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Abstract—Traditionally, a parallel application is parti-
tioned, mapped and then routed on a network of compute
nodes where the topology of the interconnection network is
fixed and known beforehand. Such a topology often comes
with redundant links to accommodate the communication
patterns of a wide range of applications. With recent
advances in technology for optical circuit switches, it is
now possible to construct a network with much fewer
links, and to make the link endpoints configurable to suit
the communication pattern of a given application. While
this is economical (saving both links and the power to run
them), it raises the difficult problem of how to configure
the network and how to reconfigure it quickly when the
application’s communication pattern changes.

In this paper, we propose the Kirchhoff index (KI) of
a certain weighted graph related to the interconnection
network as a proxy for its communication throughput.
Our usage of this metric is based on a theoretical analogy
between resistances in an electrical network and commu-
nication loads in the interconnection network. We show
how mathematical techniques for reducing KI can be used
to configure a network in a dramatically shorter time as
compared to the current state-of-the-art scheme.

Keywords-Graph partitioning algorithm; Reconfigurable
topology; Optical circuit switch; Kirchhoff index

I. INTRODUCTION

Recently, there has been a new opportunity for in-
creasing the performance of parallel applications. This
opportunity has been afforded by optical switches that
can quickly configure an interconnect topology to suit
a particular application. The freedom to configure the
interconnect to suit the requirements of an application
is a potentially rich vein of theoretical investigation.
Whereas the traditional parallel computing task has been
to assign computational clusters and a communication
pattern to a static interconnect in order to elicit, for
example, the best possible throughput, one can now
explore the possibility of improving performance even
further by selecting a topology whose characteristics are

advantageous to a given task graph. While the first opti-
mization is well known and well studied in the literature
(e.g., [1], [2], [3]), the latter optimization of the intercon-
nect topology has not been well studied. This is mostly
because configurable optical switches have only recently
become feasible in terms of price and switching time,
and have therefore recently afforded configuration of the
interconnect topology on an application-by-application
basis. Accordingly, there has been considerable recent
research (e.g., [4], [5], [6]) in tailoring the interconnect to
suit the requirements of a given application, in particular
a stream computing application.

Stream computing is an important computing model
that captures applications like real-time analysis of finan-
cial and medical data [7], audio/video systems, contin-
uous database queries, intelligent transportation systems
[8] and analysis of dynamic social networks [9], [10].
These applications are termed as stream computing ap-
plications, in that they consist of processing continuous,
high-volume data-streams in real time. Such applications
are particularly suited for utilizing a configurable parallel
architecture, like the one enabled by a configurable
optical switch ([11], [12], [13], [14]), because these
applications have long duration flows (in seconds) that
can easily amortize the cost of configuring the switch
(usually in a few 10s of millisecs).

Recently, an iterative co-optimization technique [5]
has been proposed to solve this problem. It takes turns
in optimizing the application partitioning and routing
for a given interconnect topology, and optimizing the
interconnect topology to alleviate the bottlenecks iden-
tified in the partitioning and routing phase. A major
problem with this approach is that it is computationally
expensive to repeatedly compute good solutions for
partitioning, mapping and routing. Although this iterative
co-optimization framework has been an important first
step in tackling this problem in its entirety, the running



time of this approach makes it difficult to use it in real
systems.

In this paper, we propose a different framework for
tackling this problem. Rather than repeatedly computing
partitioning, mapping and routing solutions to estimate
the throughput obtained from an interconnect topology,
we compute such a solution only once and then use a
metric (the Kirchhoff index of a certain weighted matrix
related to the topology) dependent on the topology that
correlates well with the throughput. By optimizing the
interconnect topology for this metric, we can directly ob-
tain a topology that elicits good throughput for the given
application. The central component of this algorithm is
a novel edge rewiring scheme that greedily minimizes
the Kirchhoff index based metric.

We show that the topologies obtained from this al-
gorithm provide a performance comparable to (and in
many cases, much larger than) that obtained from the
iterative co-optimization approach, but crucially, the time
to search for a good topology is dramatically reduced.
This makes the proposed scheme much better suited for
deployment in real systems. As one motivating example,
our algorithm configures a 16-node network so that it
suits the characteristics of a popular graph benchmark,as-
22july06, in a little over 6 seconds while the iterative
co-optimization technique [5] takes more than 6 hours.
At the same time, our algorithm achieves about 3 times
higher throughput.

