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Abstract—Traditionally, a parallel application is parti-
tioned, mapped and then routed on a network of compute
nodes where the topology of the interconnection network
is known beforehand and is homogeneous. However, such
homogeneity in interconnects is rarely needed for several
important classes of applications. Nevertheless such inter-
connects are designed this way, i.e., with redundant links,
to accommodate the communication patterns of a wide
range of applications. However, with recent advances in
technology for optical circuit switches, it is now possible to
construct a network with much fewer links, and to make
the link endpoints configurable to suit the communication
pattern of a given application. While this is economical
(saving both links and the power to run them), it raises
the difficult problem of how to configure the network
and how to reconfigure it quickly when the application’s
communication pattern changes. Since the space of all
configurable topologies is large and determining the quality
of a topology is a time-consuming process, it is not feasible
to explore the entire space.

One way of dealing with this limitation is to start the
search from a “good” initial topology and then conduct
a restricted search around it. The success of such a
strategy crucially depends on the choice of the initial or
seed topology. In the past, such an initial topology was
computed by mimicking the communication requirements
of the application. In this paper, we propose a different
approach by showing that interconnect topologies such as
chordal rings (circulant graphs) chosen based on metrics
such as bisection width and average shortest path length
can provide a better starting point. The topology obtained
by searching around such an initial topology provides

almost as good a performance as an application-specific
initial topology, and the search time is significantly reduced.

I. INTRODUCTION

One of the fundamental problems in parallel and
distributed computing is to partition an application into
parallel components, map the components onto a set of
compute nodes, and then route the communications be-
tween the components on the network that interconnects
the compute nodes. In a traditional setting, the topology
of the interconnection network is known beforehand and
is homogeneous,i.e., all nodes have the same degree,
e.g., as in 2d torus and fat tree interconnects. However,
several studies (e.g., [1]) suggest that the homogeneity
(elsewhere known as regularity) of such interconnects is
rarely required or needed for several important classes
of applications. However such interconnects are designed
this way, i.e., with redundant links, to accommodate the
communication patterns of a wide range of applications.
But for a given application, several links might just
be redundant, and could have been removed to save
both cost and power. With recent advances in technol-
ogy for optical circuit switches, it is now possible to
construct a network at run-time, i.e., the link endpoints
are configurable and are configured at run-time to suit
the communication pattern of a given application. While
this move from familiar homogeneity to heterogeneity



is economical (saving both links and the power to run
them), it raises the difficult problem of how to configure
the network and how to reconfigure it quickly when the
application’s communication pattern changes.

At the same time, the freedom to establish a hetero-
geneous degree distribution on the nodes of the network
to suit the requirements of an application is a poten-
tially rich vein of theoretical investigation. Whereas the
traditional parallel computing task has been to assign
computational clusters and a communication pattern to
a static interconnect in order to elicit, for example,
the best possible throughput, one can now explore the
possibility of improving performance even further by
selecting a particular heterogeneous degree distribution
on the nodes of the network such that the resulting
topology has characteristics that are advantageous to a
given task graph. In view of this emerging reciprocity
between software and hardware design (possibly termed
co-design elsewhere), it is natural that one design an
iterative approach that takes turns in optimizing the ap-
plication partitioning and routing for a given interconnect
topology, and optimizing the interconnect topology to
alleviate the bottlenecks identified in the partitioning and
routing phase. While the first optimization is well known
and well studied in the literature (e.g., [2], [3], [4]), the
latter optimization of the interconnect topology has not
been well studied. This is mostly because configurable
optical switches have only recently become feasible in
terms of price and switching time, and have therefore
recently afforded configuration of the interconnect topol-
ogy on an application-by-application basis. Accordingly,
there has been considerable recent research (e.g., [5], [6],
[7]) in tailoring the interconnect to suit the requirements
of a given application.

