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Abstract— The joint estimation of multiple carrier frequency
offsets (CFOs) and channel state information (CSI) in a multibase
MIMO downlink system is considered here for the case of a
fading channel. The multiple CFOs result from independent
local oscillators at each basestation (BS), and cause accumu-
lation of phase errors that compromise beamforming accuracy.
Using previously devised multiple CFO estimation techniques for
simultaneously transmitted training sequences in a non-fading
channel, we begin by examining the effects of fading on a linear
channel state estimate. An example illustrates that a fade rate
threshold can be defined after which linear channel estimation is
infeasible. Because of the dependence of the CFO estimators on
the CSI estimate, this threshold applies to the CFO estimates as
well. As a way to combat the channel variation, the maximum
likelihood metric is modified to accommodate a parameterized
fading channel estimate.

I. INTRODUCTION

To achieve a high-capacity multiuser MIMO system, chan-
nel state information (CSI) is the most powerful tool available
to the communications engineer. With high quality CSI, the
inherent diversity of the multipath in the system can be used
to create virtual channels that are independent of one another.
These channels can be used as a means to eliminate inter-user
interference without having to resort to time and/or frequency
expansion. If the channel state is static, then these virtual
channels can be created once and used indefinitely; for fading
channels, periodic channel estimation is necessary for update
purposes. The virtual channels are very sensitive to errors in
the CSI, as demonstrated in [1].

As a means to increase system capacity further, coordinated
multibase MIMO (CMB-MIMO) systems, as proposed in
[2],[3],[4], share information in order to create a single, very
large MIMO system. For CMB-MIMO, the carrier frequency
offset (CFO) between each basestation (BS) is capable of
disrupting the virtual channels. For example, if the downlink
of a CMB-MIMO system relies on spatial zero forcing (ZF)
to separate signals to different users, degraded CSI resulting
from CFO can cause some loss of orthogonality, and therefore
increased interference and reduced capacity [5].

For BS frequency accuracy of, for example, ε0 = 1 ppm,
and a static or slowly time-varying channel, it is the CFOs that
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cause the deterioration of CSI with time. To ensure that the
estimation of both CFO and CSI is done in an efficient and
timely manner, simultaneous training sequence transmission is
considered. Estimators that can achieve the Cramer-Rao lower
bound have been demonstrated [6],[7].

In the case of fast fading channels, however, the assumption
that the CFO is the main cause of deterioration for the CSI no
longer holds. The accuracy of joint CFO and CSI estimation
in a fading channel must be studied. This paper investigates
methods of simultaneous estimation of multiple CFOs and
CSIs in a time-varying fading channel. It appears to be the
first analysis of this problem.

II. BACKGROUND

A. System Model

In this study, we consider a time-varying and frequency-flat
channel. An extension to the metric used here and presented
in [7] accommodates channels that exhibit static frequency
selective characteristics. At the receiver, the signal is down-
converted to baseband and matched filtered. The output of the
matched filter contains sufficient statistics at one sample per
symbol, given that the influence of the CFO over the signaling
pulse duration is negligible. The signal as observed at the
receiver is affected by multiple CFOs; the reason for these
CFOs can be attributed to either an independent Doppler effect
on each multi-path [6] or to independent local oscillators (LOs)
at each transmit antenna array [5].

We will assume that the multiple CFOs are a result of
the independent LOs posed in the CMB-MIMO system. An
orthogonal multiuser technique is used by multiple BSs to
mitigate interference between transmitted streams. BS CFOs
cause phase errors that accumulate in the time between mo-
bile subscriber (MS) channel estimation and receipt of those
estimates at the BSs, as well as during the transmission.
The phase errors degrade the orthogonal channels that were
established by the coordinated beamformers, causing increased
interference and reduced capacity. This provides the motive for
CFO estimation in multibase systems. Compensation will be
considered in a future publication.

The proposed model is shown in Fig. 1, and consists of B
BSs, each with NT antennas. The complex scalar hb,t,m(n)
contains the channel gain between the tth antenna of the bth
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Fig. 1. Coordinated MU-MIMO downlink model

BS and the mth antenna at the MS, where the index n refers
to the nth symbol interval and NR is the number of antennas
at the MS. The CFO is considered as the frequency offset of
the LO from an ideal carrier frequency. Of course, the MS has
a CFO of its own, and any estimates of BS CFO are relative
to the MS CFO. For the purposes of this paper, it is assumed
that the MS CFO is zero. The received sample from the mth

receive antenna at the nth symbol interval is

rm(n) =
B∑

b=1

NT∑
t=1

xb,t(n)hb,t,m(n)ejcbn + zm(n). (1)