Another problem with the iterative co-optimization
framework is its dependence on a large number of
heuristics for partitioning, mapping and routing. It is
difficult to determine what combination of heuristics will
provide the best throughput for a given application graph
and to tune the heuristic parameters. It is even more
difficult to achieve a good throughput-time trade-off. We
may be willing to sacrifice some throughput if it leads
to a considerable reduction in the time to compute it.

The usage of heuristics seems inevitable as most
variants of partitioning, mapping and routing problems
are NP-complete. But by relating our problem to that
of optimizing the Kirchhoff index of a related electrical
network and by using a simple, greedy, polynomial time
algorithm for it, our proposed scheme reduces the num-
ber of heuristics and associated parameters considerably.

II. PRELIMINARIES

In this section we provide an outline of the problem to
be addressed, and describe the notations and definitions
used in the remainder of the paper.

A. Space of Configurable Topologies

We consider the problem of configuring the intercon-
nect topology of a computing system built around a
reconfigurable switch (e.g., an optical circuit switch).
Such a switch allows one to configure any topology
H(VH , EH) satisfying the constraints that (i) the max-
imum degree of a node in H is at most dmax (referred
to as the maximum degree constraint) and (ii) the total
number of links in H is at most Emax (referred to as
the maximum edge constraint). These constraints derive
respectively from the fact that each compute node has a
limited number of ports to connect to the configurable
switch, and that the switch itself has a limit on the
number of links that it can maintain simultaneously.
Furthermore, we assume that each compute node in H
has the same processing speed, denoted by SC. We also
assume that each link in H has the same bandwidth,
denoted by SL.

From among the large space of topologies that fit
this basic description, we are interested in computing
a topology that elicits a high throughput for a given
instance of a stream-computing application.

B. Stream-Computing Application Task Graphs

The computational task graph of a stream-computing
application is represented as an undirected weighted
graph G(VG, EG). Each vertex u ∈ VG denotes a compu-
tational kernel (e.g., a split, join, or filter) and its weight
wG(u) quantifies the average amount of computation
that must be performed in the corresponding kernel
to produce an element of output. Similarly, each edge
{u, v} ∈ EG represents a data-stream (capturing the
data dependency) between the kernels u and v and its
weight wE({u, v}) represents the average amount of data
transfer between these two kernels.

C. Suitability of a Topology for a Given Application

To evaluate the suitability of a topology H for a given
application task graph G, we simulate a run of G on
H . In this run, each vertex vi ∈ VG is mapped to a
compute node ui ∈ VH and each edge {vi, vj} ∈ EG
is routed along a sequence of links (or path) in H . Let
µ(vi) determine the node to which a particular vertex vi
is mapped, and let ρ(vi, vj) determine the sequence of
links that are used to route an edge {vi, vj} ∈ EG. Given
such mapping and routing schemes, the computational
load on each node ui ∈ VH is

wV (ui) =
∑

ui=µ(vi)
vi∈VG

wV (vi), (1)
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and the communication load on each link {ui, uj} ∈ EH
is

wE({ui, uj}) =
∑

{ui,uj}∈ρ(vi,vj)
{vi,vj}∈EG

wE({vi, vj}). (2)

Based on these formulations, we define the throughput
of a compute node ui as SC/wV (ui) and the throughput
of a link {ui, uj} as SL/wE(ui, uj). The computation
throughput of the system is then the minimum through-
put over all compute nodes, and the communication
throughput of the system is the minimum throughput
over all links. The system throughput is the smaller
of the computation and communication throughputs.
This throughput is used as a performance metric to
determine the suitability of a topology for the given
application. Note that this definition of throughput arises
out of stream computing applications, where we view the
compute nodes and communication links as processing
units running concurrently so that the overall throughput
is equal to the throughput of the slowest processing unit.

D. Optimization of Communication Throughput

The throughput obtained in the preceding evaluation
depends crucially on the algorithm used to map and
route the application to the topology. Since most variants
of topology-aware partitioning, mapping and routing
algorithms are NP-hard, one often relies on heuristics or
approximation algorithms to obtain efficient solutions.
This makes it difficult to optimize for the through-
put directly. Therefore, to achieve this optimization we
propose an alternative metric that correlates well with
throughput (and in particular, communication through-
put for reasonable solutions of partitioning and routing
algorithms) and for which it is possible to optimize.

