our method of controlling hM is very sim-
ilar to way BLUE controls its drop-probability. For l = 1
MLC hM actually represents a drop probability and in this
case only differences between MLC and BLUE are the fol-
lowing: (1) MLC controls hM with MIMD algorithm while
BLUE uses AIAD scheme to control drop probability and
(2) MLC uses queue-average while BLUE uses actual queue
length as congestion indicator.

Our experiments indicate that the parameter SampleT ime
should be in the range of round trip times from connec-
tions utilizing the link (in order to allow users to react to
changes in hM ). The parameters γ and δ control the speed
of adaptation to changes in network traffic and are set such
that for a given SampleT ime, hM can be doubled/halved
within a few seconds.

Sometimes, several users can stop using the link simulta-
neously. In order to ensure quick ‘convergence’ to the high
utilization regime, MLC will not drop any packets if link
utilization is less then pct percents. In our experiments,
pct is set to 98%.

2.2 Model and analysis of CHOKe-like AQM

In this Section we present a model of CL-AQM’s servic-
ing multiple TCP users. We present several theorems that
characterise this situation for both single bottleneck and
general network topologies.

Single bottleneck case: We consider N TCP-flows
with heterogenous round trip times RTTi, i = 1, . . . , N ,
traversing a single bottleneck link that employs CL-AQM
with an index l. If we assume that ρ0 does not fluctuate
much so that we can model it as constant and that the
drop probability for a packet is small, then our analysis
shows that the asymptotic rates achieved by TCP users
are proportional to 1

RTT
2/(l+1)
i

. This is the main result of

this section and is given in Theorem 2.2.

Model : At the flow level, let ∆ to be length of sam-
pling interval over which we evaluate changes in through-

3As congestion indicator one can use also actual queue length or
measured aggregate throughput, but we have chosen average queue
in our simulations

put. If a flow with round trip time RTT does not see a
drop within interval of length ∆, then its throughput will
be increased for ∆/RTT 2. If a flow registers a drop within
this sampling interval then its throughput will be halved4.
The probability that the first event will happen is equal to
probability that each of ∆U packets from the flow are not
dropped. This probability is given by:

η1 = (1 − ρ0U
l−1)∆U ≈ e−∆ρ0U l

.

Clearly, the probability that a flow with current through-
put U will see a drop within a sampling interval of length
∆ is equal to

η2 = 1 − (1 − ρ0U
l−1)∆U ≈ 1 − e−∆ρ0U l

.

The previous approximations are valid under the as-
sumption of a small probability that a packet will be dropped
: ρ0U

l−1 << 1. This assumption seems reasonable: if this
probability is not small, a flow would suffer too many losses
an therefore would not get chance to grow.

Let U
(ρ)
k be a stochastic process which describes evolu-

tion of throughput of a TCP flow with round-trip time RTT
traversing over link with a CHOKe-like AQM scheme with
index l. Here ρ = ∆ρ0. Since ∆ is fixed we can assume
that ∆ to be equal to one unit of time.

We model U
(ρ)
k as a Markov chain on [0,∞) defined by

U
(ρ)
0 = 0 and:

U
(ρ)
k+1 = U

(ρ)
k +

1
RTT 2

with probability e−ρ(U
(ρ)
k )l

U
(ρ)
k+1 =

1
2
U

(ρ)
k with probability 1 − e−ρ(U

(ρ)
k )l

.

Let sk be the time of k-th loss, ie: sk is the k-th smallest
m which satisfies U

(ρ)
m = 1

2U
(ρ)
m−1. Define Z

(ρ)
0 = 0 and

Z
(ρ)
k = U

(ρ)
sk . It follows that Z

(ρ)
k is also a Markov chain and

the following theorem provides insight into the behavior of
Z

(ρ)
k for small values of ρ.

Proposition 2.1. There exist a Markov chain V k, such
that for ρ > 0,

Z
(ρ)
k =

1

RTT
2

l+1 ρ
1

l+1
V k +

1

ρ
1

l+1
R

(ρ)
k ,

where the stochastic process R
(ρ)
k converge to zero in dis-

tribution as ρ → 0.

Preamble to Proof of Proposition 2.1

The Markov chain U
(ρ)
k can be written as U

(ρ)
k = RTT 2W

(α)
k ,

where α = ρ/RTT 2l and

W
(α)
k+1 = W

(α)
k + 1 with probability e−α(W

(α)
k )l

4Throughout this paper, variations in round trip times are ne-
glected.
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W
(α)
k+1 =

1
2
W

(α)
k with probability 1 − e−α(W

(α)
k )l

.

Analogously, we can define another associated Markov
chain with states of W

(α)
k just after congestion: V

(α)
k =

Z
(ρ)
k /RTT 2. Its transition is given by

V
(α)
k+1 =

1
2
(V (α)

k + G
(α)

V
(α)

k

).

Here G
(α)
n is random variable determined by distribution:

P (G(α)
x ≥ y) =

x+�y�∏
k=x

e−αkl

.