The scalar cb is the unwanted phase offset of the bth BS
normalized by the symbol rate (detailed in the following
section), the complex scalar xb,t(n) contains the transmitted
symbol from the tth antenna at the bth BS, and the complex
scalar zm(n) contains the additive white Gaussian noise at the
mth MS antenna. The xb,t(n) satisfy

∑
t |xb,t(n)|2 = PBS ,

where PBS and EBS = PBSTs are the total transmit power
and transmit energy from each BS, respectively. The variance
of the individual random channel gain hb,t,m(n) is set to

E
[∣∣hb,t,m(n)

∣∣2] = 1, and does not reflect realistic system
parameters such as shadowing or any particular cellular struc-
ture. The communication system is made up of a homogenous
cloud of BSs and MSs.

The CFO estimates will be made using training sequences
(TSs) that have been transmitted synchronously from the BNT

transmit antennas. The TS matrix for each transmit antenna
Xb,t = diag (xb,t(1) · · ·xb,t(N)) after CFO rotation is defined
as a new matrix U. The set of equations used to describe r
are:

rm = Uhm + zm (2)

= [rm(1) · · · rm(N)]T

U =
[
U1,1 U1,2 · · · UB,NT

]
(3)

Ub,t = Xb,tDb(cb) (4)

hm =
[
hT

1,1,mhT
1,2,m · · ·hT

B,NT ,m

]T
(5)

hb,t,m = [hb,t,m(1) · · ·hb,t,m(N)]T

zm = [zm(1) · · · zm(N)]T ,

where Db(cb) is the N×N BS CFO matrix detailed in Section
II-B. For conciseness, the vector r is used to represent the
concatenation of the NR rm vectors. The vector r is then

r =
(
U ⊗ INR

)
h + z (6)

=
[
rT
1 · · · rT

NR

]T

z =
[
zT
1 · · · zT

NR

]T

h =
[
hT

1 · · ·hT
NR

]T
, (7)

where the ⊗ operator represents the Kronecker product.

B. Carrier Frequency Offset

As presented in [5], the progressive phase rotations repre-
sented by the D matrix can be understood as a perturbation
on the channel state that degrades the orthogonality of the
transmit and receive filters. This provides motivation for
finding a high accuracy CFO estimate.

The BS CFO matrix Db(cb) from (4) represents the rotation
of the symbols due to the CFO of the bth BS LO, where

Db(cb) = diag
(
1 ejcb · · · ejcb(N−1)

)
. (8)

The variable cb = 2πfbTs represents the normalized CFO with
a CFO of fb = ε0fc Hz, a carrier frequency of fc Hz, and a
symbol period of Ts seconds.

III. CFO AND CSI ESTIMATION

Training sequences for channel estimation are generally
comprised of an initial long sequence, followed by periodic
short sequences designed for estimate updates. Thus, the
TSs necessarily take up a portion of the available channel
throughput; the higher the required accuracy of the CFO and
CSI estimates, the larger this ratio becomes. This loss in
throughout can be partially mitigated by optimizing the TS
length and symbol energy [8]. To further minimize the loss in
throughput, TSs can be transmitted simultaneously from all BS
antennas, a technique used in the joint CFO/CSI estimators in
[7] and [9]. However, these simultaneous training techniques
were designed assuming a quasi-static channel. To begin with,
we will provide a brief summary of some existing quasi-
static channel CFO and CSI estimators for simultaneous TSs.
The effects of the fading channel on these estimators will be
covered in the following section.

For the quasi-static channel, all estimators referred to in this
work rely upon a least-squares (LS) estimate of the channel
state. The length-BNNT vector h from (7) is reduced to the
length-BNT vector hQ and the N × BNNT matrix U(c)
from (3) is reduced to the N ×BNT matrix UQ(c) when the
channel is quasi-static. Solving for the maximum likelihood
(ML) joint CFO and CSI metric using (6) results in

Λh(c,hQ) = ||r − UQ(c)hQ||2, (9)



where UQ(c) = UQ(c) ⊗ INR
. The LS estimate ĥQ is used

to remove the dependence of (9) upon hQ, where

ĥQ =
(
U

†
Q(c)UQ(c)

)−1

U
†
Q(c)r. (10)

Inserting (10) into (9) and simplifying results in the metric
being solely dependent on c,

ΛQ(c) =
NR∑

m=1

r†mUQ(c)
(
U†

Q(c)UQ(c)
)−1

U†
Q(c)rm.

(11)
The estimate ĉ of c from maximization of (11) can then be
used in (10) to find ĥQ.