Our chosen metric is the Kirchhoff index [15] of a
certain weighted graph where weights on this graph are
derived from the mapping of the application graph to the
interconnect topology. We start with an initial topology,
obtained, for example, from the algorithm of [5], and
a mapping of the application graph to it. We employ a
network configuration algorithm designed to iteratively
reduce the Kirchhoff index of the initial topology, and
thereby alleviate potential communication bottlenecks.
The theoretical underpinning of this procedure is dis-
cussed below in Sec. III-B. First, let us provide the
motivation for our use of this metric.

III. OUR METHODOLOGY

A. Kirchhoff Index and Communication Throughput

In graph theory, the resistance distance [15] between
two vertices of a connected graph, H , is equal to the

effective resistance between two corresponding points
on an electrical network that has been constructed so
as to match the structure of H , and in which each
edge of H has been replaced by a 1 ohm resistor. The
resistance distance is a metric on the vertices of any
graph. By a similar thought experiment, we may view
the interconnect topology with communication loads on
its links as an electrical network with resistances. This
analogy between the resistances in the electrical network
and communication loads on an interconnect topology
has been frequently used in the networking literature
(e.g., [16], [17], [18], [19], [20]). In our case, the analogy
assumes that just as the amount of current (number of
charge units per second) in an electrical circuit depends
on the conductance of a wire, the data throughput
(number of data packets processed per second) over a
communication link in an interconnect topology depends
on the remaining bandwidth on the link. If a link is heav-
ily congested, the corresponding wire in the electrical
network can be considered to be of low conductance.
In other words, such a link offers high resistance to
any additional flow over it. On the other hand, the wire
corresponding to a link with light communication load
has a high conductance (low resistance).

We assume that the throughput (our performance
metric in this paper) between two vertices in the topology
graph will increase if the number of routes between these
two vertices increases. This notion is in fact captured in
the “multiple-route distance diminishment” [15] property
of the resistance distance between a pair of vertices.
In our specific context where we have a graph with
weighted edges, the resistance distance between vertices
u and v is defined as the effective resistance between
the two vertices when each graph edge is replaced by
a weight that is a function of how G was mapped
on H . In particular, we focus on using the Kirchhoff
Index, which is defined as the sum of resistance distances
between all pairs of vertices in H , as an indicator of the
resistance of the entire network. This justifies the usage
of the Kirchhoff index as a proxy for communication
throughput when mapping an application to the inter-
connect topology because a better value of Kirchhoff
index indicates a network that allows a larger value of
throughput.

We now give a formal definition of the Kirchhoff
index. Let H be an undirected weighted graph on n
vertices, with vertex indices i = 1, . . . , n. Given distinct
indices i, j we write i ∼ j if i and j are adjacent in
H , and i 6∼ j if they are not adjacent. The value wi,j
is known as the weight of the edge between vertices
i and j, and is defined such that whenever i ∼ j,
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wi,j = wj,i > 0, with wi,j = wj,i = 0 if i 6∼ j.
The Laplacian matrix for H , denoted L, is given by
L = [li,j ]i,j=1,...,n, where

li,j =


−wi,j if i ∼ j,
0 if i 6= j, i 6∼ j,
di if i = j.

The Kirchhoff index of H can be written as KI(H) =
n ·tr(L†), where L† denotes the Moore-Penrose pseudo-
inverse [21] of L, and tr(·) denotes the trace function,
e.g., tr(H) =

∑n
i=1 hii.

B. Algorithm for Configuring the Initial Topology

We now present a greedy algorithm that iteratively
modifies a seed topology in an effort to reduce the Kirch-
hoff index. To obtain an initial topology we first compute
a partitioning of the application graph (using any parti-
tioning library like METIS [22] or SCOTCH [23]) into
|H| clusters and then contract each cluster to a single
node forming a condensed graph (also referred to as a
quotient graph in the literature). The weight of an edge
in a condensed graph is the sum of weights of edges
between the two corresponding partitions in the applica-
tion graph. We then remove some low-weight edges, if
necessary, to satisfy the maximum degree and maximum
edge constraints and treat the resultant graph (ignoring
its weights) as the initial topology. Since this topology
mimics the communication pattern of the application,
it is argued (see, e.g., [5]) that the application should
map well to this topology, thus making it a good seed
topology for our algorithm.

