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Abstract—In this paper we consider a wireless link
subject to on-off interference. We show that by using
different size packets and by measuring the packet error
rate as a function of packet transmit duration on the
air, the distribution of the off times between interference
bursts can be accurately estimated. In the context of white
space usage, this directly corresponds to estimation of the
time duration of the spectrum hole usable by a secondary
station. We present simulation results demonstrating the
effectiveness of the proposed technique for a range of in-
terference patterns, and illustrate its ability to distinguish
between on-off interference and channel noise and provide
quantitative measures of both. By being able to carry out
sensing without requiring the transmitter to remain silent,
this creates the potential for significant throughput gains.

I. INTRODUCTION
There is currently a strong industrial and governmental

push to devise intelligent methods for reusing lightly-
used spectrum allocations. Such spectrum is referred to
as “white space”, where the licensed user of the spectral
band is referred to as the primary user (PU). The PU
does not occupy it’s allocated spectrum in all geographic
or temporal space, and so leaves room for spectrum re-
use. Evidence of the potential gain for efficient cognitive
radio solutions are seen in recent measurement studies
[1], [2], which identify significant spectrum holes even in
urban areas one would suspect to be moderately active.
Cognitive radio techniques that aim to capitalize on white
space are commonly referred to as dynamic spectrum
access (DSA), while the DSA radios are referred to as
secondary users (SUs).
In order for DSA techniques to function, advances in

physical, media access and network layers are required
[3]. Specifically, reliable methods for spectrum sensing
in the physical layer and sensing schedules in the MAC
layer must be capable of 1) providing an advantage to
utilizing the white space for the SUs in terms of standard
metrics of throughput and delay, and 2) operating in such
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Fig. 1. The primary user (PU) link acts as a “hidden node” to the
secondary user (SU), where transmissions from the SU are unheard at
the PU receiver. The task we consider is for the SU is to distinguish
between channel noise and the pulsed interference generated by the
PU, and to do this without requiring the SU to remain silent.

a manner that the PU is unaware of the presence of
DSA. In terms of the MAC layer, a balance must be
struck between the time allocated to spectrum sensing
and access.

This work presents a step in the direction of joint
spectrum sensing and access. In this way, we can op-
timize the inefficiency resulting from spectrum sensing,
during which no data transmission can occur. We propose
that by using different size packets and by measuring
the packet error rate as a function of packet transmit
duration on the air, the distribution of the off times
between interference bursts can be accurately estimated.
Essentially, we exploit the fact that as the packet transmit
duration increases, the likelihood of it overlapping with
an interference burst increases in a way that is dependent
on the off times between interference bursts. Note that
these off times directly correspond to the time duration
of the spectrum hole useable by the SU. By being able
to carry out sensing without requiring the transmitter to
remain silent, this creates the potential for significant
throughput gains.

We consider a SU transmitter and receiver operating
in the PU-induced interference-limited region. The SU
transmit power and the distance between the SU trans-
mitter and PU receiver are such that the SUs cannot im-
pact the performance on the PU link (Fig. 1). However,
the PU transmitter is of strong enough power to induce
packet loss at the SU receiver.
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II. RELATED WORK

This paper builds on the recent work in [4], [5]
that proposes methods for separately identifying the
sources of packet errors in 802.11 links in unlicensed
bands. There also exists a relevant body of work in the
statistics literature relating to the estimation of renewal
process parameters and residual lifetimes. The seminal
work in [6] uses a similar setup to that analyzed in
Section III here, but with the important difference that
direct observations of the on and off times within each
measurement window are assumed. The approach in [6]
is extended in [7] to situations where observations are
restricted to the number of on and off periods during
each window (and so there are no direct observations of
the durations of the on and off periods). In the present
paper we further extend this line of work by imposing the
still stronger restriction to binary observations; namely,
where we can only observe whether there was no on
period or whether one or more on periods occurred
during each measurement window. It is this extension
which allows us to make the connection with packet loss
rate measurements.

