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Abstract— The effect of carrier frequency offset (CFO) in a
coordinated multibase MIMO downlink system is considered.
We begin with evidence that uncompensated base station (BS)
CFOs can significantly reduce the achievable capacity of such
systems. Correction of the CFOs is desirable, and a critical step
in doing so is estimation of their values. We present a method
by which mobile subscribers (MSs) can estimate multiple CFOs
from training sequences received from the BSs. Compared to
existing estimators, the proposed estimator gives better accuracy
with a lower transmit power.

I. INTRODUCTION

COORDINATED multibase MIMO systems, as proposed
in [1],[2],[3], share information in order to create a

single, very large MIMO system. The information exchange
between the basestations includes data, complex channel gains,
and queuing information. Such coordinated systems have a
number of technical challenges to overcome before practical
implementation. For example, if the downlink of such a system
relies on spatial zero forcing (ZF) to separate signals to differ-
ent users, degraded CSI can cause some loss of orthogonality,
and therefore increased interference and reduced capacity. For
typical BS frequency accuracies (e.g., ε0 = 1 ppm), it is
the carrier frequency offsets (CFOs), more than the Doppler-
induced instability of the medium, that cause the deterioration
of CSI with time. In this work, the effect of independent CFOs
at each BS will be briefly examined in the context of a flat-
fading, symbol synchronous channel.

Ultimately, CFOs should be corrected. As a first step
towards this goal, they must be estimated. Therefore, our
second topic in this paper is a method for estimation of
the several CFOs by each mobile subscriber (MS). Unlike
existing methods [4],[5],[6] our method copes with loss of
orthogonality of training sequences and requires much less
peak power from the expensive radio power amplifiers.

II. BACKGROUND

A. System Model

The following system model, shown in Fig. 1, is inten-
tionally simplistic in order to keep the effects of CFO easily
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recognizable and to demonstrate the effects on coordinated
systems.

For a time and frequency invariant channel, the received
signal is downconverted to baseband and matched filtered.
The output of the matched filter contains sufficient statistics
at one sample per symbol, given that the CFO effect over the
signaling pulse duration is negligible. An orthogonal multiuser
technique is used by the BSs to prevent interference between
transmitted streams. However, BS CFOs cause phase errors to
accumulate in the time between MS channel estimation and
receipt of those estimates at the BSs, as well as during the
transmission. The phase errors degrade orthogonality, causing
increased interference and reduced capacity.

For B BSs and K MSs, each with NT and NR antennas
respectively, the model is shown in Fig. 1. Hk,b is the NR×NT

matrix of channel gains from the bth BS to the kth MS, which
we consider to be static over the estimation period. The CFO
is considered as the frequency offset of the LO from an ideal
carrier frequency. Of course the MS has a CFO of its own, and
any estimates of BS CFO are relative to the MS CFO. For the
purposes of this paper, however, it is simplest to assume that
the MS CFO is zero. For the kth MS, the vector of received
samples from the NR antennas at the nth symbol interval is

rk(n) =
K∑

i=1

HkD(cn)xi(n) + nk(n). (1)

The length-NR complex vector rk(n) contains the received
samples at the kth MS, the NR×BNT complex matrix Hk =[
Hk,1, · · · ,Hk,B

]
contains all channel gains for the kth MS,

the BNT × BNT complex diagonal matrix D(cn) contains
the unwanted phase offsets of the B BSs with the length-B
vector c containing the CFOs normalized by the symbol rate
(detailed in the following section), the length-BNT complex
vector xi(n) contains the transmitted signal from the B BSs to
the ith MS, and the length-NR complex vector nk(n) contains
the additive white Gaussian noise at the kth MS. The xi(n)
satisfy

∑K
i=1 x†

i (n)xi(n) = EBS , where EBS is the total
transmit energy for all MS and BS. The variance of the random
gain Hkq,bm for the qth antenna of the kth MS and the mth

antenna of the bth BS is set to E
[∣∣Hkq,bm

∣∣2] = 1, and does
not reflect realistic system parameters such as shadowing or
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Fig. 1. Coordinated multibase MIMO downlink model

any particular cellular structure. The communications system
is considered to be a homogenous cloud of BSs and MSs.

