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Executive Summary

This requirement specification report describes the requirements imposed on vehicle
state observers based on work carried out up to month 12 in Work Package 4 of the
CEMACS project (deliverable D10).

The main objective of the specification document is to support the design and im-
plementation of a nonlinear observer for vehicle velocity and other variables. These
observers are of interest as stand-alone modules as one of the objectives of the project
is to evaluate the possibility of design of nonlinear observers with theoretical con-
vergence properties, at least as good performance as the Extended Kalman Filters,
and with less real-time computational complexity and simplified tuning. Moreover,
these observers will be used to provide state estimates for controllers developed in
Work Packages 1 and 2 of this project.

The scope of work in Work Package 4 is limited to specification, design, im-
plementation and validation of observers at a prototype level to demonstrate their
usefulness and estimate limitations of performance.
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Chapter 1

Introduction

1.1 Background and motivation

Complex automotive control systems rely heavily on accurate and reliable informa-
tion about the state of the vehicle and its environment. While certain state variables,
such as yaw rate, are measured directly, others, such as the vehicle’s side slip angle,
cannot be measured due to high sensor costs. The use of model-based state esti-
mators is therefore necessary to provide estimates of unmeasured states and achieve
sensor fusion when there are redundant or distributed sensors. In addition, it pro-
vides a mechanism to achieve safe and graceful degradation of performance when
there is temporary or permanent errors in some of the vehicle sensors.

With the vehicle dynamics being nonlinear, observability will depend on state
and inputs of the system. As a matter of fact external disturbances such as the
friction coefficient between tyre and road or the inclination of the road are only
conditionally observable, depending on the driving situation.

Recently, there has been significant progress in the design of nonlinear observers,
which provides an attractive alternative to the Extended Kalman-Filter (EKF) due
to such properties as simplicity of implementation and tuning, and reduced on-board
computational complexity.

Beyond these technological advantages, an important point is that there exist
several methods and principles for the proof of uniform global or regional asymp-
totical/exponential stability for the non-linear observer error dynamics, including
nonlinear dissipative forces such as friction and bias models (e.g. due to sensor
drift). These theoretical issues are becoming increasingly important from a prac-
tical engineer’s point of view since in complex safety-critical automotive control
systems a theoretical foundation is likely to avoid design errors and reduce the time
used for tuning, verification and testing.

We conclude that the potential advantages of using nonlinear observers in auto-
motive applications are significant. Moreover, a combination of EKF and nonlinear
observers can solve the global convergence problem while maintaining the benefits
of tuning and monitoring local performance in a well established way.
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1.2 Scope of work

The main objective of the specification document is to support the design and im-
plementation of a nonlinear observer for vehicle velocity and other variables. These
observers are of interest as stand-alone modules as one of the objectives of the project
is to evaluate the possibility of design of nonlinear observers with theoretical con-
vergence properties, at least as good performance as the Extended Kalman Filters,
and with less real-time computational complexity and simplified tuning. Moreover,
these observers will be used to provide state estimates for controllers developed in
Work Packages 1 and 2 of this project.

The scope of work is limited to specification, design, implementation and valida-
tion of observers at a prototype level to demonstrate their usefulness and estimate
limitations of performance.

1.2 Scope of work

Page 5
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Chapter 2

Vehicle Velocity Observer
Requirement Specification

2.1 Vehicle dynamics and kinematics

The horizontal plane and vertical motion states and parameters of the four-wheeled
vehicle are illustrated in Figures 2.1 and 2.2, respectively. The wheel states and
parameters are illustrated in Figure 2.3.

Toay
I

Figure 2.1: Horizontal plane motion variables and parameters of the vehicle
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Figure 2.2: Vertical motion variables and parameters of the vehicle
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Figure 2.3: Wheel variables and parameters of the vehicle

2.1 Vehicle dynamics and kinematics

Page 7



STREP project 004175 CEMACS Public Deliverable D10

2.2 Functional requirements

The vehicle velocity observer will be used both for the integrated chassis control
(generic prototype, Work package 2) and for collision avoidance (active safety, Work
package 1). Although the primary states to be estimated are the same for these two
applications, the secondary states necessary (as well as performance requirements)
will differ.

Additionally, the velocity observer should be suited for dynamic vehicle handling
systems such as ESP.

2.2.1 States to be estimated

The primary states to be estimated are

e Lateral velocity of vehicle, v,.

e Longitudinal velocity of vehicle, v,.

The following secondary states are expected to be necessary to estimate in order
to achieve necessary accuracy of the internal nonlinear model in the observer

e Yaw rate, r.

e Road-tyre adhesion coefficient (maximum friction coefficient), pp7, or possibly
other parameter(s) of the friction model.

Including a friction coefficient estimate is not essential for the generic prototype
(Work package 2) as the prototype can be assumed to be driving at high friction
roads. Furthermore, the following states may be necessary to estimate to achieve
required accuracy for collision avoidance application in Work package 1:

e Road bank angle, ¢r.

e Position of vehicle center of gravity (zca,yoa, zoG)-

2.2.2 Operating modes

The state observer is required to provide reliable state estimates in the normal
operating mode, i.e. all driving maneuvers with positive longitudinal velocity, v, > 0,
and side slip angle 3 absolute value less than 90 degrees.

The state observer should be able to execute during all other operating condi-
tions, including stand-still and reverse driving. If reliable estimates are not provided
under such conditions, the observer is required to provide a quality indicator flag and
is also required to immediately provide reliable estimates once the normal operating
mode is entered.

2.2 Functional requirements

Page 8
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2.2.3 Robustness to road, tyres, load and environmental conditions

The generic prototype will experience rather small parameter variations (friction,
tyres and load). The following applies therefore foremost to the collision avoidance
application (see also performance requirements):

e The state observer must provide reliable estimates under a wide range of road
and environmental conditions ranging from wet ice to dry asphalt.

e The behavior of the observer should be robust to tyre brand, wear and tear of
tyre, and normal variations in tyre pressure.

e The observer should be robust towards permissable variations in load and mass
distribution.
2.2.4 Sensor configurations and data input requirements

The assumed sensor configuration corresponds to a basic car with an ABS system
and ESP sensors

Wheel speed or wheel position

Steering angle (for all four wheels for generic prototype)

Longitudinal accelerometer

Lateral accelerometer

Yaw rate

In addition, for some vehicles the following may be available

e Brake pressures (giving an indication of brake torque) (only in experimental
cars)

e Engine speed (in production cars)

e Engine torque (both static and dynamic, includes other loads)

e ESP flag

e Brake Assist flag (not in test cars)

e ABS flag for each wheel (for test cars: with py estimate for each wheel)

e Stand still flag

For a detailed description of the instrumentation of the test vehicles, it is referred
to the project report D11 [2].

2.2 Functional requirements

Page 9
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2.2.5 Fault tolerance and graceful degradation

Failures of yaw rate, wheel speed / position sensors are not to be considered, nor is
detection of such sensor failure.

The robust performance of the nonlinear observers subject to partial or complete
failure of the following sensors should be evaluated:

e Steering angle

e Longitudinal and lateral acceleration

Single point failure handling strategies such as replacing faulty sensor signals with
nominal or calculated values should be tested. The performance of the nonlinear
observer should degrade gracefully when sensors fail.

Accelerometer signals are assumed to drift slowly, while wheel speed / position,
yaw rate and steering angle signals are not assumed to drift or have significant bias.

The sensitivity of the observer with respect to sensor location (in particular
accelerometers) should be evaluated as the center of gravity will change with the
vehicle load conditions.

2.3 Performance requirements

2.3.1 Model requirements

The vehicle model used in the observer should account for the following physical
effects

e Nonlinear equations of motion in the horizontal plane (lateral, longitudinal
and yaw motion).

e Coriolis effect
e Nonlinear lateral and longitudinal slip dependent road-tyre friction forces
e Vehicle mass distribution and inertia

e The gross effect of vehicle roll and pitch motion should be accounted for using
accelerometer signals

2.3.2 Estimator accuracy

e For the generic prototype, stationary error in side slip should normally be less
than 0.1°.

e For collision avoidance, side slip error should normally be less than 1°.

2.3 Performance requirements

Page 10
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2.3.3 Estimator bandwidth

The time delay introduced by the filter should not be larger than 20 ms for the
velocity estimates. The response time should match the DaimlerChrysler Extended
Kalman Filter. If these requirements hold, the estimator bandwidth is well over
what is required for integrated chassis control and collision avoidance.

There are no accuracy or bandwidth requirements on the other variables, such
as adhesion coefficient estimate.

2.4 Parameterization

2.4.1 Model parameterization requirements
Etimates of the following model tuning parameters are assumed to be available:
e Vehicle mass
e Location of center of gravity (CG)
e Moment of inertia about vertical axis
e Suspension stiffness coefficient in roll and pitch
e Location of wheels with respect to CG
e Dynamic wheel radius
e Tyre friction characteristic (analytical model or lookup table, depending on
lateral and longitudinal slips and adhesion coefficient).
2.4.2 Observer tuning requirements

The observer should contain as few tuning parameters (gains) as possible, and the
tuning parameters should as far as possible be chosen to scale with key vehicle
parameters such as mass.