III. ESTIMATION USING WINDOWED DATA
We begin by considering a setup consisting of an

ensemble of K identical on-off processes with iid off
times and on times. We shall assume, for the moment,
that the on times are of zero duration but will relax
this later. Let the off times ∆ have distribution function
Prob[∆ ≤ x] = F (x). Also assume, for the moment,
that the off -times can only take one of a finite set of
values X = {xj , ji = 1, 2, .., n} and let Prob[∆ =
xj] := fj . We will assume, without loss, that the xi are
distinct and sorted into ascending order so that xi < xi+1

with 0 < x1. Suppose we observe each process over
fixed time windows [0, xj ], xj ∈ X and record a 1 if
one or more on events occur during the window and 0
otherwise. Let N(xj) denote the number of 1’s recorded
for the window of duration xj . Our task is to estimate
the fj , j = 1, 2, ...n using this data; alternatively, given
a set of intervals X we can think of our task as being to
estimate F (x) at sample points x ∈ X (this is discussed
in more detail in Section III-E).

A. Likelihood Function
The likelihood of the observed count N(xj) is given

by

L(N(xj)|K,X , f)

=

(

K

N(xj)

)

pN(xj)(xj)(1 − p(xj))
K−N(xj) (1)

where f denote the vector with elements fi and p(xj) is
the probability of observing an on event in the window
and we have

p(xj) = 1 −
∑

i:xi>xj
(xi − xj)fi

∑n
i=1 xifi

(2)

Note that we do not explicitly indicate the dependence of
p(xj) on X and f in order to to avoid notational clutter.
When we make count observations N = {N(xj) : xj ∈
X} for a set of window durations X the joint likelihood
function is

L(N|K,X , f) =
∏

xj∈X

L(N(xj)|K,X , f)

B. Maximum Likelihood Estimation is Convex Optimi-
sation

An estimate f̂ of f which maximizes the likelihood
is a solution to the following optimisation problem

max
f̂i

L(N|K,X , f̂ )

s.t.
n
∑

i=1

f̂i = 1, f̂i ≥ 0

It will be useful to instead consider the transformed
problem

max
f̃i

log L̃(N|K,X , f̃ ) (3)

s.t.
n
∑

i=1

xif̃i = 1, f̃i ≥ 0 (4)

where

L̃(N|K,X , f̃ ) = L(N|K,X ,
f̃i

∑n
j=1 f̃j

)

with f̃j = f̂j
P

n
i=1

xif̂i

just a rescaling of the estimates f̂j

and

f̂j =
f̃j

∑n
i=1 f̃i

and taking the logarithm in the objective leaves the
location of the optimum unchanged since the loga-
rithm is monotonically increasing. Our interest in this
transformed problem is that the resulting optimisation
problem is convex and has a unique solution.
Lemma 1: log L̃(N|K,X , f̃ ) is concave in f̃ (but not

strictly concave) and the optimisation problem (3)-(4) is
convex.
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Proof: Observe that

log L̃(N|K,X , f̃ )

=
∑

xj∈X

(

log

(

K

N(xj)

)

+ N(xj) log(1 −
∑

i:xi>xj

(xi − xj)f̃i)

+(K − N(xj)) log(
∑

i:xi>xj

(xi − xj)f̃i)





Now

∇f̃k
log L̃ =

∑

xj∈X,

xj<xk

(

− N(xj)(xk − xj)

1 −
∑

i:xi>xj
(xi − xj)f̃i

+
(K − N(xj))(xk − xj)
∑

i:xi>xj
(xi − xj)f̃i

)

∇2
f̃if̃k

log L̃ = −
∑

xj∈X,

xj<xi,xk

α(xj)(xi − xj)(xk − xj)

where

α(xj) =
N(xj)

(1 −
∑

i:xi>xj
(xi − xj)f̃i)2

+
K − N(xj)

(
∑

i:xi>xj
(xi − xj)f̃i)2

≥ 0

Hence, the Hessian of log L̃(N|K,X , f̃ ) is

∇2 log L̃(N|K,X , f̃ ) = −
∑

xj∈X

α(xj)B(xj)

where matrix B(xj) = [x−1xj ]+([x−1xj ]+)T , [y]+ = y
when y ≥ 0 and 0 otherwise (we apply this in an
element-wise manner when y is a vector), x is the
column vector with elements xi and 1 is the all ones
column vector. The matrices B(xjD), xj ∈ X are
non-negative definite since for any vector y we have
yT B(xj)y = z2 ≥ 0 where z = yT [x − 1xj]+.
The Hessian is therefore the negative weighted sum of
non-negative definite matrices and so is non-positive
definite. It follows that log L̃(N|K,X , f̃ ) is concave in
f̃ , although not strictly concave (since the Hessian only
non-negative definite rather than positive definite). Since
the constraints are linear, it follows that the optimisation
problem (3)-(4) is convex.
The lack of strict concavity of log L̃(N|K,X , f̃ )

means that additional work is needed to show that the
optimization has a unique maximum.
Lemma 2: Optimisation problem (3)-(4) has a unique

maximum.