For this work, the zero-forcing downlink beamformer was
used. However, other downlink techniques could be substi-
tuted. The transmitted signal is constructed for the kth user
by using the nullspace of all other users. Defining H =
stack

(
H1,H2, · · · ,HK

)
, the (K−1)NR×BNT matrix H(−)

k

is H with all rows from user k removed and the unitary
BNT ×

(
BNT −(K−1)NR

)
matrix Φk has columns spanning

the nullspace of H(−)
k . We will refer to Φk as the transmit

filter. The transmitted signal is represented in the length-BNT

vector xk(n) = Φksk(n), with the length-(BNT−(K−1)NR)
vector sk(n) containing the transmit power and information
symbols for MS k. The length-NT vector yb(n) contains the
transmit signal for the bth BS, where

[
yT

1 (n), · · · ,yT
B(n)

]T =∑K
k=1 xk(n). The variance of each component of the noise

vector nk(n) is N0.

B. Carrier Frequency Offset

In the absence of any CFO, (1) is free of inter-user or inter-
symbol interference. With the introduction of an independent
CFO at each BS, each signal arriving at a MS will be shifted
in frequency to a different degree. The resulting progressive
phase rotations can be seen as a perturbation on the channel
state that degrades the orthogonality of the transmit and receive
filters.

The BS CFO matrix D(cn) represents the rotation of the
symbols due to the CFO at each BS LO, where

D(cn) = blkdiag
(
D1(c1n), · · · ,DB(cBn)

)
. (2)

The bth component matrix is Db(cbn) = ejcbnINT
, where

cb = 2πfbTs is the normalized CFO with a CFO of fb = ε0fc

Hz, a carrier frequency of fc Hz, and a symbol period of Ts

seconds.
Since the signal arriving at each MS is a combination of

the BS transmissions, there is no method by which the MS
can restore the degraded ZF nulls. Each MS must estimate the
CFO for each BS and transmit this information back for future
compensation at the BSs. We will present algorithms for the
correction method in a future paper.

III. CFO EFFECTS ON SUM-RATE CAPACITY

Next, we examine the effects of CFO in a cooperative
multibase MIMO (C-MB-MIMO) system using the sum rate

capacity. In essence, the CFOs cb induce phase offsets (POs) pb

that increase with time. By symbol time n, we have pb = cbn.
The POs degrade the ZF beamformer by weakening the signal
strength and by reducing the depth of nulls, thereby increasing
interference. In what follows, we parameterize the capacity
analysis by the range of POs, implicitly specifying the range
of CFOs and/or length of block. The capacity will be found
as a function of the channel state and the PO. The length-B
vector p = cn contains the PO values for the BSs, so we can
also define the CFO matrix D(cn) as D(p).

Some investigation has been done into the capacity of the
downlink of a zero-forcing system in [7]. An expression for
the capacity of each user can be derived by using the equation
from the appendix of [8]. For the kth user,

C(H,p)k = log2

∣∣∣E[
xkx

†
k

]∣∣∣
∣∣∣E[

rkr
†
k

]∣∣∣∣∣∣E[
uku

†
k

]∣∣∣
, (3)

where uk =
[
xT

k rT
k

]T
. The resulting sum-rate capacity for

the C-MB-MIMO system is

C(H,p) =
K∑

k=1

log2

∣∣∣∣∣INR
+

H̃kXkH̃
†
k

( K∑
i�=k

H̃kXiH̃
†
k + INR

)−1
∣∣∣∣∣, (4)

where H̃k = HkD(p), Xk = γΦkΦ
†
k, γ =

EBS/
(
N0K(BNT − (K − 1)NR)

)
is the transmit SNR per

symbol. Note that the total system energy EBS is used to
demonstrate the effect of the number of independent LOs on
the sum-rate capacity while maintaining a constant transmit
energy. In (4) we are assuming equal power transmission
(E

[
sk(n)s†k(n)

]
= γI), without waterfilling. The terms within

the inverse are considered to be the effective noise, and consist
of the interference plus noise covariance. If the CFOs were
zero, so that D(p) = IBNT

, then the interference term would
disappear due to the orthogonality of the K transmit filters.
Consequently, C(H,0) =

∑K
k=1 log2

∣∣∣HkXkH
†
k + INR

∣∣∣.
To find the average capacity, the expectation of (4) over H

and p was taken with 10,000 Monte Carlo simulations. The
channel state matrix components were set to zero mean, unit
variance, complex Gaussian random variables. A maximum
PO pmax was used to determine the effect of absolute phase
offset on the sum rate capacity. We used this on (4), where
D(p) = blkdiag

(
ejpmaxθ1INT

· · · ejpmaxθBINT

)
and θb is a

uniform random variable with a range of [−1,+1]. pmax could
be replaced with cmaxn if parameterization on symbol time
nTs were desired.