2.5 Implementation requirements

2.5.1 Real-time constraints

The observer must be possible to implement on standard electronic control units at
a sampling rate of 100 Hz. CPU and memory requirements should be significantly
less than an Extended Kalman Filter.

2.5.2 Software prototype platform

Prototype observers should be implemented in Simulink release 13. This will ensure
compatibility with the Real time workshop code generation tools for the dSpace
system installed in DaimlerChrysler’s experimental vehicles, [2].

2.5 Implementation requirements Page 11
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2.6 Verification and validation requirements

2.6.1 Comparison with EKF

The nonlinear observer implementation should be compared in detail with the Ex-
tended Kalman Filter developed by DaimlerChrysler. The following aspects should

be considered

e Accuracy (bandwidth, noise sensitivity, bias) under test maneuvers.

e Computational complexity (number of arithmetic operations or clock cycles
per sample) and real-time memory usage.

e Simplicity of tuning

e Robustness and reliability under all conditions

2.6.2 Test maneuvers

e For the generic prototype application, the observer will be tested at least using
the following test maneuvers on high friction surfaces:

— Straight ahead driving with increasing and decreasing speed

— Slalom maneuvers

— Driving in circle while increasing speed

e For the collision avoidance application, the observer will be tested using the
same test maneuvers, in addition to driving in circle on tilted ground. Also,
some of the maneuvers will be tested on low friction surfaces.

2.6.3 Verification and validation

e Off-line experimental validation using test data.

Filename

Comment

743SL507.SAM
743SL510.SAM
743SK101.SAM
743SK104.SAM
743SK402.SAM
743SK204.SAM
220ALP13.SAM
220ALP19.SAM

Slalom maneuver, high friction
Slalom maneuver, high friction
Driving in circle, high friction
Driving in circle, high friction
Driving in circle, low friction
Driving in circle, low friction
Hilly roads, high friction

Hilly roads, high friction

e In-vehicle testing according to the test plans of Work packages 1 and 2.

2.6 Verification and validation requirements

Page 12
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Chapter 3

Preliminary velocity observer
design, no friction estimation

This chapter is based on the paper [7].

Abstract

Nonlinear observers for estimation of lateral and longitudinal velocity of automotive
vehicles are proposed, based on acceleration and yaw rate measurements in addition
to wheel speed and steering angle measurements. Two approaches are considered,
one modular approach where the estimated longitudinal velocity is used as input
to an observer for lateral velocity. The second approach is a combined approach
where all states are estimated in the same observer. In both approaches, a tyre-road
friction model is used for estimation of lateral velocity. Stability of the observers are
proved in the form of input-to-state stability of the observer error dynamics, under a
structural assumption on the friction model. This assumption is treated with some
detail. The observers are validated on experimental data from cars.

3.1 Introduction

Feedback control systems for active safety in automotive applications have over
the last years entered production cars. Many of these systems (for instance yaw
stabilization systems such as ESP [24]) have in common that the control action
depend on information about vehicle velocity, or side-slip. However, the velocity is
seldom measured directly, and must therefore be inferred from other measurements
such as wheel speed, yaw rate, and acceleration measurements.

The main goal of this work is to develop nonlinear observers for vehicle velocity
with stability guarantees. Towards this goal, we propose two nonlinear observer
structures: First a modular cascaded observer structure where the estimation of
lateral and longitudinal velocity is separated, and thereafter a combined observer
for both velocities. We establish input-to-state stability (ISS) of both observer
structures, under a realistic condition on the friction model.
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Nonlinear observers are used for taking the nonlinear dynamics (mainly due to
highly non-linear friction and Coriolis forces) into account, and to obtain simple
designs with few tuning knobs (as opposed to Extended Kalman Filter designs).
Another significant advantage of the proposed approach is that real-time solution
of the Riccati differential equations is avoided, such that the observer can be imple-
mented more efficiently in a low-cost embedded computer unit.

A non-linear friction model is used for exploiting the lateral acceleration mea-
surement in full. An important parameter in many friction models, the maximal
friction coefficient ppr, is known to vary significantly with different road conditions.
We will assume this parameter to be known, or estimated by other means. While
simultaneous estimation of velocity and gy might be a feasible path, we argue that
estimation of uj requires special attention depending on the application the observer
is used for, since it will be only weakly observable for many (normal) driving condi-
tions, requiring monitoring, resetting and other logic functions to be implemented
(see e.g. [10]).

Earlier works on observers for estimation of lateral velocity are mainly based on
linear or quasi-linear techniques, e.g. [4, 25, 23, 3]. A nonlinear observer linearizing
the observer error dynamics have been proposed in [12, 13]. The same type of
observer, in addition to an observer based on forcing the dynamics of the nonlinear
estimation error to the dynamics of a linear reference system, are investigated in [6].
The problem formulation there assumes that the longitudinal wheel forces are known,
as the observer implemented in ESP also does [24]. In our work, we do not make
this assumption, as such information is not always available. Nevertheless, if this
information is available, it might be natural to use it in the first module of our
modular approach (estimation of longitudinal velocity).

The Extended Kalman Filter (EKF) is used for estimating vehicle velocity and
tyre forces in [19, 20], thus without the explicit use of friction models. A similar, but
simpler, approach is suggested in [3]. An EKF based on a tyre-road friction models
that also included estimation of the adhesion coefficient and road inclination angle
is suggested in [22]. In [1], the use of an EKF is considered, based on a nonlinear
tyre-friction model, that also includes estimation of cornering stiffness. The strategy
proposed in [15] combines dynamic and kinematic models of the vehicle with numer-
ical bandlimited integration of the equations to provide a side-slip estimate. In [5]
the side-slip angle is estimated along with yaw rate in an approach that has simi-
larities with the one considered herein, but without yaw-rate measurements. The
approach is validated using experimental data, but there are no stability proofs.

A unique feature of our work presented here, is that explicit stability conditions
are analyzed.

3.2 Vehicle modeling

3.2.1 Rigid body dynamics

The geometry of the vehicle and the coordinate systems are illustrated in Figure 3.1.
The vehicle velocity is defined in a body-fixed coordinate system with the origin at
the vehicle center of gravity (CG, assumed constant), with z-axis pointing forward

3.2 Vehicle modeling

Page 14
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and y-axis to the left. There is also a coordinate system in the center of each wheel,
aligned with the orientation of the wheel. The distance from CG to each wheel
center is denoted h;, with 7 being wheel index. Together with the angles ;, this
defines the vehicle geometry.

Figure 3.1: Horizontal axis systems, geometric definitions, wheel forces, speed, slip
angle and yaw rate.

Neglecting suspension dynamics, we will assume that we can consider the vehicle

a rigid body, for which the rigid body dynamics (with respect to the CG coordinate
system) can be written

Mv+C(v)yyv =71 (3.1)

where v is a vector containing the body generalized velocities. The matrices M and
C are the inertia, and Coriolis and centripetal matrices, respectively. The vector T
consists of forces and torques on the vehicle, mainly friction forces acting via the
wheels, but also gravitational and aerodynamic (wind and air resistance) forces are
at work.

By making the following assumptions,

e only include motion in the plane (ignore dynamics related to vertical motion,
including roll and pitch),

e ignore effect of caster and camber,

3.2 Vehicle modeling Page 15
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e only include tyre friction forces,

the vehicle dynamics are described by longitudinal velocity v,, lateral velocity
vy and yaw rate r, resulting in the “two-track model” [13], with

m 0 0 0 —-mr 0
M=(0 m 0}, Clv)=|mr 0 0
0 0 J 0 0 0

I\

The generalized forces T = (fy, fy, TZ)T are forces and torque generated by friction
between the wheels and the ground,

4
I
=Y < 2.Xr2> R(5;)F;.
— g;
=1
The friction forces F; working at each wheel (see Figure 3.1) are functions of velocity

difference between vehicle and tyres, see the next section. They are transformed from
the wheel coordinate systems to CG:

e The forces generated by the tyres in body-fixed coordinates for each wheel i,
is:

fi = (fias fiy)" = R(0)F;

where F; = (Fj ., F;,) are the forces acting on the wheel in the wheel-fixed
coordinate system. The rotation matrix induced by the steering angle d; is

R(5) = (coséi —81n5i> .

sind; cosd;

e For the torque, it is convenient to define the geometry vector

o —hi sin 1/)1
8i = h; cos 1;
where the angles 1; are introduced to get a uniform representation, ¢ = —~1,

Yo = y2, W3 = m+y3 and 14 = m—4. The generated torque about the vertical
axis through the CG is then for each wheel

.
Ti. = &; fi.