A. Simultaneous TS

In [9], Ahmed et al. exploit the fact that in certain cases,
the off-diagonals of the covariance matrix U†

Q(c)UQ(c) will
be negligible compared to the diagonals. This approximation
allows each CFO to be estimated independently. In practice,
this approximation could be valid when the sequences are short
enough to avoid accumulation of sufficient phase difference
to alter the correlations between the TSs. We will refer to
this technique as ST-AO for “simultaneous training - assumed
orthogonalization.” Since the performance of the ST-AO esti-
mator is contingent on U†

Q(c)UQ(c) being diagonal, it is very
sensitive to accumulation of the CFO. As N or the maximum
CFO cmax increase and the off-diagonals of U†

Q(c)UQ(c)
grow, the sequences will be long enough to allow accumulation
of the CFO. The result is an error floor at high SNR, which is
dependent upon N and the maximum normalized CFO cmax.

To compensate for the off-diagonals that occur in
U†

Q(c)UQ(c) without resorting to the computationally inten-
sive full ML search, reduced complexity estimators based on
the Newton method were proposed in [7]. These estimates
were shown to converge to the Cramer-Rao Lower Bound at
higher SNRs for all values of cmax. We will refer specifically
to the unsegmented ST-N technique, which stands for “simul-
taneous training - Newton.”

The success of any simultaneous multiple CFO estimator
based on the metric in (9) is contingent on the existence of
the inverse of U†

Q(c)UQ(c), and in turn UQ(c) should satisfy
rank (UQ(c)) ≥ BNT . If this rank condition is not met,
U†

Q(c)UQ(c) is singular. Thankfully, the TS matrix X can be
composed of orthogonal or quasi-orthogonal sequences. Doing
this ensures that rank (X) = BNT , as advised in [10]. This
in turn leads to rank (UQ(c)) = BNT .

IV. EFFECT OF TIME-VARYING CHANNEL

The following sections present results of the CFO and CSI
estimators in fading channels using Monte Carlo simulations.
All simulations use CFOs that are uniformly distributed be-
tween [−cmax,+cmax]. The channels are Rayleigh distributed,
with a mean SNR of ΓBS = EBS/N0, and have a Jakes spec-
trum such that the time autocorrelation function for channel
hb,t,m is

E [hb,t,m(n)hb,t,m(p)] = J0 (2πfDTs (n − p)) . (12)
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A. CSI Estimate

Since all of the estimators presented in Section III-A use a
LS estimate of the CSI, the expression from (10) is used here.
Fig. 2 demonstrates the effect of fast fading in a system with
B = 4, N = 64, and the maximum CFO set to cmax = 0 and
0.01. Since the actual CSI h changes from symbol to symbol
and contains BNNT complex values, but the estimated CSI
ĥQ is a snapshot and contains only BNT values, the mean
square error (MSE) of the CSI is defined as

MSEh =
1

BNNT

N∑
n=1

∣∣∣h (n) − ĥQ

∣∣∣
2

, (13)

where h(n) and hQ are both length-BNT vectors. The figures
show MSEh after averaging over 104 Monte Carlo simula-
tions. First, it is evident that non-zero CFO has minimal effect
on the CSI MSE when compared to the SNR and fade rate.



10
−6

10
−5

10
−4

10
−3

10
−9

10
−8

10
−7

10
−6

10
−5

 

 

fDTs

M
S

E
c

ΓBS = 10 dB

ΓBS = 20 dB

ΓBS = 30 dB

ΓBS = 40 dB

Fig. 4. Effect of Fading Channel on ST-N CFO Estimate MSE of ĉ; B = 4,
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Second, a threshold can be loosely defined above which an
increase in the fade rate will result in a increase in MSEh;
this increase is proportional to the square of fDTs, due to the
Jakes autocorrelation function being approximately quadratic
for small argument values. This threshold can be used to
determine a maximum frame size. Third, an increase in the
SNR results in a linear drop in MSEh, since there is no
diversity effect in estimation of the CSI. Note that systems
with higher SNR are more sensitive to the fading channel,
and are subject to a lower fading threshold.

In Fig. 3, ST-AO and ST-N are compared over both the
number of BSs and the fade rate. It is immediately obvious
that ST-AO is incapable of handling the effect of the CFO,
regardless of the fade rate. ST-AO cannot cope with additional
BSs because it disregards any cross-correlation due to CFO
on the symbols; additional BSs result in extra interference for
the estimator. For ST-N, an increase in B does not result in
an increase in MSEh, since ST-N accommodates the cross-
correlation coefficients in (11).

B. CFO Estimate

The effect of the fading channel on the ST-N CFO estimate
follows the trend shown for the CSI estimate closely. Fig. 4
shows the results of the CFO MSE, defined as

MSEc =
1
B

B∑
b=1

|cb − ĉb|2 , (14)

where an average of 104 Monte Carlo simulations was used to
generate the curves. Since the simultaneous TS CFO estimate
relies inherently on the CSI estimate, it suffers the same
degradation as the fade rate increases.