Fig. 2 shows the effect of CFO on capacity for a total
transmit SNR of EBS/N0 = 20 dB, with the power divided
evenly between the K users among the BNT antennas. The
fixed system parameters are K = 32 and NR = 1. For all
curves, the degrees of freedom BNT −(K−1)NR = 1, so we
have the zero-forcing system with one stream per user (i.e. unit
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Fig. 2. Effect of CFO on sum-rate capacity; EBS/N0 = 20 dB total transmit
SNR; B = 1, 2, 4, 8, 16, 32; K = 32; NR = 1; BNT = 32

rank gain matrices Hk). The total number of transmit antennas
BNT was kept constant at 32, so the curves demonstrate the
effect of independent LOs. The capacity drops as the number
of independent LOs, B, increases. This demonstrates the effect
of the random phase offset. The loss of capacity as the PO
increases can be viewed as the cumulative effect of the CFO
over time. Given an initially accurate channel estimate, which
subsumes the CFO phase error at the moment of the estimate,
the orthogonality between the transmitted streams degrades
as time increases. For example, for the B = 32 system, the
capacity drops by about 20% when the PO is 0.1 radians.
For a 500 symbol frame, fc = 2.4 GHz and Ts = 1µs, this
means a maximum allowable CFO of 0.08 ppm. For many
communication systems, this is a very optimistic value. If we
were also to include CSI feedback delay, it is important to
consider that the system will start at a slightly reduced capacity
level before transmitting even a single data bit.

We next compared the effects of LO CFO to Doppler
shift on sum-rate capacity. Since both phenomena involve a
frequency shift in the modulated carrier, we use the ratio
R = fb/fb,D ≈ ε0/10−9sb to compare the severity of the
CFOs. fb,D is the Doppler frequency and sb is the relative
speed of the MS in km/h, both referenced to the bth BS. For a
vehicular speed of 50 km/h and a LO CFO accuracy of ε0 = 1
ppm (i.e. 10−6), R = 20. In other words, the effect of LO
CFO is 20 times greater than Doppler shift, or equivalent to a
system with a LO CFO of 0.05 ppm. Note that this comparison
is independent of carrier frequency.

Another cause of time-dependent capacity degradation is
channel fading. To incorporate channel fading into our ca-
pacity model, we used the Jakes fading model with Doppler
frequency fb,D for the channel state autocorrelation. Assuming
that all BSs have the same Doppler frequency fb,D = fD,
the capacity expression (4) can be rewritten with H̃k,D =
ρ(n)Hk +

√
1 − ρ2(n)Υk, where ρ(n) = J0(2πnfDTs),

J0(x) is the zeroth order Bessel function and the channel
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Fig. 3. Sum-rate capacity average versus time for CFO due to local oscillator
offset and Doppler spread; EBS/N0 = 20 dB total transmit SNR; B = 4;
NT = 8; K = 32; NR = 1; Ts = 1µs; fc = 5 GHz

correlation of the Jakes Doppler model, and Υk is a BNT ×
NR matrix of complex Gaussian random variables with zero
mean and unit power. The curves in Fig. 3 demonstrate that
the effect of LO offset on capacity is more severe than Doppler
spread for normal system parameters. For a carrier frequency
of fc = 5 GHz and a symbol period of Ts = 1µs, capacity
curves are shown for a variety of Doppler spreads. Curves for
LO offsets of 1 and 10 ppm are shown for comparison. Note
that the LO offset curves are averaged over receiver noise nk

and the offsets c, which is modeled as a uniformly distributed
random variable, while the Doppler spread curves are averaged
over receiver noise nk and channel noise Υk. The implication
is that the Doppler curves are for a worst case fD, while the
LO CFO curves are not, and so the results are . For the 10 ppm
LO CFO curve, the sum-rate capacity is at 36% full capacity
by the time the Doppler spread even begins to show any effect,
even at the high speed of 100 km/h.

IV. CFO ESTIMATION

A. Limits on Sequence Length

For channel and CFO estimation, training sequences (TS)
of length N are used. For MIMO systems, the optimum TS
set consists of orthogonal sequences with a length greater than
or equal to the number of transmit antennas (N ≥ BNT ) [9].
However, the MSE of the CSI is inversely dependent on both
the length of the sequence and its energy (the derivation is not
presented due to space constraints). Since the transmit power is
normally limited due to amplifier or spectral mask constraints,
the TS length will generally need to be much greater than
the number of transmit antennas in order to achieve a useful
MSE level, which in turn will determine an achievable sum
rate capacity. However, the longer the TS, the lower the data
throughput. The selection of N is thus a trade-off between
instantaneous capacity and data throughput.