3.2.2 Friction models

In most friction models, the friction forces are functions of tyre slips, F; = F;(Xi 2, Aiy),
where the slips \;; and A;, are measures of the relative difference in vehicle and
tyre longitudinal and lateral velocity for wheel i. The definitions for tyre slips we
will use herein, are

o wiRdyn —Viz

)\i,x — : ’
Via

)‘i,y = sin (678

3.2 Vehicle modeling Page 16
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where w; is the wheel angular velocity and Ry, is the dynamic wheel radius, and
the tyre slip angles are calculated as

Vi
a; = 6; — arctan —2,
Vi x

)

and V; ; is the velocity in z-direction in the wheel coordinate system,

/2 2 ,
Vie = v, + U;, COS Q.

The longitudinal and lateral velocities of the wheel center in the body-fixed coordi-
nate system are v;; = v, £ rb; and v; , = v, £ rb;. For the tyre slip angles to be
well defined, we assume for convenience that there is no reverse motion,

Assumption 1 v;; >0 fori=1,...,4.

The tyre slips depend on the vehicle states and the time-varying, measured steer-
ing angles 6 = (01,...,04)" and wheel angular speeds w = (wy,...,ws)T. We will
therefore use the notations F; = Fi(\i 2, \iy) = Fi(vz,vy,7,0;,w;) interchangeably,
depending on context.

We make the following assumption on the friction model:

Assumption 2 There exist a positive constant ¢1 and sets A, € and a convex set

X(8,w), such that the friction model is continuously differentiable in x = (vy, vy, )T
with ||%£””)|| bounded for x € X(§,w), § € A and w € Q, and
4
F (X, 0is wi Fi 2 (X, 0iywi) .
Z M cos d; + w sind; | < —eq, (3.2)
vy vy

i=1
foralld € A, weQ, and x € X(§,w).

The physical meaning of this assumption is discussed in Section 3.5.

Remark 1 The sets X (d,w) and A will depend on which friction model is used.
For example, using linear friction models (see Section 3.5.1), X depends on § only:

A={8 :|6]<6,i=1,...,4},
X(8) = {x = (g, vy, )" : il < @, |r| <F v, > 7bi}.

Note that «; depends on ;. o

The following result regarding the friction forces holds due to Assumption 2:

3.2 Vehicle modeling

Page 17
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Lemma 1 There exist positive constants ¢;, i = 1,...,6 such that for all x,x €
X(0,w), 6 € A, w e Q, the following holds:

4
U Z [0 R(8:) (Fi(x, 0y wi) — Fi(X, 05, wi) < —c10y + ol |7y | + es]tz]8y] (3.3a)

i=

4
Z Fi(x. 01y w1) — Fi(X, 01y01)) < calty | + ol + /5 (3.30)

Z

A~

where (U, Uy, T) == X — X- o

ProOF If we let h(x, 8, w) = S0 [0 1] R(5;)Fi(x, &, wi), the Mean Value Theorem
gives us

h(x,0,w) — h(x,0,w) =

Oh(x/,0,w) _ Oh(x',0,w)_  Oh(x,d,w) _
Ovy byt or r v, Ve

where x’ is some point on the line segment between x and . Multiplying this
expression with v,, we get

4
By Z 0 1) R(3;) (Fi(x, 0, wi) — Fi(X, 0 wi)

. zy X)(S’Lv z) . Aan‘@(X/véuwi) 9
Z <c055 o0, +sin §; —c%y 0y,

1y Wi . sz /7 1y W ~~
+Z <c085 ’yi;’d w)+sm5i—a 70;7«6 w)>7‘vy

S
+Z <cos§ Fiy gy’ 0iy wi) +sin 5iaﬂ,x(;<U7 51’%)) Uy Uy

From Assumption 2, we arrive at (3.3a). From [11, Lemma 3.1], the Lipschitz-type
condition (3.3b) holds on X (d,w) since from Assumption 2, F has continuous and
upper bounded partial derivatives. [

3.3 Modular observer design

3.3.1 Modular observer structure

The modular observer structure is illustrated in Figure 3.2. The first observer use
information of (mainly) wheel speed in addition to yaw rate and longitudinal accel-
eration to estimate longitudinal velocity. Thereafter, this estimate is used together
with measurements of lateral acceleration, yaw rate, wheel speeds, and wheel steer-
ing angle to estimate lateral velocity.

The measurements used are summarized below:

3.3 Modular observer design Page 18
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ay by
T 7| Estimation of
»| longitudinal a /—¢—\
velocity Y
0; Estimation of Uy
r lateral £
= velocity —
Wi |

~ @@

Figure 3.2: Modular observer structure

Symbol Measurement

ag, a,  Longitudinal/lateral acceleration

T yaw rate
wj Rotational speed wheel ¢
0 Steering angle wheel i

Acceleration and yaw rate sensors are assumed placed in CG. The acceleration
measurements are assumed to have bias removed, and are corrected for gravity
components due to vehicle roll/pitch, based on suspension stiffness and assuming a
flat road.

The model described in Section 3.2 will be simplified for each of the observer
modules: For estimating longitudinal velocity, we will ignore lateral (v, and r)
dynamics, and when estimating lateral dynamics, we assume that v, is known (thus
using only two dynamic states). The main motivation for structuring the observer in
this way, is that it results in a modular design with few tuning knobs. Also, since we
will prove stability properties independently for the modules (and thereafter overall
stability), the modules can be tuned independently, and one could also imagine
replacing the module for longitudinal velocity, if better estimation were available
(for instance based on an observer with access to more information).

This observer structure is cascaded, since there are no feedback loops between
the observers. A cascade stability result for the cascade considered herein, is given
in Section 3.3.4.

3.3.2 Estimation of longitudinal velocity

In estimation of longitudinal velocity, we will use a simplified model including for-
ward velocity only, with acceleration as input,

Uy = Q. (3.4)

The measurements are the wheel rotational speeds w;, which are transformed to
v, longitudinal velocity of CG. Assuming zero slips, we have v; , = v, £ b;r and
Viz = Rgynw;cosd;. Denoting the transformed measurement from wheel speed i

3.3 Modular observer design
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with v, ;, we get
Vg = Raynwicos d; £ byr.

Using this, we propose the following observer:

4
e = a2+ Y Ki(az)(ves — B). (3.5)

=1

The observer gains K; depend on the longitudinal acceleration measurement, to
reflect when the wheel speed measurements are good estimates of velocity, i.e., when
the longitudinal tyre slips are low:

e Large positive a,: Large gain on non-driven wheels, small gain on driven
wheels.

e Small positive a,: Very large gain on non-driven wheels, large gain on driven
wheels.

e Small negative a,: Large gain on non-driven wheels, large gain on driven
wheels.

e Large negative a;: Small gain on non-driven wheels, small gain on driven
wheel.

In [13], similar rules are used to construct a Kalman filter and a fuzzy logic
estimator for vehicle velocity. Other measurements (such as flags for ABS-system,
brake assistant, etc.) that provide information of wheel slips can also be used.
Simple outlier detection and removal is used to avoid that blocking/spinning affect
the velocity estimate.

As a technical assumption for the stability results to follow, we assume that the
scheduling of gains are done such that

Assumption 3 K;(ay) is piecewise continuous in time, and lower bounded, K;(az) >
ky > 0.

Assuming v, ; = v, (which requires that the lateral and longitudinal slip are
zero ), the observer error dynamics with model (3.4) is trivially uniformly globally
exponentially stable, since the gains are positive.

In general, we have slips and v, ; # v,. If the slips were known exactly, the
correct equation (for each wheel) would be!

1 cos(6; —ay)
1+ Nig  COsq;

Uz Rdynwi + b;r.

!One might ask if not estimates of slips can be included in the equation for v, ;, and indeed they
can, provided they are calculated from other information than the velocity estimates.

3.3 Modular observer design
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If we define ¥, = v, — U, then we can write

4 4
Z Ki(ax)(vw,i - ﬁx) = Z Ki(ax)(vx,i — Vg + 1790)
i=1 i=1
4
= Z Ki(aa:>vz +u
=1
where
! 1 cos(0; — ay)
i — g
u= ; Ki(az) (cos 9 — T+ A cosa > Raynwi
is an error-term due to non-zero slip. When the slips are zero, then u(t) = 0.

Consequently, the error dynamics are

4
U ==Y Ki(az)0: + u. (3.6)

=1

We already know that with u = 0, we have global exponential stability. But during
accelerations (including turning and braking), u # 0, and will influence the observer
error. Natural properties to aim for, are that the influence u on v, should not lead to
divergence of the estimate, when wu is small the influence on the estimate should be
small, and that when u vanishes, ¥, should go to zero. These properties correspond
to input-to-state stability (ISS) [21, 11], characterized by convergence of zero-input
response, and that the zero state response is bounded for bounded input.

Theorem 1 If the wheel speeds, steering angles and vehicle velocity are bounded,
the observer error dynamics (3.6) are globally ISS with respect to u(t), and

(0] < Porttlle £ 1 2 ((sup ). (3.7

T \to<7<t

PROOF Boundedness of wheel speeds, steering angle and vehicle velocity implies
that sup, <, <; |u(7)| exists. Then (3.7) follows from (3.6), which again implies global
ISS [11, Definition 4.7]. m

Note that we have disregarded the Coriolis term in the observer model (3.4) and
analysis. However, the effect of the Coriolis term could be included in u(t), also
giving ISS.