Lemma 2.1. Let x ≥ 0. Then as α goes to 0, the random
variable α

1
l+1 G

(α)

x/α
1

l+1
converges in distribution to a random

variable Gx such that for y ≥ 0

P (Gx ≥ y) = e−
1

l+1 ((x+y)l+1−xl+1). (3)

Proof. Let x, y ≥ 0 and α < 1. Then

P (α
1

l+1 G
(α)

x/α
1

l+1
> y) = P (G(α)

x/α
1

l+1
> y/α

1
l+1 )

=
�(x+y)/α

1
l+1 �∏

k=x/α
1

l+1

e−αkl

.

Taking logarithms we conclude:

ln(P (α
1

l+1 G
(α)

x/α
1

l+1
> y)) = −α

�(x+y)/α
1

l+1 �∑
k=x/α

1
l+1

kl −→

−→ −α

∫ (x+y)/α
1

l+1

x/α
1

l+1
tldt =

1
l + 1

((x + y)l+1 − xl+1).

Definition 2.3. The sequence V n denotes a Markov chain
given by V 0 = 0 and transitions:

V n+1 =
1
2
(V n + GV n

).

Here {Gx : x ≥ 0} is a family of random variables inde-
pendent of V n such that the distribution of Gx is given by
(3).

Lemma 2.2. The Markov chain α1/(l+1)V
(α)
n converges in

distribution to the Markov chain V n.

Proof. The proof of this fact follows same lines as proof of
Corollary 1 in paper [17]. Namely, using uniform continuity
of the mapping t → tl, and techniques from the proof of
Proposition 1 from [17], it follows that for any K > 1

lim
α→0

sup
α1/(l+1)<x,y<K

|P (Gx ≥ y)−P (α
1

l+1 G
(α)

x/α
1

l+1
> y)| = 0.

Then, using the previously established uniform conver-
gence, it follows that for any continuous function f on R+

with compact support:

lim
α→0

sup
x>α1/(l+1)

|E(f(Gx)) − E(f(α
1

l+1 G
(α)

x/α
1

l+1
))| = 0.

Finally, again following the same lines as in proof of
Proposition 2 from [17] we can conclude desired conver-
gence in distribution.

The previous lemma allows us to approximate the Markov
chain V

(α)
k with V k with initial value V 0 = α1/(l+1)V

(α)
0 =

0. We are ready to give:

Proof of Proposition 2.1. Recall that Z
(ρ)
k represents

throughput just after packet loss and that α = ρ/RTT 2l.
Then for small ρ we can write5

Z
(ρ)
k =

1
RTT 2

V
(α)
k =

1
RTT 2

(
1

α1/(l+1)
V k + o(

1

α
1

l+1
)) =

=
RTT 2l/(l+1)

RTT 2

1
ρ1/(l+1)

V k + o(
1

ρ
1

l+1
) =

=
1

RTT
2

l+1 ρ
1

l+1
V k + o(

1

ρ
1

l+1
)

�

Thus the Markov chain Z
(ρ)
k of throughput after conges-

tion events can be approximated with the Markov chain
1

RTT
2

l+1 ρ
1

l+1
V k for small values of ρ as was claimed.

At this point we are concentrating on V k and following
the basic ideas from [17]. We shall prove that (V k)l+1 is
autoregressive(AR) process with unique invariant distribu-
tion that can be explicitly written.

Theorem 2.1. For the Markov chain V k, the process V
l+1

k

is autoregressive with following representation:

V
l+1

k+1 =
1

2l+1
(V

l+1

k − (l + 1)En)

where En is an IID sequence of exponentially distributed
random variables with parameter 1: P (En ≥ y) = e−y.
Moreover the Markov chain V k has unique invariant dis-
tribution represented by the random variable V ∞ which sat-
isfy:

V ∞ = l+1

√√√√(l + 1)
∞∑

n=1

1
2n(l+1)

En, (4)

and the process defined with this invariant distribution as
initial distribution for V 0 is ergodic.

5Here, o( 1

α
1

l+1
) represent random variable R(α) such that

R(α)/α
1

l+1 → 0 as α → 0
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Proof. By definition we have

V n+1 =
1
2
(V n + GV n

).

Let En = 1
l+1 (2l+1V

l+1

n+1 − V
l+1

n ). Then:

P (En ≥ y) = P (
1

l + 1
(2l+1V

l+1

n+1 − V
l+1

n ) ≥ y) =

= P ((V n + GV n
)l+1 ≥ (l + 1)y + V

l+1

n )

= P (GV n
≥ ((l + 1)y + V

l+1

n )1/(l+1) − V n) =

= e−
1

l+1 ((l+1)y+V
l+1
n −V

l+1
n ) = e−y

Thus, the first part of the Theorem is proved. To prove
the second part notice that random variable given by (4)
represents an invariant probability. To prove its uniqueness
we use Theorem 7.16 from [18]. It is enough to prove that
there are no two disjoint sets A1, A2 ⊂ R+ such that for i =
1, 2 and all x ∈ Ai, P (V 2 ∈ Ai| V 1 = x) = 1. Suppose that
there exist two such sets A1, A2. Let x1 ∈ A1. Then since
Gx1 has positive density we conclude that [x1

2 ,∞) \A1 has
Lebesgue-measure 0. Similarly for x2 ∈ A2, [x2

2 ,∞)\A2 has
Lebesgue-measure 0 which means that A1 and A2 cannot
be disjoint.