Proof: The level sets of log L̃(N|K,X , f̃ ) are de-
fined by the linear constraints

∑

i:xi>xj
(xi − xj)f̃i =

cj , xj ∈ X where cj ≥ 0 is constant. Taking
these linear constraints together with equality constraint
∑n

i=1 xif̃i = 1 we have

Af̃ = c

where f̃ is the column vector with elements f̃i, and cT =
[1 c1 c2 · · · cn−1] and

A =















x1 − x0 x2 − x0 x3 − x0 · · · xn − x0

0 x2 − x1 x3 − x1 · · · xn − x1

0 0 x3 − x2 · · · xn − x2
...
0 0 0 · · · xn − xn−1















(5)

and we formally define x0 = 0 and c0 = 1 since this
will prove useful later. Since the xi are distinct, A is rank
n and the level sets consist of single points. It follows
immediately that the maximum is unique.

C. Maximum Likelihood Estimator
Theorem 1 (ML Estimator): The estimator

f̂ =
f̃

∑n
j=1 f̃j

(6)

with

f̃ = A−1b(K) (7)

where b(K) is the vector with elements b1 = 1, bj =

1 − N(xj−1)
K , j = 2, .., n and A is the upper triangular

matrix (5), is a maximum likelihood estimator solving
optimisation (3)-(4) whenever the elements of A−1b(K)
are non-negative.

Proof: By Lemma 1 the optimisation (3)-(4) is
convex and so the KKT conditions are necessary and
sufficient for optimality. Ignoring, for the moment, the
constraints (4), the KKT conditions for the unconstrained
optimization are

−∇f̃k
log L̃(N|K,X , f̃ ) = 0, k = 1, 2, ..n

That is,
∑

xj∈X,

xj<xk

N(xj)
xk − xj

1 −
∑

i:xi>xj
(xi − xj)f̃i

=
∑

xj∈X,

xj<xk

(K − N(xj))
xk − xj

∑

i:xi>xj
(xi − xj)f̃i

,

k = 1, 2, ..n
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It can be verified that solutions satisfy the following
linear equations
∑

i:xi>xj

(xi − xj)f̃i = 1 − N(xj)

K
, xj : xj ∈ X \ {x1}

Note that there are only n − 1 equations here but n
unknowns. Using the equality constraint

∑n
i=1 xif̃i = 1

to obtain an additional linear equation and taking these
equations together, they can be rewritten in matrix form
as

Af̃ = b(K)

Since A is rank n, we can solve for f̃ using (7) and
obtain an estimate f̂ for f by renormalising using (6).
Since (6) maximizes an optimization with the same
objective but fewer constraints than (3)-(4), if its solution
satisfies the constraints (4) then it also maximizes (3)-
(4). Hence, provided the elements on the RHS of (7) are
non-negative then the solution (6) solves the constrained
Maximum Likelihood optimisation (3)-(4) and equations
(6)-(7) together define a maximum likelihood estimator.

When some elements on the RHS of (6) are negative,
the non-negativity constraints (4) need to be enforced.
Since the optimisation problem is convex, many standard
solvers exist that can efficiently find the constrained
maximum likelihood estimate solution. However, we
do not pursue this further here since provided K is
sufficiently large, this situation is rare – this is discussed
in more detail in the next section.

D. Consistency
Theorem 2 (Consistency of ML Estimator): As the

number of observations K → ∞, the estimate f̂
obtained using (6)-(7) equals the true parameter vector
f with probability one. That is, the estimator (6)-(7) is
consistent.