The CFO estimate will contain residual error. This residual
CFO, or the estimator error variance, may depend on the



sequence length, transmit power, and the number of BSs,
and is especially of concern if a MSE floor exists for the
estimator. Considerations such as this are important for the
system designer.

B. Existing Joint CSI and CFO Estimators

Although the estimation of single frequency offsets is a
classical and well-understood problem, there has been little
work on the estimation of multiple CFOs from interfering
data signals or training sequences (TSs). In [4], Besson and
Stoica develop a solution using ML estimation of the CFOs
based on an LS solution for the CSI. The synchronization
sequences are forced into orthogonality by restricting each BS
to a specific time slot. This prevents any TS correlation. We
will refer to this technique as TO for “time orthogonalization”.
In [5], Ahmed et al. exploit the fact that in certain cases,
the code covariance matrix off-diagonals will be very small
compared to the diagonals. This allows each CFO to be
estimated independently from one another. We will refer to
this technique as ST-AO for “simultaneous training - assumed
orthogonalization”. The rationale in both cases is that account-
ing for the correlation is computationally intensive. For our
C-MB-MIMO model, we have multiple transmit and receive
antennas with the same CFO, so the ST-AO and TO algorithms
have been slightly modified to take advantage of this.

C. Proposed Gradient Technique

The previous techniques are inappropriate for the coor-
dinated downlink. In TO, the training sequences do not
overlap in time. Consequently, the length of the composite
TS increases linearly as the number of BSs B increases,
without providing any corresponding increase in accuracy of
the resulting frequency estimates. In ST-AO, the effect of
sequence correlation is ignored; however, if the TS are too
long, the approximation is invalid.

In our proposed method, we transmit all TSs simultaneously
as in ST-AO. In contrast to ST-AO, we account for the TS
correlation introduced by the CFOs. The trade-off between
the use of simultaneous TSs versus time orthogonal TSs is
between sequence length and symbol power. For example, to
ensure equal TS energy with B BSs, a time orthogonal system
would have to use TSs that are B times less in duration with
a per-symbol power B times higher than with simultaneous
training. This trade-off favours simultaneous training, given
that power amplifiers are usually one of the most expensive
parts of a BS. Simultaneous training has the problem that TS
orthogonality is degraded by the CFOs. We solve that problem
below with a gradient-based estimator, which we term ST-G,
for ”simultaneous training - gradient.”

Denote X = [X1 · · ·XB ] as an N ×BNT matrix of length-
N synchronization sequences, where the N × NT sub-matrix
Xb denotes the sequences for the bth BS. The TS as seen by
the MS is

V(c) = [X1 � Ω1(c1) · · ·XB � ΩB(cB)]
= X � Ω(c), (5)

which denotes the element-by-element product of the syn-
chronization sequences and a matrix of CFO-induced symbol
rotations. The N × NT Ωb(cb) matrix is constructed with
all NT columns equal to the same length-N column vector
ωb(cb) = [1 ejcb · · · ejcb(N−1)]T .

The received samples for the kth MS can be represented in
a length-NNR vector

rk = V(c)hk + nk, (6)

where V(c) = INR
⊗V(c) refers to the block diagonalization

of NR copies of V(c) with ⊗ being the Kronecker product,
hk is the length-NT NR vector of channel gains created by
stacking the columns of Hk, and nk is the length-NNR vector
of additive white gaussian noise.

As demonstrated in [4] and [5], the optimum ML estimator
of the length-B vector c is

ĉ = argmax
c

r†kV(c)
(
V(c)†V(c)

)−1

V(c)†rk, (7)

where the CSI estimate is ĥk =
(
V(ĉ)†V(ĉ)

)−1

V(ĉ)†rk.
This optimization is B-dimensional, involving a BNT ×BNT

matrix inverse (by exploiting the block diagonal nature of
V(c)). Provided the TS length N is short enough to pre-
vent any aliasing (“sidelobes”) within the search domain, the
objective function in (7) is convex, as is the search domain.
Aliasing is absent if N < π/2cmax, where the factor of 1/2
is from a lower approximation to the inflection point of the
sinc(x) windowing function in the interval [0, 1] and cmax

refers to the maximum normalized CFO. In this case, we can
use a gradient technique to search for the zero-gradient point
[10]. Due to space limitations, a detailed investigation into
the convexity restrictions on N and cmax will be done in
an upcoming journal paper; for now, we only consider N
and cmax that meet the above constraint. Defining Λ(c) =

r†kV(c)
(
V(c)†V(c)