Now we are ready to prove that for small values of ρ0, the
steady state throughput can be approximated by 1

RTT
2

l+1 ρ
1

l+1
0

DCL,

where DCL does not depend on ρ0 nor l.

Theorem 2.2. The time averaged throughput of the i’th
flow: 1

M

∑M
i=1 U

(ρ)
i converges almost surely to:

lim
M→∞

1
M

M∑
i=1

U
(ρ)
i =: U

(ρ)
=

1

RTT
2

l+1 ρ
1

l+1
DCL +

1

ρ
1

l+1
S(ρ)

where DCL = 3
4

E(V
2
∞)

E(V ∞)
and the constant S(ρ) converges to

0 as ρ goes to 0.

Proof. If we write U
(ρ)
i = RTT 2W

(α)
k , where α = ρ/RTT 2l,

the Theorem is an immediate consequence of the Theorem
2.1 and Proposition 9 from [17] for a multiplicative decrease
factor δ = 1

2 .6

To conclude this section we will prove that for a given
network with routers employing a CL AQM with index l,
and assuming that the steady state throughput is given by
the previous theorem, we can find large enough l such that
bandwidth allocation is arbitrary close to max-min fair-
ness. The following characterization of max-min fairness
can be found in [21].

Lemma 2.3. A set of rates xr is max-min fair if and only
if for every flow r there exists a link on its path, such that
the rates of all flows which traverse through that link are
less or equal then xr.

6Here constant 3
4

= 1+δ
2δ(1−δ)

, for δ = 0.5.

With this characterization of max-min fair allocation in
mind, we shall prove that increasing the index of the CL
scheme will result in allocation of bandwidth in such fash-
ion that each flow will have link on its path such that its
asymptotic rate is ‘almost’ the largest among all flows using
that link.

Theorem 2.3. For any given network topology, and given
ε > 0, there exist l such that if all queues employ CL AQM
with index l and loss probabilities are small then for every
flow r there exist a link on its path, such that the rates
of all flows which traverse through that link are less then
(1 + ε)xr (here xr is steady state rate of flow r).

Proof. Let L be the number of links in the network and
N the number of flows. We label flows by i = 1, 2, . . . , N
and links by s = 1, 2, . . . , L. By R we denote the routing
matrix: Ris = 1 if flow i uses link s otherwise Ris = 0.
On each link s, a router drops a packet from the flow with
current throughput U with probability ρ(s)U l−1. Let M be
the length (in number of links) of the path of the flow with
most links on its route and ν ratio of largest and smallest
round trip time in the network. Choose l such that

ν
2

l+1 M
1

l+1 < 1 + ε.

For each flow r, let s
(r)
1 , . . . , s

(r)
w be links used by it and

let s
(r)
max the most congested link on its route in the follow-

ing sense:

ρ(s(r)
max) = max{ρ(s(r)

j )| j = 1, . . . , w}. (5)

If the current rate of flow r is U , a packet from that
flow will be dropped with probability λrU

l−1, where λr =∑w
j=1 ρ(l(r)j ), and therefore the steady state throughput for

flow r is given by

xr =
1

RTT
2

l+1
r λ

1
l+1
r

C0.

For any other flow t which uses the link s
(r)
max with

λt =
∑

j:Rjt=1 ρ(lj) ≥ ρ(s(r)
max)

the steady state throughput is given by:

xt =
1

RTT
2

l+1
t λ

1
l+1
t

C0.

Recall that we have defined the link s
(r)
max as the most con-

gested link on route of flow r in the sense of (5). This
implies that λr ≤ Mρ(s(r)

max). Now

xt

xr
= (

RTTr

RTTt
)

2
l+1

λr

λt
≤ (

RTTr

RTTt
)

2
l+1 (

Mρ(s(r)
max)

ρ(s(r)
max)

)
1

l+1 ≤

≤ ν
2

l+1 M
1

l+1 < 1 + ε
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It is interesting to notice that the fairness of well known
eXplicit Congestion Control - XCP, features a similar prop-
erty. Namely, in the recent paper [15] the authors proved
that ”... given any network topology, one can choose a
shuffling parameter, γ, sufficiently small so that the result-
ing allocation is close to max-min fairness. For any fixed
γ > 0, however, there are topologies in which some flow
rates can be far away from their max-min allocations”. In
the case of CL schemes for given network topology we can
chose sufficiently large index l so that resulting allocations
are close to max-min, but for any fixed l there are topolo-
gies in which some flow rates can be far away from their
max-min allocations.

2.3 CC-l, a version of CHOKe-like scheme
with additional field in IP header

As we noticed earlier, MLC becomes extremely inefficient
when its index becomes greater than 2. On the another
hand if we use the basic idea from CSFQ [9] in which core
routers have explicit information on current throughput
for each flow, then the router can explicitly control ρ0 and
drop packets according to Definition 2.1. Recall that con-
trolling hM in MLC actually implicitly determines ρ0 and
essentially the effects of MLC and CC are same in terms
of fairness.