Proof: Observe that

Prob[|bi(K) − Aif

µ
| ≥ ε] = Prob[|N(xi−1)

K
− p(xi)| ≥ ε]

(a)
≤ 2e−2Kε2

for any ε > 0 and i = 1, 2, .., n, where µ =
∑n

i=1 xifi,
Ai is the i’th row of matrix A and (a) follows from
Hoeffding’s inequality. Hence, limK→∞ Prob[|bi(K) −
Aif
µ | ≥ ε] = 0 for any ε > 0 and i = 1, 2, .., n. It
follows that limK→∞ Prob[|Aif̃ − Aif

µ | ≥ ε] = 0 for
i = 1, 2, .., n and, since matrix A is full rank, that f̂ =

f/µ
P

n
j=1

fj/µ = f with probability one.

x

f
i

x
i

F(x)

F(x)
^

Fig. 2. Illustrating approximation of distribution function F (x) by
staircase function F̂ (x).

E. Extension to Off-Time Distributions With General
Support
The analysis can be extended to encompass situations

where the off times are not restricted to the set of values
X . Relaxing this restriction, we now have

p(xj) = 1 −

∫∞

xj
(x − xj)dF (x
∫∞

0 xdF (x)

which can be rewritten as

p(xj) = 1 −
∑

i:xi>xj
(xi − xj)fi

∑n
i=1 xifi

+ ξ(xj)

where

ξ(xj) =

∑

i:xi>xj
(xi − xj)fi

∑n
i=1 xifi

−

∫∞

xj
(x − xj)dF (x)
∫∞

0 xdF (x)

Importantly, there exists an fi such that ξ(xj) = 0;
namely,

f̃ = A−1d, f =
f̃

∑n
j=1 f̃j

(8)

where d is a column vector with d0 = 1 and element
dj =

∫∞

xj−1

(x − xj−1)dF (x)/
∫∞

0 xdF (x), j = 2, ..., n,
and A is given by (5).
Now consider estimator (6)-(7). Revisiting the consis-

tency analysis in Section III-D, we have

Prob[|bi(K) − Aif

µ
| ≥ ε]

= Prob[|N(xi−1)

K
− p(xi)| ≥ ε] ≤ 2e−2Kε2

for any ε > 0 and i = 1, 2, .., n, where f is the solution to
(8) and µ =

∑n
i=1 xifi. Hence, limK→∞ Prob[|bi(K)−

Aif
µ | ≥ ε] = 0 for any ε > 0 and i = 1, 2, .., n. It
follows that limK→∞ Prob[|Aif̃ − Aif

µ | ≥ ε] = 0 for
i = 1, 2, .., n and, since matrix A is full rank, that with
probability one f̂ = f .
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In other words, the estimates returned by (6)-(7) are
estimates of the vector f which makes ξ(xj) = 0.
It is easy to verify that the elements of this vector
fi = F (xi) − F (xi−1), i = 1, 2, ..n. With this in
mind, we can alternatively think of (6)-(7) as estimating
the distribution function F̂ (x) where F̂ (xi) = F (xi),
i = 1, 2, ..n, samples the true distribution function F (x)
at sample points x ∈ X . This is illustrated in Fig. 2.

F. Extension to Non-zero On Times
The analysis can be readily extended to encompass

situations where the duration of the on times can be non-
zero. Suppose the on times are iid with finite mean E[S].
Then, in the foregoing analysis:
1) p(TD) changes to

p(xj) = 1 −
∑

i:xi≥xj
(xi − xj)fi

E[S] +
∑n

i=1 xifi
;

2) Transformed variable f̃j becomes
f̃j = f̂j

E[S]+
P

n
i=1

xif̂i

but we still have f̂ = f̃
P

n
j=1

f̃j

.

When E[S] is known, then we can insert this information
into the foregoing analysis (the resulting ML estimator
is unchanged aside from modifying element b1(K) of
vector b(K) to include E[S]). Alternatively, if we are
able to take measurements at the additional data point
x0 = 0, then this adds the additional linear equation

∑

i:xi>0

xif̃i = 1 − N(0)

K

Note that, by assumption, f0 = 0 (off periods of zero du-
ration occur with probability zero). Hence,

∑n
i=0 xif̃i =

∑n
i=1 xif̃i and renormalization (6) remains valid – this

is the reason why we choose x0 = 0. Using b1(K) =
1− N(0)

K in (6)-(7) now yields the ML estimate. Observe
that asymptotically as K → ∞, N(0)/K → E[S]

E[S]+µ and
so we can use this to also estimate E[S]. In practice, it
is usually not possible to make observations for x0 = 0.
Nevertheless, it is also possible to use a window size
0 ≤ x0 < x1. In this case the estimate f̃ will continue
to be consistent but a bias will be introduced into f̂ due
to normalizing in (6) by

∑n
i=1 xif̃i rather than

∑n
i=0 xif̃i

(recall that we cannot estimate f̃0 from (7) since matrix
A is rank n not rank n + 1). However, provided x0 is
sufficiently small, then we can usually expect that this
bias will be small.