)−1

V(c)†rk, NITER as the number of
iterations, and t as the step size, a basic algorithm is

initialize ĉ0 = 0

for i = 1 : NITER

ĉi = ĉi−1 − t � Λ(ĉi−1)
end. (8)

We can find the gradient of Λ(c) with a combination of
analytical and numerical evaluation. The bth component of
the length-B vector �Λ(ĉ) can be expressed as:

∂

∂cb
Λ(ĉ) = r†k

[
Gb(ĉ)

]
rk, (9)

where

Gb(ĉ) = Ab(ĉb)F(ĉ)V†(ĉ) + V(ĉ)F(ĉ)A†
b(ĉb)

−V(ĉ)Bb(ĉ)F(ĉ)Bb(ĉ)V†(ĉ). (10)

The N × BNT matrix Ab(ĉb) =
[
0N×(b−1)NT

jZXb �
Ωb(ĉb) 0N×(B−b)NT

]
, the N × M matrix 0N×M is

an all zero matrix, the BNT × BNT matrix Bb(ĉ) =



A†
b(ĉb)V(ĉ) + V†(ĉ)Ab(ĉb), the BNT × BNT matrix

F(ĉ) =
(
V†(ĉ)V(ĉ)

)−1
, and the N × N matrix Z =

diag(0, 1, 2 · · ·N − 1).
The convergence of the algorithm in (8) is controlled by

the step size t. The optimized t is defined as the value that
allows convergence in the fewest iterations. Since the gradient
step in (9) is dependent on the channel state from rk, the
optimized value of t fluctuates due to channel fades and may
be different for each BS (i.e. each CFO). A method to account
for this is to allow each CFO gradient component its own
step size. This can be done with the assumption that the CFO
estimates are uncorrelated (verified by simulation of Λ(ĉ)).
The new CFO-specific weights, tb for the bth CFO, include
the term ||Hk,b||F , where || · ||F refers to the Frobenius norm
of the zero-mean channel gain matrix. Since the channel gains
are not available, an estimate must be calculated. Simulations
show that the estimate

Ĥk,b =
(
X†

bXb

)−1

X†
brk (11)

is satisfactory, even in the presence of CFO. This estimate
is already available from the channel estimation process,
which proceeds in parallel with CFO estimation. The improved
update to the CFO estimate in (8) now becomes

ĉi = ĉi−1 − T � Λ(ĉi−1), (12)

where T is a B×B diagonal matrix with diagonal components
tb = a/||Ĥk,b||F and a is a constant.

To accommodate CFO magnitudes that are greater than
cmax = π/2N , the TS can be segmented such that each
individual segment satisfies the convexity constraint. The
segments are combined by non-coherent addition of (9) for
each segment. The details of this more robust algorithm will
be submitted separately.

V. SIMULATIONS

We compared the TO, ST-AO and ST-G estimators. The TO
and ST-AO estimators were modified to fit our C-MB-MIMO
model. Both the ST-AO and TO rely upon a search over a
range of CFO values, consisting of N frequency bins, suitable
for the FFT. Monte Carlo simulations of 1000 runs were used
with a Rayleigh distributed channel state. The channel state
was static for the duration of the TS. The CFO is random
and uniformly distributed, with cb ∈ [−cmax,+cmax] and
cmax = 0.01. The number of BS was set to B = 4, and
for ST-AO and ST-G, N = 128. For TO, the TS length per
BS was reduced by B to N = 32; since TO TSs require
interleaving by symbol [4], each BS will transmit one TS
symbol every B symbols. This interleaving would be difficult
to do in practice, but it allows the TO technique to maintain the
same aperture as the full length ST-AO and ST-G sequences.
Thus, symbol synchronous transmission is assumed for these
simulations, although a buffer period after each symbol could
serve the same purpose. For ST-G however, the metric could
be expanded to include symbol timing estimation. This will
be covered in a future publication.
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Fig. 4. Comparison of estimation techniques over SNR; B = 4, NT =
2, NR = 2, cmax = 0.01, N = 128, NITER = 20, t = 1 ×
10−6N0/||Ĥk,b||F ES ; NOTE: Peak power of TO is B times that of ST-G
and ST-AO.