3 Markov Active Yield (MAY) AQM’s

In the previous section we have seen that the procedure of
comparing an arriving packet with packets from the queue
(or sampled list of recently seen packets), and making drop
decision based on this comparison, can lead to fairness that
is arbitrarily close to max-min fairness. A basic problem
with this strategy is that it can be computationally very
expensive to implement and it is therefore of interest to
examine other methods of enforcing max-min fairness.

In order to enforce fairness among users with different
levels of aggressiveness, and responsiveness, it is clear that
more aggressive and less responsive users must be punished
more than less aggressive and more responsive users. The
question is how much and how should this be implemented
in an efficient manner.

If an AQM does not differentiate among different flows,
a packet drop will adversely affect much more responsive
and less aggressive users. That is directly the source of
unfairness among different flows. Our basic idea is to keep
a list of recently dropped packets and to use the statistics
from this list to regulate the dropping of packets.

Constructing the LIST : For each arriving packet we
compare it with packet from a LIST of dropped packets of
length L. If the LIST is not full, the arriving packet flow
information7 (SenderIP, sourceIP, protocolID) is added to

7Any other definition for flow can be used.

it. The first (1 − PctHistDrops)L elements of LIST are
used to sample arriving traffic before packets are dropped
or enqueued, and this information is written to a random
position among the first (1−PctHistDrops)L elements of
the LIST. The last PctHistDrops ·L elements of the LIST
are reserved for the drop history. Thus, whenever a packet
has to be dropped, its flow information is written to a ran-
dom position among this PctHistDrops ·L elements of the
LIST while information written on that position is deleted.
In our experiments, we use PctHistDrops ∈ (0.9, 0.99).

Dropping packets. Each arriving packet is compared
with hMAY randomly chosen packets from the LIST. If one
or more of these hMAY packets belong to the same flow as
the arriving packet, the arriving packet is then dropped
(and therefore added to drop-history part of the LIST),
otherwise it is enqueued. In either case, its flow informa-
tion is written in the current-traffic part of the LIST. The
variable hMAY is then controlled by the router in order to
achieve good utilization and keep the buffer from overflow-
ing. In the event of a buffer overflow, dropped packets are
added to the drop-list-history part of the LIST in sam way
as they were dropped by MAY mechanism.

Control of hMAY . The variable hMAY determines how
often the router should drop packets. The larger hMAY ,
the more drops are experienced. This variable is adjusted
once per SamplingT ime. If within the last SamplingT ime
interval the link was idle, then this event can be interpreted
as too many packets have been dropped and hMAY should
be decreased. Otherwise, in the case of congestion, hMAY

should be increased in order to increase the probability of
drops. In this implementation we are using MIMD (Multi-
plicative Increase - Multiplicative Decrease) algorithm for
controlling hMAY . Thus hMAY := hMAY /t2 if the link is
not congested at all during the previous SamplingT ime
interval and hMAY := hMAY · t1 otherwise. Here t1 > 1
and t2 > 1 are the MIMD parameters. The identification
of idle intervals can be done in several different ways (e.g.
measuring the actual arrival rate, measuring instantaneous
or average queue length). In the current implementation
we use weighted average queue length, with weighted av-
erage constant qw, as the congestion indicator. As soon
as average queue goes above the MinimumThreshold we
identify the sampling interval as non-idle, otherwise, if the
average queue length is smaller then MinimumThreshold
at all times within the sampling interval, we identify inter-
val as an idle one.

Technical details. Sometimes several users can leave the
network and the aggregate arrival rate may become sig-
nificantly smaller than the link service rate. In order not
to further underutilize the link we do not drop any pack-
ets if current arrival rate is less then Pct· (service rate
of the link). In all our experiments Pct is set to 0.98.
In parallel to this, whenever the arrival rate within last
SamplingT ime interval is less then Pct·(service rate of the
link) we divide hMAY not by t2, but by 1+5(t2−1) in order
to improve ‘convergence’ to desirable values of hMAY . On
the other hand, if for the same reason, the buffer overflows,
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then we consider this as an indication of very high conges-
tion and at the end of the sampling interval we multiply
hMAY not with t1 but with 1 + 5(t1 − 1).

Discussion of parameters. Essentially there are 5 pa-
rameters in MAY : t1, t2, SamplingT ime, size of the LIST
L, and PctHistDrops and all of them determine speed
with which adapting the AQM parameters to variable traf-
fic conditions takes place. The triple (SamplingT ime, t1, t2)
are not independent and should be chosen in such a fash-
ion that hMAY can be halved/doubled within few seconds.
In our simulations we use SamplingT ime = 0.1sec, t1 =
1.01, t2 = 1.01. The parameters PctHistDrops and L de-
termines how quickly a new flow will be punished as much
as old flow with same characteristics. Different degrees of
punishment for old and new flows might be not entirely
undesirable as most of the new flows may be short Web-
traffic flows which should be protected more than long-
lived flows. There is naturally a tradeoff between network
fairness and the time needed for a new flow to become sta-
tistically significant in the LIST: the larger PctHistDrops
is, the closer the fairness will be to max-min fairness but
the ‘convergence’ time will be longer.