The formation of the condensed graph gives an im-
plicit partitioning and mapping from the application
graph to the condensed graph topology. In this implicit
mapping, all vertices that were condensed to form a node
in the condensed graph are mapped to that node in the
topology. We first use the shortest path routing scheme to
assign initial routes to all those application edges whose
incident vertices are mapped to different nodes in the
topology. Later, we consider the application edges in
decreasing order of their weight and re-route them using
the min-congestion path (using a minimum spanning tree
algorithm) in the topology.

The shortest path routing minimizes the total flow
summed over all links and the min-congestion routing
distributes the flow more evenly at the cost of increasing
the total flow by a hopefully small amount.

Once the routing is completed, we can compute the
communication load on each link using Eq. 2. We then
view the initial topology as an electrical network. Among
all links in the topology, let wmaxE be the maximum

communication load. The conductance wC of a wire
{ui, uj} in this electrical network is determined by the
following equation:

wC({ui, uj}) = wmaxE + 1− wE({ui, uj}) (3)

The above metric always assigns a positive value to
the conductance and conforms to the intuitive notion that
the congested links (with a high existing load) should
have low conductance and links with relatively low
communication load should have high conductance. By
computing the Laplacian matrix of the initial topology
with the weights defined by the conductance values, we
can now compute the Kirchhoff index of the correspond-
ing electrical network, as described in Sec. III-A.

Once an initial topology has been constructed, we
rewire repeatedly until the Kirchhoff index of the topol-
ogy has been reduced below a certain threshold (see
Algorithm 1 below). In a given rewiring iteration, an
edge is deleted from the topology and a new edge
is added to the topology. An edge deletion always
worsens the Kirchhoff index (i.e., increases it) because
it reduces the number of routes between some pair of
vertices. Similarly every edge addition always improves
the Kirchhoff index because it increases the number of
routes between some pair of vertices. A simple argument
(see the last paragraph of the current section) shows that
every rewiring iteration carried out in Algorithm 1 either
improves the Kirchhoff index or does not change it. The
latter scenario occurs when the added edge happens to
be the same as the deleted edge.

Algorithm 1 Network configuration algorithm

Input: A partitioning, mapping and routing of the ap-
plication graph G on the topology graph H , such
that the max-degree and max-edge constraints have
been satisfied. A value for the tolerance ε.

Output: H2, a topology graph optimized for communi-
cation throughput. A routing of G on H2.

1: H0 = H , done = false
2: while not done do
3: H2 = rewire(H0)
4: if KI(H0)−KI(H2) < εKI(H0) then
5: done = true,
6: else
7: H0 = H2

8: end if
9: end while

10: Reroute G onto H2 (from scratch).

The edge rewiring algorithm outlined in Step 3 of
Algorithm 1 and explained in detail in Algorithm 2
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below, is the key component of our approach to the task
of configuring the topology. However, before we discuss
the mathematical details of Algorithm 2, in the interest
of clarity, we offer the following general summary of the
operations this algorithm performs.

Let H0, H1, and H2 denote the three different topolo-
gies that are involved in every iteration of the while loop
of Algorithm 1. To begin rewiring, we first identify the
set, Sdel, of edges in H0 whose deletion will not cause
H0 to become disconnected.1 We then select from Sdel

the edge, i0 ∼ j0, say of weight wC({i0, j0}), whose
deletion will cause the least increase in the Kirchhoff
index of the topology, and delete i0 ∼ j0. Next, from the
newly formed topology graph H1 = H0 \ {i0 ∼ j0} we
identify the pairs of vertices that are not already adjacent
in H1, and whose respective degrees are less than dmax,
so that the graph after inserting an edge between this pair
still satisfies the maximum degree constraint. From this
set, Sadd, of pairs of vertices, we then select the pair,
i1, j1, which if connected by the edge i1 ∼ j1 would
cause the largest decrease in the Kirchhoff index of all
pairs in Sadd. We then add the edge i1 ∼ j1 to H1 to
create the graph H2. Finally, the edge i1 ∼ j1 is assigned
the weight, wC({i0, j0}), of the deleted edge i0 ∼ j0.
Thus, an edge has been removed from the topology and
a new edge with the same weight as the removed edge
has been added. This procedure ensures that if the input
graph satisfied the maximum degree constraint and the
total edge constraint, the output graph will also satisfy
these constraints.

By repeating this rewiring procedure, we attempt to
improve (i.e., decrease) the Kirchhoff index. As indicated
earlier, rewiring does not increase the KI. We stop
iterating (see Algorithm 1, Step 4) when the decrease
in KI obtained from the current iteration is less than a
prespecified percentage, ε, of the value of KI obtained
from the previous iteration. In the final step of Algorithm
1, we re-route the application graph, G, onto H2.