Since the space of all configurable topologies is large
and determining the quality of a topology is a time-
consuming process, it is not feasible to explore the
entire space.1 One way of dealing with this limitation
is to start the search from a “good” initial topology
and then conduct a restricted search around it. This
restricted search can be conducted using the iterative co-
optimization framework described above.

The success of such a strategy crucially depends on the
choice of the initial or seed topology. While the starting
point for application partitioning is clear, it is not so clear
where one would start looking when searching for an
optimal topology from amongst the space of topologies

1Different reconfigurable switches may place different constraints on
the topology configuration, e.g., the maximum degree allowed at any
network node or the maximum number of edges allowed in the entire
network. The space of configurable topologies consist of all topologies
satisfying these constraints.

allowed by a given configurable optical switch. In the
sparse existing work on configurable interconnect design
(e.g., [8], [6]) the choice of the initial topology is driven
by the communication requirements of the application
rather than traditional a priori classifiers on topology
such as diameter, bisection width and average shortest
path length. In this paper, we shall argue that choosing
the topology from among an interesting class of graphs,
based on some traditional topology metrics, remains
a useful approach. In particular we show that chordal
rings (circulant graphs) chosen based on bisection width
and average shortest path length provide better starting
points. The topology obtained by searching around such
initial topologies provides almost as good a performance
as application-specific initial topologies, but the search
time is significantly reduced.

The rest of this paper is organized as follows. We
introduce some preliminaries in Section II, and motivate
our choice for an initial topology in Section III. We
present out experiments and results in Section IV. We
conclude in Section V.

II. PRELIMINARIES

In this section we provide an outline of the problem
to be addressed.

A. Space of Configurable Topologies

We consider an architecture with configurable inter-
connect topology (e.g., using an optical circuit switch).
This allows one to configure any topology H(VH , EH)
satisfying the constraint that the (i) maximum degree of
a node in H is at most dmax (referred to as the maximum
degree constraint) and the (ii) total number of links in
H is at most Emax (referred to as the maximum edge
constraint). These constraints derive respectively from
the fact that each compute node has a limited number
of ports to connect to the configurable switch, and that
the switch itself has a limit on the number of links that
it can maintain simultaneously.

We assume that each compute node in H has the same
processing speed, denoted SC. We also assume that the
bandwidth on each link in H is identical, denoted SL.

B. Stream-computing Application Task Graphs

Stream computing is an important computing model
that captures applications like real-time analysis of finan-
cial and medical data [9], audio/video systems, contin-
uous database queries, intelligent transportation systems
[10] and analysis of dynamic social networks [11], [12].
These applications are termed as stream computing ap-
plications, in that they consist of processing continuous,
high-volume data-streams in real time. Such applications
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are particularly suited for utilizing a configurable parallel
architecture, like the one enabled by a configurable
optical switch ([8], [1], [13], [14]), because these ap-
plications have long duration flows (in seconds) that
can easily amortize the cost of configuring the switch
(usually in a few 10s of millisecs).

We therefore consider stream computing applications
in this particular investigation, and represent their com-
putational task graph as an undirected graph G(VG, EG).
A vertex u ∈ VG denotes a computational kernel (e.g., a
split, join or a filter) and its weight wV (u) quantifies the
average amount of computation that must be performed
in the kernel to produce an element of output. An edge
{u, v} ∈ EG represents a data-stream (capturing the
data dependency) between the kernels u and v and its
weight wE({u, v}) represents the average amount of data
transfer between the two kernels.