3.1 Mathematics

Having described the main algorithm, we will now prove
that under following assumptions, arbitrary AIMD flows
(flows with arbitrary linear increase parameter and arbi-
trary multiplicative decrease parameter), sharing a sin-
gle link asymptotically obtain equal amount of available
throughput. Throughout this section we make the follow-
ing assumptions.

Assumption 3.1. There are N long-lived flows that use
a congested link and all of them employ AIMD congestion
control algorithms with an additive increase parameter γi >
0 packets per unit of time, and a multiplicative decrease
δi ∈ (0, 1), i = 1, 2, . . . , N .

Assumption 3.2. The variable hMAY is constant.

Assumption 3.3. The statistics of the flows in the LIST
are built in such fashion that the probability that a randomly
chosen packet from the LIST belongs to certain flow i is
equal to constant λi.

Assumption 3.4. The queue does not overflow and all
MAY drops are enforced by drop-history part of the LIST.

The first assumption defines the type of congestion con-
trol algorithms employed by users on the link.

Recall that hMAY determines the drop probability. So
the second assumption is actually saying that in the inter-
val of interest this drop probability do not change.

The third and fourth assumption are made in order ob-
tain a tractable model for analysis. Note that under static
network conditions, as result of statistical multiplexing, the
proportion of drops from certain in the drop history part

of the LIST is asymptotically constant. However, in our
model we assume that it is constant at each instant of time.
Finally, the assumption that all drops are enforced by the
drop history part of the LIST is an approximation to the
fact that the percentage of drop history part of the LIST,
PctHistDrops, is close to 1.

Preamble to main result :

In order to precisely formulate the main result, we present
a model of the evolution of throughput for the i’th flow
traversing the link.

Let U
(i)
k be the throughput of flow (i) measured after k

units of time. Assuming (3.4), the probability that among
randomly chosen hMAY packets from the LIST there is
a packet from flow (i) that is equal to λiη, where η is
function of hMAY . Since we have assumed that hMAY is
constant, we then have that η is constant too. Thus, the
loss probability for a packet from flow (i) is constant and
is equal to µi = λiη. Having this, we can consider U

(i)
k as

Markov chain on R+ given by the transition:

U
(i)
k+1 = U

(i)
k + γi with probability e−µiU

(i)
k

U
(i)
k+1 = δiU

(i)
k with probability 1 − e−µiU

(i)
k .

We can scale the Markov chain U
(i)
k , such that additive

increase is equal to 1: W
(i)
k = (1/γi)U

(i)
k .

W
(i)
k+1 = W

(i)
k + 1 with probability e−θiW

(i)
k

W
(i)
k+1 = δiW

(i)
k with probability 1 − e−θiW

(i)
k .

Here θi = γiµi = γiλiη. In [17], techniques for the anal-
ysis of Markov the chain W

(i)
k were developed. Employing

these tools we will prove the main result of our paper:

Theorem 3.1. Under assumptions (1-4), the asymptotic
throughput of flow (i)

T (i)(δi) = lim
m→∞

1
m

m∑
k=1

U
(i)
k

converges almost surely, and for small η, T (i)(δi) do not
depend on additive increase parameter γi or the multiplica-
tive decrease parameter δi. Formally, there exist a constant
c > 0 such that:

T (i)(δi) =
1

cη + o(η)
+ o(

1√
η
) (6)

Proof. Before we begin the proof, we introduce some nota-
tion from [17]. By V

(i)
m we denote the Markov process with

states of W
(i)
k just after packet losses, i.e.: V

(i)
m = W

(i)
sm ,

where sm is the m-th smallest k such that W
(i)
k = δiW

(i)
k−1.
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It is clear that V
(i)
k is Markov chain with transition given

by:
V

(i)
k+1 = δi(V

(i)
k + G

(i)

V
(i)

k

)

where G
(i)
x is random variable on positive integers defined

by

P (G(i)
x ≥ m) =

x+m−1∏
k=x

e−θik.

The following proposition is Corollary 1 from [17].

Lemma 3.1. If the initial state of the Markov chain V
(i)
k

is 0, then as η goes to 0, the Markov chain
√

γiλiηV
(i)
k

converges in distribution to the Markov chain V k defined
by V 0 = 0 with transition:

V k+1 = δi(V k + GV k
) (7)

where Gx is a random variable given by the distribution
P (Gx ≥ y) = e−

1
2 y2−xy.

From the Proposition 7 [17] we conclude that the Markov
chain with transition given by (7), has a unique stationary
distribution V ∞. From Proposition 5[17] we get that

E(V ∞) =
δi

1 − δi
E(GV ∞). (8)

Further, from Theorem 1[17] and Lemma (3.1), we con-
clude that as η goes to 0, the invariant distribution of√

γiλiηV
(i)
m converges to V ∞ and therefore

E(G
V

(i)
∞

) =
1√

γiλiη
E(GV ∞) + o(

1√
η
) (9)

On the other hand G
V

(i)
∞

determines the times between
drops from the flow (i). Thus the asymptotic proportion
of drops from the flow (i) in the LIST is determined by
frequency of drops and therefore equal to

λi =
c

E(G
V

(i)
∞

)
(10)

for a constant c that is equal to average time between two
consecutive drops at MAY link.