The purpose of the next four equations (Eqs. (4)-(7))
is to describe the effect of edge deletion or addition
on the Kirchhoff index of the topology. These results
follow as direct corollaries of Theorem 1 and Lemma
2, shown in the Appendix. Equations (4)-(7) allow us to
avoid invoking the computationally expensive procedure
of computing the Kirchhoff index from scratch each time
an edge is considered for removal or insertion. This, in
turn, makes the rewiring procedure extremely fast.

We require the following definitions. For each pair of
distinct indices i, j between 1 and n, let u(i, j) denote

1We refer to these edges later as non-cut edges; cut-edges are those
edges whose deletion will cause a graph to become disconnected.

the vector in Rn given by ei − ej , where ei and ej are
the i–th and j–th standard unit basis vectors in Rn. The
proof of Eqs. 4 and 5 follows immediately by applying
Theorem 1 (Appendix) with k = 1, U = u(i0, j0) and
α1 = wC({i0, j0}). Observe that since i0 ∼ j0 is not
a cut edge, 1 − u(i0, j0)t(L†0)u(i0, j0) > 0, by Lemma
2 (Appendix). The proof of Eqs. (6)-(7) is analogous to
that of Eqs. 4 and 5, and is omitted.

First, consider edge deletion. Let H0 be a connected
weighted graph on n vertices with Laplacian matrix
L0. Suppose that i0 ∼ j0 is an edge of H0 with
weight wC({i0, j0}), and suppose further that i0 ∼ j0
is not a cut edge. Let H1 denote the weighted graph
obtained from H0 by deleting the edge i0 ∼ j0. Denote
the Laplacian matrices of H0 and H1 by L0 and L1,
respectively. Then

L†1 =L†0 + wC({i0, j0})

× L†0u(i0, j0)u(i0, j0)tL†0
1− wC({i0, j0})u(i0, j0)tL†0u(i0, j0)

(4)

and

KI(H1) =KI(H0) + wC({i0, j0})n

× u(i0, j0)t(L†0)2u(i0, j0)

1− wC({i0, j0})u(i0, j0)tL†0u(i0, j0)
.

(5)

Thus, Eq. 5 provides a computationally cheap way
to calculate the Kirchhoff index, KI(H1), of the newly
formed graph H1 after the edge i0 ∼ j0 has been re-
moved from H0. Similarly, Eq. 4 tells us how to cheaply
calculate the new Moore-Penrose pseudo-inverse, L†1, of
L1 from the old value, L†0. The new value L†1 is required
to further modify the edge set of H1.

Next, consider edge addition. Let H1 be a connected
weighted graph on n vertices with Laplacian matrix L1.
Let H2 denote the weighted graph obtained from H1

by adding the edge i1 ∼ j1 with weight wC({i1, j1}).
Denote the Laplacian matrices of H1 and H2 by L1 and
L2, respectively. Then

L†2 =L†1 − wC({i1, j1})

× L†1u(i1, j1)u(i1, j1)tL†1
1 + wC({i1, j1})u(i1, j1)tL†1u(i1, j1)

(6)

and

KI(H2) =KI(H1)− wC({i1, j1})n

× u(i1, j1)t(L†1)2u(i1, j1)

1 + wC({i1, j1})u(i1, j1)tL†1u(i1, j1)
.

(7)
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Thus, Eq. 7 provides a computationally cheap way
to calculate the Kirchhoff index, KI(H2), of the newly
formed graph H2 after the edge i1 ∼ j1 has been added
to H1. And, Eq. 6 tells us how to cheaply calculate the
new Moore-Penrose pseudo-inverse, L†2, of L2 from the
old value, L†1.

Based on Eqs. (4)-(7), we suggest the 4-step strategy
shown below in Algorithm 2 for modifying the topology
of a connected weighted graph so as to reduce the corre-
sponding Kirchhoff index, while keeping the number of
edges the same, and ensuring that the maximum degree
is bounded above by dmax.

Algorithm 2 rewire(H0)

Output: Returns a graph H2 such that KI(H2) ≤
KI(H0)

1: For each edge i ∼ j of H0, let wC({i, j}) denote
the corresponding edge weight. From the set of all
non–cut edges of H0, select an edge i0 ∼ j0 that,
upon setting i = i0 and j = j0 (see Eq.5), minimizes
the quantity

wC({i, j})u(i, j)t(L†0)2u(i, j)

1− wC({i, j})u(i, j)t(L†0)u(i, j)
.