C. Suitability of a Topology for a Given Application

To evaluate the suitability of a topology H for a
stream-computing application task graph G, we simulate
a run of G on H . In this run, each vertex vi ∈ VG
is mapped to a compute node ui ∈ VH and each
edge {vi, vj} ∈ EG is routed along a sequence of
links (or path) in H . Let µ(vi) determine the node to
which a particular vertex vi is mapped, and let ρ(vi, vj)
determine the sequence of links that are used to route an
edge {vi, vj} ∈ EG. Given such mapping and routing
schemes, the computational load on each node ui ∈ VH
is

wV (ui) =
∑

ui=µ(vi)
vi∈VG

wV (vi), (1)

and the communication load over a link {ui, uj} ∈ EH
is

wE({ui, uj}) =
∑

{ui,uj}∈ρ(vi,vj)
{vi,vj}∈EG

wE({vi, vj}). (2)

From these equations we define the throughput of a
compute node ui to be SC/wV (ui) and the throughput
of a link {ui, uj} to be SL/wE(ui, uj). The computation
throughput of the system is then the minimum through-
put over all compute nodes, and the communication
throughput of the system is the minimum throughput
over all links. The system throughput is the smaller
of the computation and communication throughputs.
This throughput is used as a performance metric to
determine the suitability of a topology for the given
application. Note that this definition of throughput arises
out of stream computing applications, where we view the
compute nodes and communication links as processing

units running concurrently so that the overall throughput
is equal to the throughput of the slowest processing unit.

D. Iterative Co-Optimization Framework

Optimizing system throughput is contingent on a good
algorithm for mapping and routing an application to
the topology. Since most variants of topology-aware
partitioning, mapping and routing algorithms are NP-
hard, one often uses heuristics to obtain good solutions.
Even with heuristics, computing good solutions to these
problems remains a time-consuming operation. Thus, we
can only explore a very small portion of the space of
configurable topologies to find a good topology.

One way to limit this search is to start with a good
initial topology and iteratively adapt it to the applica-
tion [6]. Each iteration of the adaptation process:
• computes a partitioning, mapping and routing solu-

tion for the given topology
• identifies the bottleneck (either a link or a compute

node)
• modifies the topology to alleviate the identified

bottleneck
The modification step in each iteration removes at most
two links from the topology and adds two neighboring
links to replace them. Thus, the modified topology is in
a certain neighborhood of the original topology in the
space of configurable topologies.

Since each iteration involves the time-consuming op-
eration of computing the mapping and routing solution,
we can only afford to do a limited number of these
iterations. We perform these iterations until there is no
improvement in the system throughput for a pre-specified
number of consecutive iterations. Therefore, the iterative
procedure amounts to a restricted search in the topology
space around the initial topology.

The subspace of topologies that gets explored by
the iterative procedure crucially depends on the initial
topology. Thus, the choice of initial topology is vitally
important to obtaining a final topology that provides
a good system throughput for the given application.
Also, the time to convergence of the iterative framework
depends on the choice of initial topology.

III. CHOOSING THE INITIAL TOPOLOGY

The framework in [6] computes the initial topology
by mimicking the communication pattern of the ap-
plication. It computes a partitioning of the application
graph (using any partitioning library like METIS [15]
or SCOTCH [16]) into n clusters and then contracts
each cluster to a single node forming a condensed graph
(also referred to as quotient graph in the literature).
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The weight of an edge in a condensed graph is the
sum of weights of edges between the two partitions in
the application graph. It then removes some low-weight
edges to satisfy the maximum degree and maximum
edge constraints and treats the resultant graph (ignoring
its weights) as the initial topology. Since this topology
mimics the communication pattern of the application, it
is argued that the application should map well to this
topology, yielding good performance (high throughput
for a streaming application).

There are many shortcomings of the above process.
Firstly, the initial topology crucially relies on the com-
puted partitioning. A bad partitioning can lead to a
condensed graph that is very different in structure than
the application. Secondly, even if the condensed graph
is similar in structure, the maximum allowed number
of edges or the degree may be significantly less than
the condensed graph and this may make the resultant
topology very different in structure from the condensed
graph. Specifically, re-routing the traffic that originally
existed on the removed links through new paths in the
topology can cause congestion in some links leading to
poor performance. There is no purpose built capacity in
a condensed graph to handle such re-routing. And most
importantly, even if the topology mimics the communica-
tion pattern of the application well, the process of routing
and re-routing can still lead to poor communication
throughput, particularly if the resultant topology has poor
connectivity.