3.3.3 Estimation of lateral velocity

In estimating the lateral velocity, we will first consider the estimate of longitudi-
nal velocity 0, as the true longitudinal velocity v,, a time-varying parameter. In
Section 3.3.4, this assumption is removed, by analyzing both observers together.

3.3 Modular observer design
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Thus, in this section we let x = (vy,r)T and lump the parameters in 0 =
(vz,6T,w")T. We assume further that the road is flat (no road bank and incli-
nation angle), and that the friction model is time-invariant and known. The model
we use here is then?

Uy = —UgT + ay (3.8a)
&
. T
= — 'R (0;)F; 3.8b
F= g LR (3.3
Based on this model, we propose the following observer:
. 4 A
by = —var + ay — Ky, (may—z (01] R(éi)FZ) (3.9a)
i=1
14
L T N 4
= ; gl R(6;)F; + K, (r — 7). (3.9b)

Define the error variables @, = v, — 9, and ¥ = r — #, and X = (3,,7)T. We will
make use of the following fact:

Fact 1 By completing the squares,

) v, b 2
~agt +ilalel = 1.6 - (Valal - 5 lel)

Define (with some abuse of notation) the sets X(0) := {x : (vy,x) € X(d,w)}
and® X(p;0) = {x: B(x,p) C X(0)} C X(6).

Theorem 2 Assume that p and © are such that x(t) € Xs(p;0), V0 € ©, ¥Vt > 0.
For some k, > 0, let the observer gains be chosen such that

Kvy >0 (3.10)
(KvyCQ + C4)2

K, >k
T r+¢5+ 2Kvycl

(3.11)

Then, if ||x(0)|| < p, the state x(t) of the observer (3.9) converges to the state
x(t) of the system (3.8), and the origin of the observer error dynamics is uniformly
exponentially stable. O

PROOF The observer error dynamics are

4
Uy = Ky, > _ [0 1] R(6;)(F; — F) (3.12a)
=1
4
= Jl z; g R(6;)(F; — F;) — K, 7. (3.12D)

2For brevity, we use F; for Fi(ve, vy, 7,0, w;) and P, for Fi(ve, Uy, 7, i, w;) in this section.
3B(x,p) :={z: ||z — x|| < p} is the ball of radius p around x.

3.3 Modular observer design
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Define the Lyapunov function candidate V(%) = 5(92 + #2). The time derivative
along the trajectories of (3.12) is

4 1
V=10, (Kvy > 0 1R(S)(Fi — Fi)) +7 <JI > &/ R(6)(F; —Fy) — Kﬁ) :
i—1

Letting 0, = v, in Lemma 1, the following holds on X (6§, w):

1 4
~ ~ 5 o 1 )
3, Zl 0 UREG) (Fi —F:) < —ar] +eoffllny| - ;g;m) (F - F)
< eq|Ty| + cs|7|
Using this, V can be upper bounded:

V < =Ky, 10 + Ky, ea|F||By| + caF|Ty| + 577 — K72

< (Ko, c2 + ca)|F|[0y| — Ky, 10, + c57|F| — K, 7.

By Fact 1 and (3.10),

2
. Ky ca+cy)? K, c K, c Ky co+c
s B 152 4 es7|F| — Ko7 — w et o),
2K, 1 2 2 Neone
We see that due to (3.11),
. K, c
V< -2WR2 g (3.13)

is uniformly negative definite for x,x € X(0). By assumption, x(t) € X;(p,0(t)) C
X(6(t)) Vt > 0, and we must show that x(t) € X (6(t)) Vt > 0. Since x(t) € Xs(p;0)
and |[%(0)]| < p, %(0) € X(6(0)). From the above, 4||x|| = ﬁ < 0, which means
that ||x(t)|] < p Vt > 0, and thus x(¢) will remain in X (6(¢)). Thus, from (3.13)
and standard Lyapunov theory [11], we conclude that %X(t) — 0 with exponential
convergence rate. -

Remark 2 Note that the observer for 9, could use the estimate  instead of the mea-
sured 7 in the Coriolis term, that is, 0y = —vi+ay—K,, (may — 0] R((Si)]?‘i),
with only slight changes to the proof above (the main difference being that the upper
bound (3.11) will depend on an upper bound on v,. See [8]). o

3.3.4 Cascaded stability

In the previous section, we assumed we knew the real velocity v,. In this section,
we analyze the stability properties since we have to use the estimate, 0., instead of
Ug-
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Since ¥, = v, — ¥, the lateral velocity observer error dynamics can be written*

4
by =Ky, > [0 1 R(6;)(F; — Fy) — Bpr
=1
1 4
L T ) - ~
F= ;g, R(5;)(F; — F;) — K7

Using the Lyapunov function from the proof of Theorem 2, letting £, = min (K v, C1/2, k:T) ,

we have

. K C1 _ - ~ ~ I e
|V — vz—kﬂ“?—i-|vy\|7“\|vx]+03\vvaz|+66\rHvx|

< —ky %7 + slIX[||7a|

where k = v/2max (7 + c3,cg), and 7 is an upper bound on r(t). By this, it follows
that

. ky - N 2K, .
V<= VIR = kfy!vx\
implying ISS by [11, Theorem 4.19], namely, that

%)) < [(to) e~ F ¢ *Z < s 'M”') (3.14)

to<T<t

assuming the supremum exists, and that x(¢) — 0 if 0,(¢f) — 0 as t — co. However,
since the conditions of Theorem 2 do not hold globally, we use a local variant of ISS:

Corollary 1 Assume that the conditions of Theorem 2 holds for all (§,w) € A x )
on |X|| < r and |u| < ry. Then there exists positive constants ki and ko such
that (8.14) holds for ||X(to)|| < k1 and sup,~,, [u(t)| < k. O

PRrROOF Follows from local ISS [11, p. 192] and the above. m

The cascaded stability is illustrated in Figure 3.3.

3.4 Combined observer design

In this section, we combine longitudinal and lateral velocity estimation in the same
observer, and thus let x = (vx,vy,r)T. The major advantage is that the Coriolis

“Where F; now is used for F; (D, Dy, 7y 0sy wi ).

3.4 Combined observer design
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— b, = — > Ki(al)v, +u

ISS

Figure 3.3: Stability properties of observer error dynamics

term can be included in the equation for longitudinal velocity. The system equations
in this case, are then®

Vg = UyT + Qg

Uy = —VgT + ay
1 4
= 7 > g/ R(6)F;,
=1

for which we propose the following observer:

4
by = byr + az + Y Ki(az)(ve,; — i) (3.15a)
=1
] 4
by = — g7 +ay— Ky, (may—z [01] R(éi)FZ) (3.15D)
=1
o1 d .
= > gl R(6)Fi + K, (r — 7). (3.15¢)
=1
As in Section 3.3.2, we write
4 4
Z Ki(az)(vg; — ) = Z Ki(az)ty + u.
=1 i=1

and thus the goal of this section is to show that the observer error dynamics,

4

Uy = Byr — Y Ki(az)Ts + u (3.16a)
=1

. 4 A

by = —Uer + Ky, Y _ [0 1] R(6;)(F; — F) (3.16h)
=1
1 4
= > gl R(5)(Fi — F;) — K, 7 (3.16¢)
=1

are ISS with wu(¢) as input.

®In this section we use F; for F;(vs, vy, 7,8, w;) and F; for Fi(0g, Oy, 7, 05, w;).

3.4 Combined observer design
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For the purposes of this section, we redefine X,(p;d,w) = {x : B(x,p) C
X(6,w)} C X(d,w). We first show that with u(t) = 0, the observer is exponentially
stable:

Theorem 3 Assume that p and A, Q are such that x(t) € Xs(p;,w), V(d,w) €
A xQ, YVt >0, and that u(t) = 0, Vt > 0. Let the observer gains be chosen such that

Ky, >0 (3.16d)
1 K,,c3

ko> Cjc?’ (3.16¢)

K, >cs+ o (3.16t)

4ky Ky, 1 — (Ky,c3)?

where

1 1
cr = (KUyCQ + C4)(l€x(KvyCQ + ) — §Kvy6366) + C6(§Kvy03(Kvyc2 +cq) + KquCG).