By using the diversity and extra SNR provided by multiple
MS antennas, CFO estimator performance can be improved.
Fig. 5 demonstrates this for a variety of NR values. For
MS antennas that experience independent fading, additional
antennas result in a downward shift of the MSE curve.
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V. MODIFICATION OF THE ML METRIC

The previous section showed that fast fading rapidly de-
grades the quality of multiple CFO estimates when the channel
is assumed to be static over the duration of the training
sequence. It is a new result, but somewhat to be expected.
In this section, we show how to improve on the estimation by
taking explicit account of the variability of the channel.

Given the assumption that the channel is time-varying, the
UQ(c) and hQ in (9) must be replaced with U(c) and h, as in
(7). Examining U(c) and (9), the static channel estimate ĥQ

becomes undefined; since the channel changes between each
symbol time, the rank requirement of the TS matrix effectively
changes to rank (U(c)) = BNNT . This requirement is
impossible to meet with a static channel estimate. A channel
estimator capable of operating in the fading channel would be
more appropriate. The channel estimator can then be integrated
into the metric in (9), which can be rewritten as

Λh (c,h) = ||r − U(c)h||2. (15)

To provide a good fading channel estimate, we suggest a
parameter-based estimator that uses eigenvectors of the chan-
nel autocorrelation matrix as basis functions. This estimator
is similar in construction to [11], which uses polynomials as
basis functions. First, define the N×N Toeplitz channel auto-
correlation matrix as R, where Rn,p = J0 (2πfDTs(n − p)).
Next, the eigenvectors corresponding to the Pj largest eigen-
values of R are represented in the N × Pj basis matrix Qj .
The estimation parameters âb,t,m are then found such that

ĥb,t,m = Qj âb,t,m (16)

is the channel estimate. A least squares solution to âm =[
aT

1,1,maT
1,2,m · · · aT

B,NT ,m

]T
as a function of the CFO c is

âm(c) =
(
Q†U†(c)U(c)Q

)−1
Q†U†(c)rm, (17)
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ĥQ
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B = 4, N = 64, ΓBS = 30 dB, cmax = 0, NR = NT = 2

where Q = Qj ⊗ IBNT
. The expressions in (16) and (17) can

be used to replace h in (15), resulting in a new ML metric

ΛF (c) =
NR∑

m=1

r†mU(c)Q
(
Q†U†(c)U(c)Q

)−1
Q†U†(c)rm.

(18)
Note that now the rank requirement changes to
rank(Q†U†(c)U(c)Q) ≥ BNT Pj , which is achievable
as long as N ≥ BNT Pj (since Q is N × BNT Pj and
rank(Q) = min(N,BNT Pj))).

Fig. 6 compares the MSEh of ĥ in (16) to that of ĥQ in
(10). The figure shows that the performance of ĥ is superior
in fast fading. The gap between ĥQ and ĥ in slow fading is
due to Pj . For every added parameter estimate, MSEh shifts
upwards. However, the use of multiple parameter estimates re-
duces the CSI estimate sensitivity to fDTs. Combined with the
results from Section IV-B, this suggests that the CFO estimate
will have similar benefits when Pj is chosen intelligently.

For the ST-N estimator in [7], this approach is not appli-
cable. The reason is due to the non-convex surface of ΛF (c),
which creates a number of local maxima. A sample ΛF (c)
is shown in Fig. 7 for B = 2 and fDTs = 10−3. The cause
of the non-convexity is the non-linear basis matrix Qj . The
use of ΛF (c) for CFO estimation will be the topic of a future
study.

VI. CONCLUSIONS

For synchronous cooperative multibase beamforming, once
the CFO is accurately removed, channel instability remains
as the sole limiting factor. The results demonstrate that above
a certain fade rate threshold, the MSE of both the CFO and
CSI estimates from existing schemes degrade on the order
of the square of the normalized fade rate. To accommodate
for the fading channel, modifications were made to the joint
CFO/CSI ML metric. The modifications used a parameterized
fading channel estimate based on the eigenvectors of the
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Fig. 7. Sample ΛF (c); fDTs = 10−3, B = 2, N = 64, ΓBS = 30 dB,
cmax = 0.01, NR = NT = 2

channel autocorrelation matrix. It was shown that the MSE
of the new CSI estimate is insensitive to increases in the
fade rate. For the example of fDTs = 10−3 and B = 4,
the parameterized fading channel estimate maintains a MSE
value of 10−4 while the linear estimate climbs to a MSE value
of 10−2. An investigation into CFO estimates using the new
metric is forthcoming.
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