To overcome these shortcomings, we propose an al-
ternative framework. Rather than starting with a con-
densed graph, we initialize our topology search with
a topology with certain desirable characteristics. We
focus our attention on chordal rings. A chordal ring is
a k-regular circulant graph formed by the addition of
edges between pairs of vertices at specified distances
along the ring. More precisely, a ring with vertices
labelled i = 0, . . . , n− 1 and an associated set of chord
lengths, Q ⊆ {q1, q2, . . . , qbn/2c}, forms the chordal ring
C(n; q1, . . . , q|Q|), if for each qj ∈ Q there is an edge
from vertex i to vertex (i+ qj) mod n. The degree of
the graph is determined by the choice of Q. In general
k = 2|Q|+ 2 (see Fig. 1). For even values of n, chords
of length n/2 yield k = 2|Q| + 1. Recall that k is the
vertex degree in this k-regular graph.

This class of graphs has been used extensively in
theoretical studies of interconnect design (e.g., [17],
[18], [19]), and it is known to possess a number of
structural properties that have traditionally been seen as
vital for robustness against node or link failures [20],
[21]. Given that the maximum edge constraint enforced
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Fig. 1: The chordal ring C(16; 4).

by the configurable optical switch may result in removal
of some edges from our chosen initial topology (even
if it is a condensed graph), it makes sense to start with
a topology that is known to be robust against such link
failures (intentional link removal is a type of link failure).

Furthermore, as mentioned in Sec. II-C, our optimiza-
tion criterion is to maximize throughput of a streaming
application mapped to a (configured) network topology.
To that end, application edges are mapped to the net-
work topology edges so as to minimize the maximum
congestion (or load) on any network topology edge. The
same characteristics of chordal rings that make them
attractive for robustness against failed links also make
them attractive for robustness against congested links.
In both cases, the structure of the chordal rings makes
it likely that many communication paths will remain
available even in the face of congestion of certain links.
Note that this is not a design feature of the condensed
graphs.

We note that other graphs like de Bruijn graphs
[22] or Kautz graphs [23] also provide such robustness.
However, the chordal rings provide much more design
flexibility in terms of choosing the required number
of vertices while also satisfying the maximum degree
constraint. The maximum edge constraint can then be
satisfied by removing a random subset of edges (while
preserving the connectivity).

In this paper, we assume that dmax is 4. To satisfy
this particular maximum degree constraint, we focus our
discussion on simple degree four chordal rings C(n; q)
[24], i.e., a ring in which all chords have the same
length, q. There is a number of interesting properties
unique to this particular subclass. Iwasaki et al. [25]
have shown that for every graph in C(n; q) there are
four independent spanning trees rooted at each vertex. In
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other words, between every pair of (source, destination)
vertices there are four edge-disjoint paths, the maximum
possible number for a 4-regular graph.

Another interesting property of C(n; q) is their bi-
section width. Bisection width is important for our
particular problem because a higher bisection width will
translate into a larger number of paths between any
two bisections, thereby permitting a better congestion
alleviation between the two given bisections.

For large values of n, the bisection width of chordal
rings is usually better than that of 2-D torus. For in-
stance, the bisection width of C(2k; 4) is known to be
2k−1 [26], suggesting a linear growth as a function of n,
while that of 2-D torus is 2n1/2, a sub-linear function.
This suggests that such a chordal ring may be a better
candidate for a seed topology than a 2-D torus.

Finding the bisection width of a general chordal ring
is a hard problem. Here we present a lower bound on
bisection width of C(n; q). If G is a graph on n vertices
and a is its algebraic connectivity (i.e. smallest strictly
positive eigenvalue of its Laplacian matrix) then the
bisection width for G is bounded below by dna4 e [27].
For C(n; q), the algebraic connectivity is given by
a = mink=1,...,n−1{4 − 2 cos

(
2πk
n

)
− 2 cos

(
2πkq
n

)
}.