Now we are ready to conclude the proof of the Theorem.
From the Proposition 9 from [17] we have almost sure con-
vergence of asymptotic throughput to T (i)(δi) and:

T (i)(δi) = γi lim
m→∞

1
m

m∑
k=1

U
(i)
k

=
γi√
γiλiη

δi

(1 − δi)E(V ∞)
+ o(

1√
η
). (11)

Combining (11) with (8),(9) and (10) we obtain:

T (i)(δi) =
γi√
γiλiη

δi

(1 − δi) δi

1−δi
E(GV ∞)

+ o(
1√
η
)

=
γi√
γiλiη

1
E(GV ∞)

+ o(
1√
η
)

γi√
γiλiη

1√
γiλiηE(G

V
(i)
∞

) + o(
√

η)
+ o(

1√
η
)

=
γi√
γiλiη

1√
γiλiη

c
λi

+ o(
√

η)
+ o(

1√
η
).

Thus we have

T (i)(δi) =
1

cη + o(η)
+ o(

1√
η
)

and the proof is finished.

3.2 Discussion of MAY and its limitations

Fairness in general network topologies. We have observed
empirically that the bandwidth allocation of AIMD users
over topologies with multiple congested links operating MAY
schemes is very close to being max-min fair. To com-
pare how far bandwidth allocations U = (U1, . . . , UN ) de-
viate from max-min fair bandwidth allocations, Umm =
(U1,mm, . . . , UN,mm), one may use Jain’s index the given
by:

j(U) =

(∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(
Ui

Ui,mm

)2 . (12)

Clearly, j(U) has a global maximum 1 attained at U =
Umm and since it is continuous, and by measuring how far
the index os from 1, one can give us some intuition on how
far is vector U from Umm.

A number of simulations are given in the next section.
For the second of these in Section 4, the following indices
for DropTail, RED and MAY were obtained :

j(UDropTail) = 0.35, j(URED) = 0.73, j(UMAY ) = 0.985.

We believe that such good fairness properties of MAY
follows from the fact that the drop history at a congested
link is made up mainly from packets from flows which get
most bandwidth and therefore flows which are not bottle-
necked at the link (with average rate less then maximal
average rate at the link) experience very few drops at that
link. This means that a large majority of packets dropped
at the link are from the flows bottlenecked at that link. If
we ignore all other flows in network, we are in a situation
where all bottlenecked flows represent the single bottleneck
case, and therefore results from the previous paragraph ap-
ply.

To illustrate the fact that flows with average rate less
than fair share are afforded extra protection at a link em-
ploying MAY we performed the following experiment using
the network simulator ns − 2. We ran a simulation with
5 TCP flows: f1, f2, f3, f4 and f5 over a single congested
link employing MAY . Flows f1, f2, f3 and f4 have an un-
limited maximal window size (maxcwnd), while maxcwnd
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Figure 2: Maximal window size vs share of throughput

for flow f5 is varied from 1 to 200 packets. For a maxi-
mal window size 38, flow f5 would get approximately its
max-min fair share of available bandwidth. As we can see
from Figure 2, the throughput obtained by flow f5 in the
presence of MAY drops for maxcwnd from [1,38] is almost
equal to throughput which would be achieved without any
drops. For maxcwnd ∈ [38, 200], MAY keeps the band-
width allocated to flow f5 close its fair share of 20%.

Convergence. Building the LIST is the central task for
ensuring farness using MAY. Building good statistics of the
LIST is a consequence of the statistical multiplexing for
long-lived flows. The following MAY parameters mainly
determine the speed at which these statistics accumulate:
PctHistDrops and L-LIST size.

For PctHistDrops = 0, MAY behaves exactly same as
MLC with index 2. For PctHistDrops = 1, there is no
chance for new flow to join the LIST except at a buffer
overflow. Buffer overflow is clearly not desirable since it
would destroy the building of the list as a continuous pro-
cess and it would punish flows without any control. Thus,
we have to set PctHistDrops to number strictly less then
1 in order to ensure building of the LIST in real time, but
not much smaller than 1 so that the bandwidth allocation
stays close to max-min fairness. This tradeoff: between
convergence time and fairness, certainly depends on the
nature of the traffic on the link. In situations where most
of traffic is made up of short-lived flows, it is not possible
to build a LIST fast enough to punish these in a desirable
manner. However, in that case it is unclear what would
be proper definition of fairness among short flows. On the
other hand, in the environments where most of traffic is
made up of long-lived flows, MAY will be able to control
fairness of these long flows, and traffic represented by short
flows will be protected from MAY. The size of the LIST,
L, is another MAY parameter that affects the convergence
time for building the LIST statistics. It should be set in
range of O(N) where N is number of long flows at link.
This is related to Theorem 1 from [25] which claims that
any algorithm that imposes max-min fairness with given

relative error ε among N flows by converging to constant
drop probabilities for each flow requires O(N) space. How-
ever, greater values of L would give more precise statistics,
but also result in longer convergence times. A size of L in
range of 5N − 50N worked fine in our experiments.