G. Extension to Include Channel Noise
The analysis can be extended to include channel noise

as well as on-off interference. That is, to situations where

even during an interference off period there is still a
probability pG > 0 that a packet is lost. In this case (2)
becomes

p(xjD) = 1 − (1 − pG)

∑

i:xi xj
(xi − xj)fi

∑n
i=1 xifi

and so the likelihood is now a function own both pG and
the fi’s.
The KKT conditions become
∑

xj∈X,

xj<xk

N(xj)
(1 − pG)(xk − xj)

1 − (1 − pG)
∑

i:xi>xj
(xi − xj)f̃i

=
∑

xj∈X,

xj<xk

(K − N(xj))
xk − xj

∑

i:xi>xj
(xi − xjD)f̃i

, (9)

k = 1, 2, ..n

∑

xj∈X,

xj<xk

K − N(xj)

1 − pG

=
∑

xj∈X,

xj<xk

N(xj)
∑

i:xi>xj
(xi − xj)f̃i

1 − (1 − pG)
∑

i:xi>xj
(xi − xj)f̃i

(10)

k = 1, 2, ..n

It can be verified that solutions satisfy the following
linear equations

∑

i:xi>xj

(xi − xj)f̃i =
1 − N(xj)

K

1 − PG
, xj ∈ X \ {x1}

which can be rewritten as
∑

i:xi>xj

(xi − xj)g̃i = 1 − N(xj)

K
, xj ∈ X \ {x1}

where g̃ = (1 − pG)f̃ . Note that there are only n −
1 equations here. If we are able to take measurements
at the additional data point x0 = 0, then this adds the
additional linear equation

∑

i:xi>0

xig̃i = 1 − N(0)

K

Taking these equations together, they can be rewritten in
matrix form as

Ag̃ = b(K) (11)

where bj = 1− N(xj−1)
K , j = 1, .., n and A is rank n the

upper triangular matrix (5). We can then renormalise as
before to obtain

f̂ =
g̃

∑n
j=1 g̃j
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Note that as well as obtaining estimate f̂ of f , we also
have estimate p̂G = N(0)

K of pG. A noted previously,
is usually impractical to take observations of the point
x0 = 0. Nevertheless, it is also possible to use a window
size 0 ≤ x0 < x1 in which case we have that the ML
estimate is

∑

i:xi>x0

xig̃i = 1 − N(x0)

K

and using this in (11) is enough to make A full rank
and thereby allow g̃ to be estimated. The estimate f̂ will
be biased due to normalizing in (6) by

∑n
i=1 xig̃i rather

than
∑n

i=0 xig̃i, but provided x0 is sufficiently small then
we can usually expect that this bias will be small.

IV. ESTIMATION USING MEASURED PACKET LOSS
RATES

The foregoing analysis is for an ensemble of on-off
processes which is observed via a set of fixed windows.
On a wireless link we have instead a single on-off inter-
ference process, and we can only perform observations
indirectly via the success/failure of packet transmissions.
Nevertheless, the insight gained in the previous analysis
applies directly to the wireless context.
To see this, we begin by observing that a packet trans-

mission of duration TD can be thought of as sampling
the channel conditions over a window of length TD. If
we assume that a packet is lost whenever it overlaps with
an interference pulse, then we have a binary observation
over this window, observing a 1 is there were one or
more interference pulses and a 0 otherwise. Note that
this assumption involves no real loss of generality since,
if an interference pulse occurs but we do not observe
a packet loss, then we cannot distinguish between this
event and when no pulse occurred.
It remains to ensure that our packets sample uniformly

from the on-off process . We can ensure this using the
PASTA property. Namely, assume the intervals between
packet transmissions are exponentially randomly dis-
tributed and are independent of the interference process.
Provided the packet duration TD is sufficiently small
relative to the mean time between packets, the transmit
times {tj} effectively possess the Lack of Anticipation
property (the number of packet transmissions in any in-
terval [t, t+u], u ≥ 0, is independent of the interference
process at times s ≤ t [8]). When this property holds,
by [8, Theorem 1] we almost surely have

lim
t→∞

1 − 1

K(t)