Substituting this value, one gets the lower bounds of 3, 6,
8, 6, 8 and 5 for C(16; 2), C(16; 3), C(16; 4), C(16; 5),
C(16; 6), and C(16; 7), respectively.

To compute the exact bisection width of these chordal
rings, we conducted an exhaustive search by considering
the cut value of all possible equal size bipartitionings
and taking the minimum. From this, we concluded that
the bisection width of C(16; 2), C(16; 3), C(16; 4),
C(16; 5), C(16; 6), and C(16; 7) is exactly 6, 8, 8, 8,
10 and 8, respectively. As a matter of comparison, note
the bisection width of 2-D torus with 16 vertices is 8.

IV. EXPERIMENTS AND RESULTS

We performed our experiments for stream computing
applications. To generate a random application graph em-
ulating the communication pattern of a stream computing
application, we use a graph generator from [28].

We characterize our experiments with the following
parameters: Tinit, Nnod, Nver, dmax, Emax, SC, and SL,
where Tinit is the initial topology, Nnod is the number of
compute nodes in the topology and Nver is the number of
vertices in the application graph. Let T be the set of seed
topologies being compared in an experiment. Let a trial
be defined as one execution of the sequence “generate
an application graph of Nver vertices, fork |T | ways,
use Ti as Tinit in the i-th fork as an initial topology,
satisfy constraints implied by dmax and Emax, and search

the space around this initial topology using the iterative
procedure in [6].” Two trials differ from each other only
in the random numbers used to seed the application
graph generator and the graph partitioner. That is, for
each new trial we create a new random application graph,
and also seed our own algorithm with a new seed.

We focus on 16-node topologies with dmax = 4 and
22 ≤ Emax ≤ 32. Note that even for this restricted set-
ting, the number of graphs satisfying the two constraints
is quite large and exploring the entire search space (every
time we re-configure the switch) is unfeasible.

We report here results for several experiments. By
varying the ratio between SC and SL, we can alter
the bottleneck from computation to communication. A
high ratio implies that computation is less likely to be
the bottleneck as the compute nodes can process the
computation load faster than the links can move the data
around.

To ensure that our reported results are statistically rig-
orous, we consider an experiment completed only when
enough trials have been performed to give us a certain
level of confidence in the results. Let the imprecision,
of a set of values of x be defined as the half-width of
the 95% confidence interval divided by the mean of x.
An experiment is completed when enough trials have
been performed to give a precision of at least 5% for
the throughput obtained. This reduces the dependence of
our results on a “lucky” selection of application graphs
or the parameters for the search algorithms.

The initial topology of a condensed graph is used as
our baseline in this paper. All other topologies are com-
pared to this baseline. Output of a given trial gives the
following information for each seed topology Ti: δthru

i ,
the ratio of improvement in throughput achieved by Ti
over the condensed graph to the throughput achieved by
condensed graph, and δtime

i , the ratio of improvement in
time to convergence achieved over the condensed graph
to time to convergence for topology Ti. At the end of an
experiment, we compute the following additional metrics
for each seed topology Ti: ∆thru

i , the average value of
δthru
i over all trials and ∆time

i , the average value of δtime
i

over all trials.
Figure 2 shows results for a subset of experiments in

which only the seed topology, Tinit, maximum number
of allowed edges, Emax, and the speed of the network
links, SL, were changed while other parameters were
kept at Nnod = 16, Nver = 300, and dmax = 4. These
results show that, in general, throughput is better if the
seed topology is a condensed graph. However, using a
suitable chordal ring as a seed topology gave, for most
of these experiments, an average throughput that was no
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worse than 95% of that obtained using the condensed
graph, but did so in a much shorter time.