Then, if ||x(0)|| < p, the state x(t) of the observer (3.9) converges to the state x(t) of
the system (3.8), and the origin of the observer error dynamics (3.16) is uniformly
exponentially stable. O

PROOF Define the Lyapunov function candidate V(%) = (92 + 02 +7%). The time
derivative along the trajectories of the error dynamics (3.16) is

4
V = o, (17yr — Z Ki(%c)ﬁx)
=1

4
+ Uy <_7~1x7’ + Ky, Z [0 1 R(6:)(F; — FZ))

i=1
&
+7 (J > & R(6)(F; —Fy) — Kﬁ) :
=1
Using Lemma 1, this can be upper bounded:

V <~k — Ky c10 + K

vy62’f|’5y| + KvyCS‘@fo)ﬂ
+ caP|By| + e57|7| + o7 | 0| — K7
= —|%|TA%],

where |X| and the matrix A are defined as

D 1 1
| | ke — 1Ky ~1Les
< /| +— N . — 1 1 1
|X[:=||0y] |, A:=|-3Koyes Koy —3Kuyca—jea] .
~ 1 1 1
|7-’ —5c6 —5Kuyca—zca Kr—cs

To show that V < 0, we show how the conditions (3.16d)-(3.16f) imply that all
principal minors of A are positive, and thus that A is positive definite. The second

3.4 Combined observer design
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principal minor is k; K, c1 — %(Kvyc;),)Q. We see that due to (3.16d), this is positive
due to (3.16e), which also ensures the positivity of the first principal minor (k;). The
third principal minor (the determinant of A) is (developed after the third column)

1 1 1
(KT - 05) <kavy61 - 4(Kvy63)2> + §(Kvy02 + 04) det A2,3 - 506 det A1,3

where A; ; is the 2 x 2 matrix produced by removing row ¢ and column j from A.
Noting that det A3 3 and det A; 3 do not depend on K, we see that this determinant
can be made positive by choosing K, large enough. Doing the tedious calculations,
we end up with the bound (3.16f). The rest follows as in Theorem 2. m

Using the Lyapunov function in the above proof, a non-zero u(t) gives (for small x)
V< =Amin(A)IX]* + [1%]||ul
which shows that

. )\I‘IHII(A) ~112 ~ 2
< Zmind ) >
e R B ol
implying
~ ~ _M _ 2
1%(1)]| < 1% (ko) e "5 t°’+( iy |u<7>l) (3.17)
)\min(A) to<T<t

assuming the supremum exists. Since the conditions in Theorem 3 do not hold
globally, we conclude as in Section 3.3.4 a local variant of ISS:

Corollary 2 Assume that the conditions of Theorem 3 holds for all (§,w) € A x )
on |X|| < r and |u| < ry. Then there exists positive constants k1 and ko such
that (3.17) holds for [|x(to)|| < k1 and sup,~,, [u(t)| < ka. o

3.5 Discussion of Assumption 2

This section discusses Assumption 2 for two friction models. Most friction models
can be written as a function of (lateral and longitudinal) tyre slips F; = F;(\; 4, )\i,y)
only®, and depend thus on vehicle velocity only indirectly. Therefore, we can write
the partial derivatives

aFi,x . 8E,x 8)\1,:)3 + aE,x 8)\1',3/ . aFl,x COSOZ‘J
vy N Oz Ovy ONiy Ovy N Oy Z(%y
(‘3Fi,y _ (‘9Fi,y 8)\2'795 i BFi,y 8)\1-7y _ 8Fi7y cos Oéi%
8vy 8)\1795 (%y 8)\1-4, 8Uy 3)\1'731 avy
where we have assumed 65\5; = 0. Since
(%zi -1

g _ <0
dvy, 14 tan?(6; — o) ’

we see that it is the lateral slip partial derivatives that are significant (assuming
a; < m/2).

5Some may depend on tyre slip angle a; or tan«; instead of Ai,y = sina;, but this does not
change the analysis.

3.5 Discussion of Assumption 2
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3.5.1 Linear friction models

Linear friction models says that the friction forces are proportional to the slips,

<Fi,x()\z,ia Ay,i)) _ (Cx)\z,z>

Fiy(Aa,is Ay,i) CyAiy

where C, and C, are tyre (slip and cornering) stiffness coefficients. We conclude
that Assumption 2 holds as discussed in Remark 1, for some a < 7/2.

3.5.2 The magic formula tyre model

The “magic formula tyre model” [17] is a widely used semi-empirical model for
calculating steady-state tyre forces. The “combined slip” magic formula provides
similar formulas for lateral and longitudinal tyre forces,

Fx()\xa >\y) = Gx(Ay)FxO()\:c);

Fy(Aas Ay) = Gy(Az) Fyo(Ay)
where we have simplified somewhat since one of the parameters in G, (G,) that
according to [17] depends on A; (),) is assumed constant. Furthermore, we use
Ay = sina instead of tanc, but this is not significant for the conclusions drawn
here. For notational convenience we drop the dependence on wheel index i in this

section.
The functions Fjo and Fyo are the “pure slip” formulas,

Fro(As) = DpsinGy,  Fyo(Ay) = Dysingy
where
(r = Cyparctan{ B, A\, — E(By A, — arctan B \;)}
¢y = Cyarctan{By\, — E,(By\y — arctan By\,)}.
The functions G, and Gy are defined as Gz()\y) = cosn, and Gy(\;) = cosn, where
Ny = Cay arctan{Bagz Ay — Egz(BgeAy — arctan BggAy) }
ny = Cay arctan{ Bgy Az — Egy(BayAs — arctan BgyAz) }.
We then have that

8Fy_

ByCyDy (1= By (1= 157 ) ) cos
on, ‘

Gy()\$) 1+ <‘2
Y

Since G(A;) > 0 and E, <1 [17, p. 189], % > 0 for ¢, < 7/2. For “shape factor”

Cy < 1, this holds for all \,. For Cy > 1, the friction force declines for large Ays,
and g% > 0 only to the left of the peak of the friction curve, that is, for |A\,| < A

where ) is defined by
ByA — tan ﬁ
~ By\ —arctan(By\)’

£y

3.5 Discussion of Assumption 2
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Furthermore,
1 .
Ny oV L+n2
We see that sign gf\% = —sign(AzAy) (since sign Fyo(A;) = sign(, = sign\, and

signn, = sign \y).
From the above, we make the following observations:

e For sufficiently small side-slip angles (that is, |\,| < A) and small §, the first
part of (3.2) is negative and dominates the second part.

e For \; =~ 0 the second part of (3.2) is approximately zero, and hence dominated
by the first part.

e For large side-slip angles, the first part of (3.2) will get less negative, and
even positive if C;, > 1. However, in the case of braking (A, < 0), then the
second part of (3.2) will often contribute in fulfilling the assumption: Since

sign ?955 = sign A\, sign o, assuming that sign o = sign 9, gives gf; sind < 0.

In conclusion, (3.2) is negative for realistic slip values and sufficiently small steer-
ing angles for tyres with C,, < 1. For tyres with Cy, > 1, then for some combinations
of \; and (large) Ay, it might be positive. Since it is the sum for all tyres that should
be negative, a positive summand for one (or two) wheel(s) might be weighed against
negative summands for the other wheels (for instance, rear wheels will often have
lower side-slip angles due to small steering angle values). Finally, we remark that
Assumption 2 is merely a (conservative) sufficient condition for stability.

3.5.3 Convergence monitoring

When a friction model is available, then (3.2) can be evaluated based on the esti-
mates, either online or offline. Since (3.2) essentially is the only assumption that is
required for the analysis herein, the value can be used for convergence monitoring,
somewhat akin to monitoring covariances in an EKF, and corrective steps can be
taken when the value becomes positive.

3.6 Experimental results

In this section, the observers are applied to experimental data from a car. The
velocity estimates (0, 7y, and side slip angle 8= arctan(—o,/9,)) are compared
to velocity measurements obtained using an optical sensor placed in front of the
vehicle.

The gains of the observers are the same in all experiments. The gains in the
longitudinal velocity observer vary between 0 and 200 (but such that Z?:o Ki(az) >
0 always), and K,, = 1/m and K, = 20.

Initial conditions for the observers are one of the wheel speeds (transformed to
CG) for v, and 0 for 9, and 7. Experimenting with the initial conditions indicate

3.6 Experimental results
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a large region of attraction (divergence was not observed as long as the choice of

maximum friction coefficient pr in the friction model is reasonable).

3.6.1 Modular observer
Flat dry road, slalom maneuver

The maximum friction coefficient used in the observer is set to ug = 1. The longi-
tudinal velocity is shown in Fig. 3.4, while lateral velocity is shown in Fig. 3.5. The
quality of both estimates are fine, so the vehicle side slip estimate, shown in Fig. 3.6,
is also good.

v, [m/s]

12 L L L
0 5 10 15 20 25 30

Time[s]

Figure 3.4: Estimate (solid) and measurement (dashed) of longitudinal velocity,
slalom maneuver.

Ice, driving in circle

The maximum friction coefficient used in the observer is set to puy = 0.3. The
longitudinal velocity is shown in Fig. 3.7. The estimate is noisy, mainly due to
large variations in the wheel speed measurements (caused by varying longitudinal
slips). The estimate is rather inaccurate between 16.5-17.5s. This is when the
lateral velocity is at its highest, and inspection of the wheel speed measurements
reveals that three of four wheels give a bad indication of vehicle velocity. In this
situation the “open loop” strategy of integrating longitudinal acceleration (induced
by low gains in wheel velocity injection terms) is not improving the estimate, since
the Coriolis term (not taken into account in the modular approach) dominates the
longitudinal acceleration.