2: Denote the Laplacian matrix of H0 by L0. Form
the weighted graph H1 from H0 by deleting the
edge i0 ∼ j0, and update the Moore–Penrose inverse
of the corresponding Laplacian matrix as L†1, in
accordance with Eq. 4.

3: From the set of all vertices of H1 with degree at most
dmax−1 select a non–adjacent pair i1, j1 that, upon
setting i = i1 and j = j1 (see Eq. 7), maximizes the
quantity

u(i, j)t(L†1)2u(i, j)

1 + wC({i0, j0})u(i, j)t(L†1)u(i, j)
.

4: Form H2 from H1 by adding to H1 the edge i1 ∼ j1
with weight wC({i0, j0})

5: return H2

In this algorithm, the graph H2 can be thought of as
having been obtained from H0 by rewiring a weighted
edge; that is, by moving an edge of weight wC({i0, j0})
so that it no longer connects vertices i0 and j0, and in-
stead connects vertices i1 and j1. We offer the following
observations concerning this rewiring scheme.

First, we observe that if H0 has s non–cut edges, then
in Step 1 the edge i0 ∼ j0 is identified by selecting
the minimum of at most s quantities. In Step 2, it
follows from Eq. 5 that among the connected weighted

graphs formed by deleting a single edge from H0, the
weighed graph H1 has the smallest Kirchhoff index.
Next, we observe that if H0 has r vertices of degree
at most dmax− 1, then H1 has at most r+ 2 vertices of
degree at most dmax − 1, and hence in Step 3 the pair
i1, j1 is identified by selecting the maximum of at most
(r+ 2)(r+ 1)/2 quantities. Finally in Step 4, it follows
from Eq. 7 that among the weighted graphs formed by
adding an edge of weight wC({i0, j0}) to H1 so as to
produce a graph of maximum degree at most dmax, the
weighted graph H2 has the smallest Kirchhoff index.
Thus, if H0 has s non–cut edges and r vertices of degree
at most dmax − 1, then in generating H2 from H0 one
will consider at most s+(r+2)(r+1)/2 different graphs
(i.e., at most s at Step 1 to produce H1, then at most
(r + 2)(r + 1)/2 at Step 3 to produce H2).

With H0, H1, and H2 as in Steps 1–4 above, we have
KI(H2) ≤ KI(H0). The reason for this inequality is
straightforward. Our original graph H0 is a member of
the collection of weighted graphs formed by adding an
edge of weight wC({i0, j0}) to H1 so as to produce a
graph of maximum degree at most dmax. Since KI(H2)
is smallest over all weighted graphs in that collection, it
must be the case that KI(H2) ≤ KI(H0).

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

Our implementation for the rewiring procedure is
based on C. For the various matrix operations required
in the algorithm, we use the Linear Algebra Pack-
age (LAPACK) [24] ver. 3.4.2 through its C interface
LAPACKE [25]. LAPACK uses the highly optimized
Basic Linear Algebra Subprograms (BLAS) routines [26]
internally.

For the sake of numerical stability of our implementa-
tion, we computed the Moore Penrose pseudo-inverse of
a Laplacian matrix as L† = (L+ (1/n)J)−1 − (1/n)J ,
where J is the all ones matrix. We found that the
computation of the pseudo-inverse using SVD decompo-
sition made our implementation susceptible to numerical
errors.

In the following sections, we will refer to the Kirch-
hoff index based rewiring scheme as KIR, while the iter-
ative co-optimization framework from Ajwani et al. [5]
will be refereed to as ICR.

B. Experimental Framework

Now we present the experiments we conducted to
compare the performance of our algorithm, KIR, with
the iterative co-optimization algorithm, ICR [5]. We
characterize our experiments with the following param-
eters: the application graph, G; the size of the topology
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graph, |H|; the maximum degree constraint, dmax; the
maximum edges constraint, Emax; the processing speed,
SC, of the compute nodes in H; and the bandwidth, SL,
of the links in H .

For our application graphs, we took a sampling of
graphs from the (a) Graph Partitioning Archive [27]
maintained by Chris Walshaw and (b) 10th DIMACS
Implementation Challenge on Graph Partitioning and
Graph Clustering [28]. The particular graphs we chose
are shown in Table I. These graphs represent applica-
tions domains of VLSI design, fluid dynamics, Internet
structure, and social networks.