There are also some specific insights highlighted in
Fig. 2, which shows results for 6 experiments. For
easier navigation, the subplots have been arranged so
that the experimental set-up becomes more and more
challenging communication wise if one moves either to
the right or the top. That is, Fig. 2(c) has the most
communication wise challenging (hereafter referred to
as just ‘challenging’) set-up. This is because (i) the link
speed is the lowest, at 100, of three speeds (100, 200 and
500) shown in this figure, and (ii) the number of edges
simultaneously allowed in the network is the smaller, at
22, of the two values shown here (22 and 28). Figure 3
has been set up similarly to Fig. 2 except that it shows
the effect on convergence time of the choice of initial
topology. Notice that any move from a less challenging
to a more challenging set-up shows that the rings with
higher chord lengths generally do better. Specifically, one
can see the following.

1) A rightward movement from (a) to (b) to (c) in
Fig. 2 shows that the number of chordal rings
that achieve a throughput that is within 8% of the
baseline drops from 4 to 3 to 2.2 While C(16; 6) and
C(16; 7) reach 92% of the baseline throughput for
all three scenarios, C(16; 5) drops out of the “well-
performing” set of rings when SL is decreased from
500 to 200. And both C(16; 4) and C(16; 5) drop
off this set when SL is further decreased from 200
to 100. That is, for subplot (c), the chord lengths of
2, 3, 4, and 5 are all in a set that does not give
throughput competitive to that of the condensed
graph. A similar change in performance is seen
when one moves ‘up’ in Fig. 2, from (d) to (a),
from (e) to (b), or from (f) to (c). For example, when
we move from (d) to (a) in Fig. 2 (i.e., decreasing
Emax to 22 while keeping SL constant at 500),
the rings with the smaller chord lengths, C(16; 2)
and C(16; 3), start performing quite poorly. As
a specific example, the throughput improvement
worsens by about 18% for C(16; 2).

2) A similar rightward movement in Fig. 3 shows that
the improvement in time taken to converge has in
general gotten better. Note that the savings in the
convergence time are quite significant. For example,
for Fig. 3(a), the iterative algorithm converged
sooner, as compared to the baseline, by about 19%
to 31%, depending on the choice of chord length.
The corresponding value for 2-D torus was 20%.

2The number 8% is chosen here arbitrarily to make our point. It just
needs to be a small number.

When we move one step right to Fig. 3(b), the
convergence time improvement for the chordal rings
gets in the range of 28% to 31%; for 2-D torus,
31%. Note that the apparent much higher improve-
ments, 116% (not shown to reduce congestion on
y-axis) and 54%, in convergence times for C(16; 2),
and C(16; 3), respectively, are meaningless here
because their performance was worse by more than
8% of the baseline. After another step to the right,
in Fig. 3(c), we see time improvements of 51% and
68% for the only two rings, C(16; 6) and C(16; 7),
respectively, that have survived falling off the so-
called “well-performing” set. The 2-D torus saves
55% in time in this case.

3) The 2-D torus as an initial topology works just
well as an appropriate chordal ring as far as the
throughput improvement is concerned. However, for
savings in convergence time, an appropriate chordal
ring may be better (see Fig. 3(a), (e), and (f)).

One explanation of the above effect of larger chord
length chordal rings “holding out” longer in the face
of increasingly adverse communication environments is
offered by the average shortest path length, Lasp, of
chordal rings (Fig. 4). The number of links in the topol-
ogy path that are loaded to route a given application edge
is smaller for a chordal ring with a smaller Lasp. This
reduces the maximum load on a given topology link, and
subsequently increases the communication throughput.
Also, as the links are removed from the topology to
satisfy the constraint on the total number of edges, the
load on the removed links has to be re-routed through
another path. For a topology with a smaller Lasp value,
fewer links get loaded in the process of re-routing and
this results in less congestion overall.

As Fig. 4 shows, the Lasp value decreases from chord
length 2 to 6, except for chord length of 5. This pattern is
consistent with the throughput increase pattern shown in
Fig. 2. Note that this consistency between the throughput
pattern and average shortest path is more prominent
for Emax = 22 case as compared to Emax = 28
case because more links are removed to satisfy the
Emax = 22 constraint and the flow over the removed
links get re-routed through shorter paths.