3.6 Experimental results
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V. [m/s]
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\J
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Time[s]

20
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30

Figure 3.5: Estimate (solid) and measurement (dashed) of lateral velocity, slalom

maneuver.

40

B[]

-30 :
0

15
Time[s]

30

Figure 3.6: Estimate (solid) and measurement (dashed) of side slip, slalom maneu-

ver.
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The lateral velocity is shown in Fig. 3.8. The quality of this estimate is accept-
able, as is the vehicle side slip angle estimate, Fig. 3.9. The reason for lower quality
estimates in this experiment is mainly due to that the friction model may be less
accurate on ice, combined with larger slip values. Another reason is that driving in
circle may be a more difficult maneuver to estimate.

It should also be mentioned that the optical measurements of velocity might
exhibit larger errors in this experiment, compared with the first experiment.

25

24

23

22

21

20

v_ [m/s]

X

19

18

17

16

15 L L L L
0 5 10 15 20 25

Time[s]

Figure 3.7: Estimate (solid) and measurement (dashed) of longitudinal velocity,
circle on ice, modular observer.

3.6.2 Combined observer

The data from the ice maneuver is also run through the full observer design (Sec-
tion 3.4), see figures 3.10-3.12. The slalom on dry road-data are omitted, since the
results are essentially indistinguishable from the modular observer in Section 3.6.1.

We can see that in the period around 16 seconds, the longitudinal velocity esti-
mate is considerably improved. In this period, there is a large negative longitudinal
acceleration, which means the observer puts little weight on wheel speed measure-
ment and instead integrates the lateral acceleration and the Coriolis term. It is the
inclusion of the Coriolis term that has improved the estimate compared with the
modular approach.

In the same period, the lateral velocity estimate has apparently become worse
than in the cascaded approach. However, the better estimate in the cascaded ob-
server is probably due to “luck”, the erroneous longitudinal velocity estimate helps
integrating the lateral velocity estimate in the right direction.

The deviation in lateral velocity in this period is probably due to a combination

3.6 Experimental results Page 32



STREP project 004175 CEMACS Public Deliverable D10

v [m/s]

-14 ! ! ! !
0 5 10 15 20 25

Time[s]

Figure 3.8: Estimate (solid) and measurement (dashed) of lateral velocity, circle on
ice, modular observer.

BI°

0 5 10 15 20 25
Time[s]

Figure 3.9: Estimate (solid) and measurement (dashed) of side slip, circle on ice,
modular observer.
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of

e less accurate friction model for large lateral slip values, and (more likely)

e the maximal friction coefficient changes: Inspection of the results indicates that
the friction coefficient increases significantly after about 15 seconds, before it
decreases again at around 18 seconds (in the same period, the ESP-flag is
on). Setting the friction coefficient to 0.5 between 15 and 18 seconds gives
significantly better estimates of lateral velocity (not shown here).

25

v_ [m/s]

X

15 L L L L
0 5 10 15 20 25

Time[s]

Figure 3.10: Estimate (solid) and measurement (dashed) of longitudinal velocity,
circle on ice, full observer.

3.6.3 Verification of Assumption 2

As a verification of the main convergence assumption (Assumption 2), the condi-
tion (3.2) is calculated on basis of the friction model, using the velocity estimates and
our guess of the maximal friction coeflicient. The results are plotted in Figure 3.13
for both time series, and we see that the condition is always satisfied in both cases.
The friction model used, is an in-house friction model of similar complexity to the
magic formula tyre model. The complexity of calculating the condition using this
friction model, is in the same order of magnitude as the complexity of the observer,
which means that online convergence monitoring based on this condition should be
computationally feasible.
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Figure 3.11: Estimate (solid) and measurement (dashed) of lateral velocity, circle
on ice, full observer.

BI°

0 5 10 15 20 25
Time[s]

Figure 3.12: Estimate (solid) and measurement (dashed) of side slip, circle on ice,
full observer.
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Slalom man. [104 N/m/s]

Circle man. [104 N/m/s]

-3 I I I I
0 5 10 15 20 25

Time [s]

Figure 3.13: Condition (3.2) for slalom maneuver on asphalt, and circle maneuver
on ice. The curves verify that Assumption 2 is always satisfied in these test drives.

3.7 Concluding remarks

Nonlinear observers for vehicle velocity and side-slip was proposed, which was proved
to possess ISS-type stability properties under a certain condition on the friction
model. The observer performs well when applied to experimental data from a car.

The main advantage of using nonlinear observers compared to the Extended
Kalman Filter (EKF), is reduced computational complexity. While the number of
ODEs to solve for an EKF is 3/2n+1/2n?, nonlinear observers usually have to solve
n (the number of estimated variables) ODEs. In addition, for the EKF the nonlinear
ODE (and/or measurement equation) have to be linearized at each sample, which
along with monitoring of boundedness of the covariance matrix also might induce
considerable computation.

The few tuning knobs of the observer simplifies tuning compared to tuning the
covariance matrices of an EKF. For example, the observer of lateral velocity in the
modular approach has only two tuning knobs, with some hints on how to tune given
from the theoretical gain requirements.

A requirement for good performance of the observer, is information of maximal
friction coefficient between tyre/road, in addition to information of road bank angle,
and possibly inclination angle in the case of non-flat road. If the maximal friction
coefficient is not known nor measured/estimated, the observer for lateral velocity
in the modular approach can still be used if the longitudinal friction forces are
measured, by calculating the lateral friction forces based on these, for instance as
in [24].

Measurement errors such as bias in acceleration and yaw rate measurements, are
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not considered herein. Such practical issues are important for observer performance.
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Chapter 4

Preliminary velocity observer
design with friction adaptation

The theory document describes a monlinear adaptive observer for estimation of the
velocities when the friction coefficients are unknown. Lyapunov methods are used to
derive a stable adaptation law for friction.

4.1 Model

4.1.1 Car Dynamics

The car dynamics is written as [7]:

Uy = Vyr + ag, (4.1)
Uy = —vT + ay, (4.2)
1A
R T \F. .
T = 7 ; g, R(0;)F;(t,x,0;) (4.3)

where the nonlinear function F;(¢,x,6;) is defined as:
Fi (t, X,Qi) = F; (X,@i, 51‘, wi) (4.4)

since 0;(t) and w;(t) are known, measured and bounded signals for all ¢.
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4.2 Nonlinear Observer

4.2.1 Observer Dynamics

The observer equations are chosen as:

4
by = Byr + > Ki(a5) (vg,i — )
=1
4
by = —ber + af — Ky, > (mal — [0, 1JR(6:)Fi(t, %,6;))
=1

4
. 1
r= > gl R(6)Fi(t,%.0;) + K, 7
Z =1
where

ma?‘j = [0, 1]R(5¢)F,~(t,x,9,~) (45)

In this model we have assumed that the friction parameters ; are known. This
assumption will be relaxed when designing the adaptive observer.

4.2.2 Error Dynamics

The error dynamics is:

Uy = Dyr — i K;(a$)vs +u (4.6)
=1 ,
by = — U7 + Koy, Z[o, 1R(;) (Fy(t, x,0;) — Fy(t,%,6;)) (4.7)
=1
R G X i
F= ; gl R(5;) (Fi(t,x,0;) — Fi(t,%,0;)) — K,.F (4.8)

4.3 Lyapunov-Based Adaptive Friction Estimator
The main goal for the adaptive friction estimator is to replace the friction parameter
f with an on-line estimate 6.

Assumption Al:
Assume that the equilibrium point x = 0 of the nominal system x = f(t,x,0) is
ULES. Hence,

1
Vi(t,x) = §XTX (4.9)

4.3 Lyapunov-Based Adaptive Friction Estimator
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1s a Lyapunov function that satisfies:

er IXIP < Vit x) < ea (4.10)
oy oW 2
— 4+ —f(t,x,0) < — 4.11
o+ S .0) < —ea (1)
o
— | < 4.12
152 < et (112)

In the fortcoming we will consider the following two parametrizations of the friction
parameters:
4.3.1 Parametrization P1

The nonlinear function F;(¢, z, 6;) can be parametrized as a truncated Taylor-series
expansion in 6; such that:

F;(t,x,0;) := F.(t,x,0,)+ OFi(t, x.6:) (6; — 0;) (4.13)
' 90, 0;=0

or X o

Fz(ta X70i) = Fz(tv Xvei) + Fei (tv X70i)9i (414>
where 91 =0, — 9} and:
A OFi(t, X,Qi)
Fy (t,x,0,) = ————= 4.1

01( ’X7 ) 891 gi:éi ( 5)

This implies that: ) o

Hence:

=Fi(t,x.0;) — F,;(t,%.0;) — Fy. (t,%,0,)0; (4.17)
This can be written
Fi(t,x,0;) — F,(t,%,0,)= Fi(t,x,%,0;) + Fop, (t,%,0,)0; (4.18)
where: _
Fi(t,x,%,0;) = F;(t,x,0;) — Fi(t, %, 6;) (4.19)