For the experiments presented in this paper, we restrict
the value of dmax to 4. However, we change the value
of Emax between 22 and 28 to present two different
levels of communication difficulty to the application
graphs. In similar vein, while we fix the value of SC

to an arbitrary number of 500, we vary the value of
SL to alter the computation to communication ratio. A
high ratio implies that computation is less likely to be
the bottleneck as the compute nodes can process the
computation load faster than the links can move the data
around.

For each graph in Table I, we conducted several trials.
For each trial i we measured the time, Ti, taken to config-
ure the network, and the goodness of the configuration,
as measured by the achieved throughput, θi. Two trials
differ from each other only in the seed for the random
number generator. In each trial, we tested both KIR and
ICR, and computed (a) the ratio of throughput achieved
by KIR to that of ICR, denoted by

Θi = θKIR
i /θICR

i

and (b) the ratio of time for network configuration taken
by ICR to that of KIR, denoted by

τi = T ICR
i /TKIR

i .

We report in Table II one such experiment for |H|
= 16 and Emax = 28. We show the average values for
Θi and τi, denoted as Θ and τ , respectively. We also
report the average of the absolute times, i.e., T ICR and
TKIR. It is immediately noticeable that KIR is very fast
and certainly much faster than ICR. In most cases, its
solution is no worse than 1% of the ICR solution but
it is always faster by one to three orders of magnitude.
In particular, we note four graphs for which the KIR
solution is actually better; add20, memplus, as-22july06,
and coAuthorsCiteseer. While add20 and memplus are
derived from logic design, as-22july06 is a “symmetrized
snapshot of the structure of the Internet at the level of
autonomous systems” [28], and coAuthorsCiteseer is a

citation network where each node is a paper and two
nodes have an edge between them if the corresponding
papers have a common author. Our method configures
the network for as-22july06 in a little over 6 seconds
while ICR takes more than 6 hours. At the same time,
KIR achieves about 3 times higher throughput than ICR.
We would also like to give an estimate of the absolute
quality of KIR’s solution for as-22july06. Although not
shown in Table II, the throughput value for as-22july06
using KIR is 0.33. This value is pretty high, as it is 94 %
of 0.35, a value that would be possible in a hypothetical
scenario with perfect load balance (calculated by |VH | ∗
SC/|VG|).

All four of these graphs stand out from (almost all
of) the others in their degree distribution; they all have
high max degrees, being 123, 573, 2390, and 1372,
respectively. Given that the average degree for all of
these graphs is much smaller than the max degree, the
degree distribution likely follows a power law, with a
few vertices with a very high degree and and a very
high number of vertices with a small degree. Partitioning
such a graph gives either small cuts with high imbalance
or high cuts with low imbalance. In the KIR approach,
we handle such graphs by first partitioning them with
a good balance at the expense of a high cut, and then
attempting to rewire the network to a topology where
the high cuts can be re-routed in a way that most
reduces the communication cost. At given values of link
bandwidths, this approach is intuitively likely to reduce
communication cost more than ICR.

Figures 1 and 2 show, for three different graphs, the
effect on Θ and τ when Emax and SL are changed inde-
pendently of each other. Relaxing the Emax constraint
understandably increases the time advantage of KIR
because a larger number of topology edges considerably
increases the search time for ICR (which is inherently
slower than KIR). As can be expected, and seen in
Figure 2, the effect on τ of increasing the SL depends
on the input application graph.

Table III shows, for a subset of graphs in Figure I, the
values of Θ, τ , T ICR, and TKIR for a larger |H|. One
can see that the two smaller input graphs of add20 and
data did not have much use for a larger parallel machine.
However, the larger input graph, wing nodal, increased
its throughput advantage. As seen before in Figure 2, a
larger number of topology edges makes ICR relatively
slower than KIR; the τ values for wing nodal increases,
from 69 to 133. At the same time, note that KIR is
scalable; increasing the topology size by 2 increases
the TKIR by about the same factor. However, the time
increase for ICR is more than a factor of 4.