The relatively large performance difference between
C(16; 2) and C(16; 6) may also be attributed to a large
difference in their bisection widths. For i ∈ {2, ..., 7},
bisection width of C(16; i) is always 8 except for
C(16; 2) and C(16; 6) where it is 6 and 10, respectively
(cf. Sec. III). A larger bisection width means that the
minimum number of links that have to be removed to
bisect the ring is larger. The task of optimizing for
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throughput is in part a task of finding a larger set of
paths that go from one bisection of the graph to another.
These are the paths that will be used to balance a large
streaming load, to, in turn, increase its throughput.

Another trend that emerges from Fig. 3 is that when
SL is decreased for a constant Emax, the convergence
advantage of the chordal rings becomes greater. This
convergence advantage of chordal rings can also be seen
by stressing the system in a different way, specifically,
by increasing the size of the application graph. A larger
sized application graph makes it more critical for the
iterative algorithm to co-optimize routing more carefully.
Table I shows the effect on throughput improvement and
convergence when application graphs of size 1000 are
used. All other parameters are the same as in Fig. 2
except that Emax has been set to 26 in this case. It can be
seen that moving to the larger application graph makes
C(16; 2) (i.e., a 16-node chordal ring with chord length
of 2) perform even worse with respect to throughput.
For the other chordal rings, however, the throughput
improvement over the baseline case of condensed graphs
does not change much. But the convergence time does
improve significantly in most cases.

TABLE I: The effect on throughput improvement and
convergence time of using larger application graphs.

SL
1000 vertices 300 vertices

∆thru
i ∆time

i ∆thru
i ∆time

i

C(16; 2) 200 -0.27 1.43 -0.16 0.68
C(16; 3) 200 -0.04 0.43 -0.04 0.27
C(16; 4) 200 -0.02 0.51 -0.03 0.35
C(16; 5) 200 -0.07 0.37 -0.06 0.36
C(16; 6) 200 -0.02 0.47 -0.01 0.22
C(16; 7) 200 -0.03 0.36 -0.02 0.24

2-D Torus 200 -0.02 0.31 -0.02 0.30

V. CONCLUSIONS AND FUTURE WORK

We present in this paper one method for seeding a
pre-existing technique for determining the degrees of
nodes in a heterogeneous interconnection network. In a
traditional setting, the topology of the interconnection
network is known beforehand and is homogeneous,
i.e., all nodes have the same degree, even if a given
application does not need such homogeneity. With recent
advances in technology for optical circuit switches, it is
now possible to construct a network at run-time, i.e.,
the link endpoints are configurable and are configured
at run-time to suit the communication pattern of a given
application. This raises the interesting question of how
to find a topology well-suited to a given application. A
natural way to solve this problem and the interdependent
problem of mapping the application to the topology
is to iteratively optimize the two problems in turns:
compute a partitioning, mapping and routing scheme for
a topology and then modify the topology in response
to the bottleneck identified in the mapping and routing
process. A fundamental question in this framework is
the choice of seed topology to start this iterative co-
optimization.

In this paper, we propose to initialize the iterative
co-optimization with chordal rings and torus topologies.
These topologies are chosen for their structural proper-
ties such as robustness to link failures, good bisection
width and small average shortest paths. We show that
seeding the iterative framework with these topologies
gives almost as good a performance as seeding with
topologies that mimic the communication patterns of
the application. In addition, such seeding was found to
reduce the convergence time of the iterative framework
significantly. A faster decision can allow the system
to make better use of the reconfigurable switch in a
dynamic setting. This paper, therefore, is one of the
first steps towards developing fast network configuration
algorithms for reconfigurable heterogeneous networks.
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Fig. 2: The effect on throughput improvement, ∆thru
i , of changes in the chord length of the 16-node chordal ring.
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Fig. 3: The effect on convergence time, ∆time
i , of changes in the chord length of the 16-node chordal ring.
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