In the adaptive case (4.18) is substituted into the error dynamics (4.6)-(4.8). This
gives one additional term due to Fy, (¢, %,0;)0; which can be overparametrized in the
friction parameters by using the following regressor models:

4
Ky, > [0, 1R(5;)Fo, (t,%,0,)0; := ¢, (£,%,0,, )0y, (4.20)
=1
14TR5F %,0i44)0i44 := &, (£,%,0,)0, 4.21
jzgl ( Z) 9,‘+4(tax7 i+4) i+4 - — Pp (t7X7 r) T ( . )
%=1

4.3 Lyapunov-Based Adaptive Friction Estimator
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where 9~vy € R?* and 6, € R* are the friction parameter errors:
0, = 01,02,05,04)" (4.22)
0,= (05,06, 0+, 0s] " (4.23)
The corresponding regressor vectors ¢y, (t, Z, évy) e R and ¢,(t,2,0,) € R are:

oy, (1 %, 0)
¢, (t,%,0)

r

>y

[ Ky, [0,1]R(61)Fg, Ky, [0,1]R(62)Fg, Ky, [0,1]R(d3)Fg, K,,[0,1]R(04)F0,]
[ 7.8/ R(61)Fo; 785 R(52)Fs, -85 R(03)Fs, -8 R(61)Fy, |

Yy Yy

The overparametrization is not critical since the main goal is to obtain convergence
of the state estimates whereas the parameters are only used as additional states in
order to achieve this.

An simplification could be to use one friction parameter for all the wheels im-
plying that only two parameters are needed.

4.3.2 Parametrization P2

The nonlinear function F;(t, z,0;) can also be parametrized as a linear function in
the friction parameter 6; such that:

Fi(t,x.0;) = A,(t,x)0; (4.24)

where is A;(¢,x) is the function F;(¢, z,6;) evaluated at the nominal value 6; = 1.
Moreover:
Ai(t,x) :=F,(t,z,1) (4.25)

This suggests that:

Fi(t,%,0;) = A,(t,%)0;+A,(t, %)6; (4.26)

>

Hence, the error term becomes:

Fi(t, x.00) — F, (6 %.0:) = Au(t x)0— (At %0+ At %))

t

= F;(t,x,0;) — F,(t,%,0;) — Ai(t,%)0; (4.27)

or R B N
F’i (ta Xaei) - Fz(tv 5\(’91) = Fl(t> X, 5\(’91) + Al(t’ X)GZ (428)

Then
4 ~ ~
Ky, Y [0, 1]R(6:)Aq(t, %)0; := ¢, (£, %,0,, )0y, (4.29)
=1
1 <& _ -

— > & R(0G)A(t, %)0;44 := ¢, (,%,0,)0, (4.30)

4.3 Lyapunov-Based Adaptive Friction Estimator
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where 9~vy € R?* and 6, € R* are the friction parameter errors:

00, = [01,05,05,04)" (4.31)
0,= (05, 06,07, 0] " (4.32)

The corresponding regressor vectors ¢y, (t, Z, évy) e R and ¢,(t,2,0,) € R are:

¢y, (t,%,0)=[K,, [0, 1JR(61)A1 K, [0, 1]R(02) Ay Ky, [0,1]R(55)As Ky, [0, 1]R(64)Ay]
o) (t,%,0)=] -8l R(61)A1 eI R(02)As FegJR(03)As 5-g/R(0s)A, ]

An simplification could be to use one friction parameter for all the wheels im-
plying that only two parameters are needed.

4.3.3 Error Dynamics for the Adaptive Observer
Choosing;:

vx—vyr—i—ZK ) (Vai — Uz)

=1
. 4 A~
by = —tur 4+ af — Ky Y (ma; — [0, 1JR(5)F(t, %, 91))
=1
—Zg txl,01+4)+K7“

where we have replaced 6 with the adaptive estimate 6 in the lateral and yaw equa-
tions. This gives the error dynamics:

4
Uy = byr — Y Ki(a$) T, + u (4.33)
=1
. 4 A
by = —er + Ky > [0, 1R(S;) (Fi(t, x,0;) — F(t, %, ei)) (4.34)
=1
4 ~
Z ( (t,%,0i14) — Fi(l, %, ei+4)) _K,F (4.35)

From Parametrizations P1 and P2 we have the following expression for the error
terms:

4.3 Lyapunov-Based Adaptive Friction Estimator
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This gives:
4
Uy = Uyr — ZKi(ag)f)x +u
=1
4
2 o ~ = ~ T ~ A 5
Vy = —UgT + Kvy 2[07 1]R(51)Fl (t, X, X,@i) + ¢vy (ta X, evy)eﬂy
i=1

4
. 1 - . -
F=—> g R(6:)Fi(t,x,%,0i14) — K7+ ¢/ (,%,0,)0,
2 i=1

This system can be compactly written as:

where
[ oyr = 32, Ki(ag)ts
£(t,x, 0)= | —Tor + Ky, 5[0, 1JR(8:)Fi(t, x, %,6;) (4.38)
|+ g/ R(6:)Fi(t, x, %,0;) — K, 7
00
B=|1 0 (4.39)
0 1
C o
o(t,%,0)= | Pb% ) O (4.40)
L 01><4 (br (t7X7 67‘)
N |pT AT
= 0,0, (4.41)
u
w= |0 (4.42)
0

4.3.4 Lyapunov Analysis

In the Lyapunov analysis we will assume:
Assumption A2:
The forward speed v, is known.

Assumption A3:
The estimator error system is forward complete in 6;(t) and r(t), that is the solutions

of the ODEs exist for all 0;(t) and r(t).

Consider the quadratic Lyapunov function candidate:

1 1~ ~ 1~ ~
V=X x50, 8, + GBI, (1.43)

This gives
V=Xt x.0) + 3y (60, (6.%,0,,)8,, ) +7 (6] (4.%,0,)8,) + 0], 1,16, + 071,16,

~T _ < . ~ ~ _ < . A ~
= XTE(x0) + By, (T30, + 60,(4%,0,))8, ) + 07 (1710, + 6,(t,%,8,)7)

4.3 Lyapunov-Based Adaptive Friction Estimator
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The error terms v, is given by the following ODE:

4

1 Yoy
i=1

The term z = 9, can also be computed using the friction model:
4 ~
ézlﬁw§:(an—KLHRwﬁaniﬁﬁ), 2(0) =0 (4.45)
i=1

where we have introduced the new state variable z to distinguish the solutions (4.44)
and (4.45). The initial value of z must, however, be chosen as zero corresponding to
zero lateral velocity v, since v,(0) is unknown (unmeasured). This implies that the
observer must be started when the car is at rest.

Choosing the adaptive laws as:

Ov, = —Tu, v, (t,%,0, )z (4.46)
6, = T,y (t,%,0,)7 (4.47)

finally gives _ .
V=V<0 (4.48)

by Assumption Al. Then by standard Lyapunov analysis the adaptive observer
is convergent and ¥ — x whereas évy and 6, are bounded. It also follows from
standard arguments that PE guarantees asymptotic stability (Matrosov’s theorem),
that is ¥ — 0,7, — 0, évy — 0, and 6, — 0 if system is PE. The requirements for
Parametrizations P1 and P2 are:
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t+T [ 4 4 T
— / (Z AiT(t,ic)RT(éi)gi> (Z AI(t,&)RT(&)gJ dt > o
t i=1 i=1

4.4 Robustification Schemes

The adaptive laws in the previous section are based on a plant model that is free
of noise, disturbances and unmodeled dynamics. The proposed schemes will be
implemented on an actual car that most likely deviate from the plant model on
which the design is based. In this section we propose several techniques to modify
the adaptive scheme and establish robustness with respect to bounded disturbances
and unmodeled dynamics.

4.4.1 Unknown Bounded Disturbances

It is well known that external disturbances may cause parameter drift. Assume that
unknown bounded disturbances d, and d, enters the error dynamics according to:

M%

by = Ko, Y _[0,1JR(5)Fi(t, x, %,0,) + ¢, (£, %,0,, )0, + d (4.49)
=1
o1 & - _
F=T Z gl R(0)F;(t, %, %,0i14) — K,7 + ¢ (t,%,0,)0, + d, (4.50)

1

These terms will propagate to the Lyapunov function according to:
V=x"f(t x,0) + v, (d) (t,%,9,,)0, + dy) +F (qﬁ:(t,fc, 0,)0, + dr> + éjyrgylévy +grte,
= XTE(t 3, 0) + 0, (L0100, + 60, (6.%,0,)5,) + 8] (1710, + 6,(%,0,)7) + Byd, + 7,
If the adaptive laws are chosen as (4.46)—(4.47) this results in:
V =x"£(t, x,0)+iydy + 7d, (4.51)

Hence, the parameter adaptation law will be will be sensitive to the time-varying
noise term since the error terms v, and 7 are driven by d, and d,.. However, precau-
tions for bounded disturbances can be taken by modifying the adaptation laws. We
will discuss several methods for this:

4.4.2 Dead-Zone Technique (Bound on Disturbances)

Peterson and Narendra [18] propose stopping the adaptation when the output errors
(z, 7) become smaller than prescribed values (Ay, A,) by introducing a dead-zone
in the adaptation law. This is due the fact that small tracking errors mainly contain
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noise and disturbances. This suggests that:

i —To, v, (t,%,0, )z |2] > A,
! 0 |z] <Ay

é _ _Fr(br(tafg ér)f ‘177'| Z Ar
" 0 |or| < Ay

Hence, by choosing (A, A,) sufficient large V becomes non-increasing outside the

dead zone. The choice évy = 0 and ér = 0 inside the dead-zone implies that the
cancellation of the error terms évy and ér in V no longer is satisfied. As a result
of this, V may grow inside the dead-zone. Hence, asymptotic convergence of the
plant output to the desired trajectory no longer can be guaranteed even when no
disturbances are present.