To keep the comparison between the techniques fair, energy
comparisons used the TS energy over the noise, ETS/N0.
With a total transmit energy ES allocated to each BS, the
transmit energy per symbol is ES/NT , resulting in ETS/N0 =
NES/NT N0 for both ST-G and ST-AO. Since the TO se-
quence lengths are reduced by B, the symbol energy must be
increased by B to keep the same ETS/N0 value. It is very
important to note that while this is a fair comparison on the
basis of transmitted energy levels, the radio power amplifiers
used for the TO technique are required to handle B times
more power than in either the ST-AO or ST-G techniques.
The remaining parameters were set to NT = 2 and NR = 2.

Fig. 4 compares the estimator root mean square (RMS) error
versus signal energy, Fig. 5 compares the estimator RMS error
versus TS length, and Fig. 6 compares the estimator RMS
error versus the number of BSs. For TO, N is corrected for
all graphs as explained in the previous paragraph. The symbol
SNR of ES/N0 = 30 dB in Fig. 5 and Fig. 6 corresponds to
a TS SNR of ETS/N0 = 51.1 dB in Fig. 4. Also note that
the curve for ST-G in Fig. 5 does not exist above N = 128.
This is a result of the convexity constraint in Section IV-C.

The effect of sequence correlation in the ST-AO technique
due to accumulated phase rotations is evident in the error floor
of Fig. 4. The TO technique does not exhibit this error floor
since the sequences are forced to be orthogonal. The ST-G
technique also avoids this error floor since it is guaranteed to
converge due to the convexity of Λ(c). For both ST-AO and
TO, an error floor due to finite FFT bin width may also occur.
This is visible for TO in Fig. 4 as an incipient floor in RMS
error at high ETS/N0. ST-G avoids having to use a discrete
search, and thus avoids this error floor as well.

The SNR in Fig. 5 and Fig. 6 is chosen such that ST-AO is
operating with an error floor. In Fig. 5, the decrease of CFO
RMS error is algebraic in N ; with the parameters specified, a
decrease of the CFO RMS error by a factor of 10 requires an
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Fig. 5. Comparison of estimation techniques over TS length; B = 4, NT =
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Fig. 6. Comparison of estimation techniques over number of BSs; NT = 2,
NR = 2, cmax = 0.01, ES/N0 = 30 dB, N = 128, NITER = 20;
NOTE: Peak power of TO is B times that of ST-G and ST-AO.

increase in the TS length N by a factor of approximately 5.2.
Also note that the performance of ST-G and TO match until
the TS length violates the convexity constraint. For Fig. 6, the
curve for TO and ST-G is flat for the values of B chosen, but
ST-AO shows variation. Since the SNR is high enough to be
in the error floor region for ST-AO, adding additional BSs is
equivalent to adding extra interferers. For both ST-G and TO,
additional BSs do not alter CFO RMS error to a noticeable
degree. The gap between ST-G and TO is caused by the bin
size of the TO FFT.

The number of iterations of ST-G necessary for convergence
was determined with simulation. The maximum number of
iterations, NITER, was set to NITER = 20 for the simulations
in Fig. 4, Fig. 5, and Fig. 6. To reduce computations, once a
normalized CFO estimate has converged sufficiently, no more

iterations are performed for that specific CFO. This can be
done since the CFO estimates are uncorrelated (Section IV-C).
For these simulations, once the normalized CFO is changing
by less than 0.1% between iterations, it is removed from the set
of CFOs. This allows effective convergence in an average of 8
iterations. The bth CFO step size constant from (12) was set to
a = 1×10−6N0/ES for N = 128. It is important to note that
t is also dependent on the system dimensionality.

For computational complexity, ST-G requires approximately
BN2NITER

(
2BNT + N2

R

)
multiplications. Note that since

we are removing individual CFOs after they have converged,
NITER can be replaced with a mean value. The ST-AO and
TO techniques require approximately NNT NRlog2(N/B) +
N2/B multiplications, stemming from the length-N FFTs and
the sort algorithm.

VI. CONCLUSIONS

As could be expected, coordinating the complex weights
of the antennas of several base stations so that they act as a
single large beamformer presents many challenges. We have
identified one - the carrier frequency offsets due to independent
oscillators at the bases - and quantified the resulting capacity
losses. For example, using typical values, even the stringent
specification of 0.1 ppm on oscillator stability results in a 20%
loss of capacity over a 500-symbol frame. We also presented
a new algorithm by which the mobile can estimate all the base
station frequency offsets from mutually interfering training
sequences, and provide better accuracy and lower peak power
requirements than the few previous investigations of multiple
frequency offset estimation.
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