RED parameters : qweight and MinimumTreshhold, are
used for identifying idle periods and should be chosen in
such manner that MAY reacts quickly to a change in queue
size, but also allows transient burst at the queue to be ac-
commodated without initiating a harsh reaction from the
AQM. In our experiments we use qweight = 1/(number
of packets arrived in queue within one SampleT ime) and
MinimumTreshhold = 5 − 10% of queue size. Of course,
adaptive tuning of RED parameters may be applied as well
as another methods for identifying idle periods.

Variable packet size : The problem of variable packet size
can be easily solved by employing byte-wise comparisons
instead packet-wise comparisons. This means that for each
arrived packet, a variable that controls drop probability
hMAY should be multiplied by packet size.

Limitations of MAY : We have already noted certain prob-
lems related to effect of MAY in given traffic environment
especially problems related to choosing of parameters. We
believe that most of these problems can be resolved by some
sort of continuous adapting of parameters and self tuning
in order achieve certain objectives.

However there is the problem of number of comparisons
that can be effectively done by processor at router. Namely,
the number of comparisons needed by MAY might be larger
then number of comparisons that can be done by processor
at very high speed back bone routers (with speed greater
than 1Gbps) processing a large number of long-lived flows.
For example, consider a 10Gbps link used by 10 000 long-
lived TCP flows, each with a packet size of 1000 bits and
and RTT of 100ms. Each of them would get approximately
1.25·105B/sec = 125pkt/sec = 12.5pkt/RTT . For an aver-
age rate of 12.5pkt/sec, approximately one out 100 packets
should be dropped. Assuming that all flows are symmetric,
the LIST will contain roughly same number of flow identi-
fiers from each of these 10000 long flows. Thus in order to
have loss rate of one out of hundred packets we have to com-
pare the flow identifier of each arriving packet with approx-
imately 10000·1/100 = 100 identifiers from the LIST. Since
there are around 1.25 · 106 packet arrivals per second, the
total number of MAY comparisons that should be done per
second in this example is around 100 ·1.25 ·106 = 125 ·106.
With more flows at the link and larger loss rate this number
can be even larger. It might be argued that it is cheaper
to keep per-flow state than doing so many comparisons.
This argument depends mainly on flow size distribution
and research in this direction remain to be done. How-
ever, we believe that heavy tail nature of the distribution
of flow sizes [19, 20], where small number of flows account
for large amount of traffic would be a key point in the abil-
ity of MAY to operates well in real networks even on high
speeds.
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Finally, the proposed design of MAY is constructed to
control the fairness properties of responsive flows. In the
presence of a non responsive UDP flow which sends more
than its fair share, the drop history part of the list will even-
tually contain only identifiers of this UDP flow. Therefore,
although the rate of this flow will be controlled by MAY,
the LIST will not accurately reflect the statistics of the
other flows in order to enforce fairness among other re-
sponsive TCP flows. One approach to this problem is to
use MAY’s LIST to identify nonresponsive users with rate
greater than their fair share, then to employ a penalty box
approach [22] and allow pollution of the LIST with identi-
fiers from nonresponsive users. Note that the proportion of
flows that are sending less than their fair share in the drop
history of MAY is small, much less than in drop history
of RED. This means that identifying flows with high rates
from the drop history of MAY is easier that same from the
drop history of RED.

4 Experimental results

In this section we briefly describe some experiments that
demonstrate the efficacy of our proposed AQM schemes.

Single bottleneck topologies

The first set of experiments are designed to demonstrate
the fairness properties of the proposed AQM schemes over
single link. Specifically, we present results for a single link
with service rate of 10MBps that services 100 long-lived
TCP users with round trip times uniformly distributed in
range 40 − 440ms and approximately 10ms of queueing
delay. To provide baseline results, we include the perfor-
mance of RED for the same scenario.

It can be clearly seen from our results that that the fair-
ness of RED is approximately proportional to the inverse
of RTT. This is in accordance with our theoretical results
under assumption that drop probability is constant and
is also consistent with results and observations made by
other authors [23, 24]. It can also be observed that the
fairness of MLC with index 2 is proportional to 1/RTT 2/3

as predicted by Theorem 2.2. In our figures, * denotes
the scaled model predictions, ’+’ denotes measured val-
ues of throughput, and the dotted line is estimate of the
fair share. The MLC parameters used are in the experi-
ment are: index = 2, SamplingT ime = 100ms, γ = 0.99,
δ = 1.01, Pct = 0.98. The MAY parameters used in
the experiment are: SamplingT ime = 100ms, t1 = 1.01,
t2 = 1.01, Pct = 0.98, PctHistDrops = 0.98, L = 1500.

In Figures 6 - 8 the link utilization of the link is evaluated
for RED, MLC-1 and MAY. Our throughput measurements
are averaged over 5sec intervals. For this experiment, with
100 flows both hM and hMAY are about 1. Which gives
computational cost of MLC-1 and MAY of approximately
1 comparison per arrival.
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Figure 3: Scaled throughput for 100 flows over congested
link employing RED
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Figure 4: Scaled throughput for 100 flows over congested
link employing CHOKe-like, MLC with index 2
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Figure 5: Scaled throughput for 100 flows over congested
link employing MAY
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Figure 6: Link utilization with RED
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Figure 7: Link utilization with MLC-1

Multiple bottleneck topologies

Our second set of results demonstrate Theorem 2.3. The
network topology that we considered is given in Figure 9.
Here, we consider a network of 24 nodes: n1 − n5,m1 −
m5, p1−p5, q1−q5, and c1, c2, c3, c4 and 30 flows traversing
the network as follows: n(i) → p(i);n(i) → q(i),m(i) →
p(i);m(i) → q(i);n(i) → m(i); p(i) → q(i) where i =
1, 2, 3, 4, 5.