The choice of (Ay, A,) should be seen as a trade-off between robustness and
performance. A large value for implies that the parameter adaptation is less sensitive
for plant disturbances while a low yields better performance but increased possibility
for parameter drift. Still, mainly because of its simplicity and effectiveness, this
method is highly attractive to use.

4.4.3 Bound on the Parameters

If bounds on the desired parameter vector are known, instability due to parameter
errors can be avoided by a straightforward modification of the adaptive law. This
problem has been addressed by Kresselmeier and Narendra [14] for instance. They
assume that bounds (6 max, 0rmax) on the parameter vectors are known such that:

O,

< ey,maxv 0< Hy,max < 00 (4.52)

ér < Hr,maX) 0< 9r7max < o0 (453)

The adaptive law is modified as:

“ 2
. 0.
po . A ~ Yy ~
evy = _Fvy¢vy (t’ X, e’vy)z - evy 1= m f(gvya ey,max)
N 2
ér = _FT¢T(t’ 5(’ ér)f - é?“ 1- 977’ f(é ;er,max)

where ]|
B 1 if | Oé’ > OQlmax
f(a,0max) = { 0 otherwise

4.4.4 Sigma Modification Schemes

The two previous schemes assume that a bound on the disturbance vector or the
parameter vector is known. A popular robust adaptive control scheme where this a
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priori information is not necessary was proposed by Ioannou and Kokotovic [9]. This
scheme is usually referred to as the o-modification scheme. To avoid the parameters
growing unbounded in the presence of bounded disturbances additional stabilizing
terms

— oy,

— 0,0,

with o, > 0 and o, > 0 can be used in the adaptive laws. Hence:

v, = —Lu, b, (t, X, QUy)z —oyby,

0, = —Ty¢,(,%,0,)7 — 0,0,

However, introduction of the terms —Uyévy and —o,0, implies that the origin is no
longer the equilibrium point. This implies that the parameter estimates will not
converge to their true values even for a PE reference input or the case when all ex-
ternal disturbances are removed. To overcome the limitations of the o-modification
scheme Narendra and Annaswamy [16] proposed a slight modification of the above

scheme, that is:

0, = —Tu, bu, (1, %, éyy)z —ay|12]| bu,

0, = —Tv¢.(t,%,0,)7 — o, ||| 0,

The motivation for using the gains o, ||2|| and o, ||7|| instead is that this proportional
term tends to zero with the tracking errors ||z|| and ||7||. Hence, parameter conver-
gence to the true parameter values under the assumption of PE can be obtained
when there are no external disturbances present.

A more detailed discussion on convergence properties, stability and implemen-
tation considerations are found in Narendra and Annaswamy [16]. This text also
includes stability proofs for the above mentioned schemes.

4.5 Experimental Results

Some preliminary experimental results are presented below. A parametrization
where two friction coefficients are adapted, one for lateral velocity and one for yaw
rate. Figures 4.1-4.5 are for the slalom maneuver case in the previous chapter, where
the friction coefficient is high (dry asphalt). Figures 4.6-4.10 are for the circle on ice
maneuver, with a low friction coefficient.

4.5 Experimental Results
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Time[s]

Figure 4.1: Estimate (solid) and measurement (dashed) of longitudinal velocity, high
friction coefficient.

vy[m/s]

Timel[s]

Figure 4.2: Estimate (solid) and measurement (dashed) of lateral velocity, high
friction coefficient.
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Figure 4.3: Estimate (solid) and measurement (dashed) of vehicle side slip, high
friction coefficient.
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Figure 4.4: Adapted lateral velocity parameter, high friction coefficient.
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Figure 4.5: Adapted yaw rate parameter, high friction coefficient.
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Figure 4.6: Estimate (solid) and measurement (dashed) of longitudinal velocity, low
friction coefficient.
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Figure 4.7: Estimate (solid) and measurement (dashed) of lateral velocity, low fric-
tion coefficient.
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Figure 4.8: Estimate (solid) and measurement (dashed) of vehicle side slip, low
friction coefficient.
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Figure 4.9: Adapted lateral velocity parameter, low friction coefficient.
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Figure 4.10: Adapted yaw rate parameter, low friction coefficient.
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Chapter 5

Preliminary velocity observer
design with multiple model
friction estimation

5.1 Introduction

The main objective is to augment the nonlinear automotive vehicle velocity observer
in [7] with a mechanism for estimation of key friction parameters such as the adhesion
coefficient.

5.2 Multiple model friction estimation

The overall idea is illustrated in Figure 5.1, where a number of friction models
are evaluated in parallel with the nonlinear velocity observer. The friction models
predict the lateral force at each wheel and uses this to predict the lateral acceleration
of the vehicle, which is compared to the measured lateral acceleration. The output
of each friction model is the lateral acceleration residual, and the multiple friction
models differ only in the adhesion coefficient.

The ”Filtering and decision logic” block contains the following functions

e High-pass filtering of the residuals in order to avoid interaction between the
nonlinear observer and the multiple model friction estimator, since the multi-
ple friction models rely on velocities estimated by the nonlinear observer using
the current adhesion coefficient estimate. This is beneficial because the non-
linear observer will attempt to make the residuals with the current adhesion
coefficient estimate small, even if this is an incorrect estimate. Hence, there
is most information about the friction model errors in frequencies above the
nonlinear observer bandwidth.

e Computation of a moving-window average of each residual. This is achieved
by taking the absolute value of the residual, and low-pass filtering with a first
order filter with bandwidth 0.5 rad/s.
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Nonlinear , ,
. Velocity estimates
velocity .

observer

Measurements

—* Friction
model 1

Fllterlng and Friction model estimate
Frict residuals decision
— Friction logic
medelet—
Friction
model N

Figure 5.1: Block diagram with state observer using multiple friction models

e The purpose of the decision logic is to compare the friction model residuals
resulting from different adhesion coefficients. Based on these residuals it will
attempts to select the best estimate among them. In conditions with suf-
ficiently high persistence of excitation, it simply selects the one that gives
smallest averaged residual.

e The decision logic monitors persistence of excitation, and will keep the previous
adhesion coefficient estimate if there is little excitations. This can be detected
if i) all residuals are small, ii) the difference between all the residuals are small,
iii) the estimate with smallest residual is not much better than the previous
estimate.

e It is experienced that in driving conditions with low persistence of excitation,
the velocity observer can have give extremely inaccurate estimates if the adhe-
sion coefficient estimate is too low. On the other hand, an over-estimate tends
to give a bias but significantly less errors. To counteract these problems the
adhesion coefficient estimate is periodically reset (every 2 seconds) to a high
value pg = 1, and the associated moving-window filter state is also reset.

The key issue determining the performance of the velocity observer is our ability
to detect situations with low persistence of excitation and prevent very large errors
in the observer due to too low adhesion coefficient estimate.

5.2 Multiple model friction estimation Page 54



STREP project 004175 CEMACS Public Deliverable D10

5.3 Experimental results

Preliminary experimental results with slalom manoeuvre on dry asphalt are shown
in Figures 5.2 - 5.5. Preliminary experimental results on ice are shown in Figures

5.6 -95.9.

vy [mi/s]

12 1 1 1
0 5 10 15 20 25 30
time [s]

Figure 5.2: Estimate (solid) and measurement (dashed) of longitudinal velocity,
slalom manoeuver on dry road, modular observer.
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Figure 5.3: Estimate (solid) and measurement (dashed) of lateral velocity, slalom
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manoeuver on dry road, modular observer.
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Figure 5.4: Estimate (solid) and measurement (dashed) of side slip, slalom manoeu-
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ver on dry road, modular observer.
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Figure 5.5: Estimate of friction coefficient, slalom manoeuver on dry road, modular
observer.

25

vy [mi/s]

time [s]

Figure 5.6: Estimate (solid) and measurement (dashed) of longitudinal velocity,
circle on ice, modular observer.
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Figure 5.7: Estimate (solid) and measurement (dashed) of lateral velocity, circle on

ice, modular observer.
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Figure 5.8: Estimate (solid) and measurement (dashed) of side slip, circle on ice,

modular observer.
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Figure 5.9: Estimate of friction coefficient, circle on ice, modular observer.
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