K(t)
∑

j=1

UTD
(tj) = p(TD)

d0

Bursty
Interferers

Fig. 3. Simulation setup. Wireless link d0 is subject to interference
from pulsed transmitters. These transmitters might, for example, be a
network of similar wireless radios that are operating as hidden nodes
or a microwave oven.

where transmit K(t) packets in interval [0, t], each
packet being of duration TD, and UTD

(tj) = 1 if the
j’th packet is lost and 0 otherwise. The left-hand side is
the measured packet loss rate. Hence, we have that the
packet loss rate is an asymptotically unbiased estimate of
p(TD). Substituting the measured packet loss rates as the
elements of the vector b in estimator (6)-(7), instead of
the window counts N(TD), it follows that the resulting
estimate f̂ will also be consistent and asymptotically
unbiased (by a similar argument to that in Section III-D).

V. SIMULATION RESULTS
We present simulation results for a wireless link

operating in an unlicensed band or white space and
subject to pulsed interference, illustrated schematically
in Fig. 3.

A. Off-Time Distributions with Discrete Support
Fig. 4(c) plots the estimation error maxxi∈X |f̂i − fi|

versus the number of observed packets K for both
periodic and exponentially distributed on-off interference
(the distribution functions are shown in Fig. 4(a)-(b)). It
can be seen that the estimation error converges roughly
as O(1/

√
K), as might be expected, and that an esti-

mation error of less than 5% requires observations for
K ≥ 2000 packets.

B. Off-Time Distributions with Continuous Support
Fig. 5 plots corresponding convergence measurements

for Poisson on/off interference. The distribution function
F (x) now has continuous rather than finite support, and
the estimator can be thought of as estimating the set
points on {F (x) : x ∈ X}. Its can be seen that the
convergence behaviour is similar to the examples with
finite support. The estimates are shown in more detail
in Fig. 6 for K = 1000 packets. The figure plots the
true distribution function F (x) and the estimate F̂ (x) =
∑n

i=1 δ(x−xi)f̂i. It can be seen that the mean estimate is
close to the true value and that the standard deviation of
the estimates tends to higher to the left of the plot. This is
to be expected since as F (x) decreases the probability
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Fig. 4. Convergence of estimates of F (x) versus the number K
of packets observed when F (x) has finite support. For each K,
we calculate maxxi∈X |f̂i − fi| and average this value over 100
runs to obtain the curves shown. Data is shown for periodic on-
off interference with period 10ms and for exponential interference
with mean rate 1 pulse per 10ms, n = 4. Also marked is the line
4/

√
K, with the data indicating that the estimation error is converging

roughly as O(1/
√

K).

of observing an interference pulse also decreases and
so either more observations are needed to estimate the
packet error rate or the estimation errors tend to increase.

C. Distinguishing On-Off Interference and Channel
Noise
Fig. 7 shows results for a wireless link that is subject

to both channel noise and to on-off interference. It can be
seen that we can accurately estimate both the interference
distribution function F (x) and the channel loss rate pG.
That is, we are able to successfully and quantitatively
distinguish between these two sources of packet loss
affecting the link.

VI. CONCLUSION
We show that by using different size packets and

by measuring the packet error rate as a function of
packet transmit duration on the air, the distribution of
the off times between interference bursts can be accu-
rately estimated. This directly corresponds to the time

102 103 104 105 106
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m
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i
∈
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i
−

f i
|

K

Fig. 5. Convergence of estimates of F (x) versus the number K of
packets observed when F (x) has continuous support. Data is shown
for Poisson on/off interference, with distribution function shown in
Fig. 6.
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Fig. 6. Distribution function F (x) and estimate F̂ (x) =
P

n

i=1
δ(x−

xi)f̂i for K = 1000 packets. Error bars indicate one standard
deviation level, estimated empirically from 1000 estimates.

duration of the spectrum hole useable by a secondary
station. We present simulation results demonstrating the
effectiveness of the proposed technique for a range of
interference patterns, and illustrate its ability to distin-
guish between on-off interference and channel noise and
provide quantitative measures of both. By being able to
carry out sensing without requiring the transmitter to
remain silent, this creates the potential for significant
throughput gains.
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