The delays on each of the links in ms are defined as
follows:

ni → c1 : 40 ∗ i + 1
pi → c3 : 40 ∗ i + 1

mi → c2 : 40 ∗ i + 1
qi → c4 : 40 ∗ i + 1

and the delays c1 − c2, c2 − c3, c3 − c4 are 10ms.

Each flow uses the standard TCP-SACK algorithm with
delayed acking switched off, with a packet size 1000B. The
aggressiveness of each flow is therefore mainly determined
by its RTT. The behavior of the network is evaluated with
each link c1−c2, c2−c3 and c3−c4 using: DropTail, RED,
CC-1, CC-2, CC-4, CC-5, CC-9, CC-17 and MAY with a
queue size 100 packets. CC-l parameters are: index =
l, SamplingT ime = 100ms, γ = 0.99, δ = 1.01, Pct =
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Figure 8: Link utilization with MAY
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Figure 9: Network topology

0.98. The MAY parameters used in the experiment are:
SamplingT ime = 100ms, t1 = 1.01, t2 = 1.01, Pct = 0.98,
PctHistDrops = 0.98, L = 300.

Figure 10 depicts 9 scenarios, one for each dropping
scheme. Each plot depicts the amount of throughput taken
by each of 30 flows. The doted line represents the max-min
fair share of bandwidth while points represent measured
share of bandwidth for each of 30 flows in the network. We
can see significant unfairness in DropTail, RED and CC-1
cases. As we increase index of CL scheme, we obtain share
of bandwidth very close to max-min share as predicted by
Theorem 2.3. Jain’s indices, defined by (12) for each of
these AQM’s are:

j(UDrTail) = 0.3498, j(URED) = 0.7310, j(UCC−1) = 0.6612

j(UCC−2) = 0.8462, j(UCC−3) = 0.8848, j(UCC−5) = 0.9597

j(UCC−9) = 0.9892, j(UCC−17) = 0.9970, j(UMAY ) = 0.9851

5 Conclusions and future work

In this paper we studied how fairness among TCP users
is governed by choosing different AQM strategies at con-
gested links. For that purpose we presented stochastic
models that describe each of these AQM strategies. In
particular, our principal concerns were with CHOKe-like
AQM schemes that were defined in Section 2 and with the
MAY AQM scheme defined in Section 3.

For CL schemes we showed that by increasing the CL-
index, bandwidth allocations among TCP can be made ar-
bitrarily close to the max-min fair allocation. Two ap-
proaches for design of CHOKe-like schemes were proposed:
MLC and CC. While MLC requires very low memory space
(of order O(1)) in order to accurately enforce max-min
fairness it requires very large computational complexity.
This tradeoff is a topic for further research. The CC AQM
avoids such complexity issues but requires additional field
in the packet header.

MAY is a simple AQM scheme with reasonable complex-
ity requirements that enforces max-min fairness among re-
sponsive users without keeping per-flow states. For the
MAY scheme we show that for the single bottleneck case,
bandwidth allocation among arbitrary AIMD users is fair.
Although we observed that bandwidth allocation are close

12



0 10 20 30
0

0.1

0.2

D
r
o

p
T

a
il

0 10 20 30
0

0.1

0.2
R

E
D

0 10 20 30
0

0.1

0.2

C
C

−
1

0 10 20 30
0

0.1

0.2

C
C

−
2

0 10 20 30
0

0.1

0.2

C
C

−
3

0 10 20 30
0

0.1

0.2

C
C

−
5

0 10 20 30
0

0.1

0.2

C
C

−
9

0 10 20 30
0

0.1

0.2

C
C

−
1

7

0 10 20 30
0

0.1

0.2

X
Y

Z  
Scaled max−min fair allocation
Scaled measured throughput

Figure 10: Amount of bandwidth taken by each of 30 flows.
x-axis is flowID, y-axis is share of throughput. Droptail,
RED, CL-1, CL-2, CL-3, CL-5, CL-9, CL-17, MAY

to max-min also in general network topologies we were not
able to obtain mathematical results in support of this ob-
servation. In Section 3.2 we suggested an empirical argu-
ment to explain this observations. Extending our model
to this general network topologies would be important for
fully understanding of MAY.

The problems discussed in Section 3.2 suggest that the
choice of MAY parameters should be made carefully. More-
over, for certain links with a highly dynamic traffic distri-
bution, it might be necessary to allow self tuning of param-
eters in order to achieve high utilization as well as good
fairness among flows.

Finally, the inability of MAY to fully control nonrespon-
sive flows is certainly very important issue that should
be addressed in future work. This is general problem of
most low-state AQM’s that tries to enforce fairness, such
as Stochastic Fair BLUE[3] or Stabilized RED [26]. In the
Section 3.2 this problem is discussed and one possible ap-
proach is outlined.
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