7



TABLE I: Application graphs used in our experiments

V E
node degree avg.

clust.
coeff.

min max avg
add20 2,395 7,462 1 123 6.23 0.63
data 2,851 15,093 3 17 10.59 0.48
3elt 4,720 13,722 3 9 5.81 0.41
whitaker3 9,800 28,989 3 8 5.92 0.41
crack 10,240 30,380 3 9 5.93 0.47
wing nodal 10,937 75,488 5 28 13.80 0.42
fe 4elt2 11,143 32,818 3 12 5.89 0.42
memplus 17,758 54,196 1 573 6.10 0.77
as-22july06 22,963 48,436 1 2390 4.22 0.23
preferential
Attachment

100,000 499,985 5 983 10.00 0.001

coAuthors
Citeseer

227,320 814,134 1 1372 7.16 0.68

TABLE II: Comparison of KIR and ICR

Θ τ T ICR

(sec)
TKIR

(sec)
add20 1.6 223 397 1.8
data 1 68 52 0.8
3elt 1 87 111 1.3
whitaker3 1 91 131 1.5
crack 0.99 107 253 2.4
wing nodal 0.99 69 352 5.2
fe 4elt2 0.99 76 208 2.7
memplus 1.9 134 1749 13
as-22july06 3.1 3456 21723 6.3
preferentialAttachment 0.93 283 32197 114
coAuthorsCiteseer 2.4 104 9948 96

TABLE III: Comparison of KIR and ICR for a larger
topology, |VH | = 32

Θ τ T ICR

(sec)
TKIR

(sec)

add20 1.6 1400 2697 2.0
data 1 139 180 1.3
wing nodal 1.06 133 1619 13

V. DISCUSSION

We consider the problem of computing a topology
that optimizes the throughput of a given HPC application
executing in a stream computing model, and propose a
technique based on optimizing the Kirchhoff index as a
proxy for maximizing the throughput.

We consider many different graph classes and show
that, in most cases, the solution from our algorithm KIR
is no worse than 1% of the ICR solution but that KIR
is always faster by one to three orders of magnitude. For
some important and widely used graph benchmarks from

0.65 0.75 1.25
0

0.5

1

1.5

2

2.5

3

3.5

S
L
 to S

C
 ratio

Θ

add20

 

 

 E
max

=22

 E
max

=28

 E
max

=32

0.65 0.75 1.25
0

0.5

1

1.5

2

2.5

3

3.5

S
L
 to S

C
 ratio

Θ

data

 

 

 E
max

=22

 E
max

=28

 E
max

=32

0.65 0.75 1.25
0

0.5

1

1.5

2

2.5

3

3.5

S
L
 to S

C
 ratio

Θ
memplus

 

 

 E
max

=22

 E
max

=28

 E
max

=32

Fig. 1: The effect of increasing Emax and SL on Θ.

citation networks and Internet autonomous systems, our
algorithm produces a topology that elicits a throughput
that is larger by a factor of 2 to 3. For the case of
as-22july06, our method configures a 16-node network
about 3400 times faster (∼6 seconds versus ∼6 hours).
At the same time, KIR achieves about 3 times higher
throughput than ICR (reaching 94% of a theoretical
upper bound). For the coAuthorsCiteseer benchmark, our
approach gives a throughput 2.4 times as large, in a time
that is a 100 times faster when compared to ICR.

A major advantage of our algorithm is that it is based
on matrix operations that can be easily parallelized.
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Fig. 2: The effect of increasing Emax and SL on τ .

Furthermore, once the application graph is implicitly or
explicitly mapped to an initial topology, the remaining
computation does not depend on the application graph
at all. This is in sharp contrast to the previous schemes
based on sequential local updates (e.g., MST based
routing) that are very difficult to parallelize.

We would eventually like to deploy these solutions
into a real system, where the workload changes dynami-
cally. For a technique to be deployable in such a system,
it has to be extremely fast (taking a few seconds to
compute the new topology). Our proposed technique is
a crucial step in making this goal realizable.

In this paper, we have always chosen the initial

topology as the condensed graph of the application task
graph. However, our scheme can be initialized with other
topologies as well. It will be instructive to find out
how well our scheme works with other initial topologies
such as chordal rings, 2-d tori and hypercubes. From
the point of view of its deployment in a system with
dynamic workload, a more tantalizing question is to
use the existing topology and the existing loads on the
links and compute nodes as a base case for the rewiring
scheme. Similar to the graph repartitioning problems, we
would then like to modify the optimization function such
that the new topology is similar to the existing topology
and the cost of data migration is low.

REFERENCES

[1] T. Agarwal, A. Sharma, and L. V. Kalé, “Topology-aware task
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APPENDIX

The following result gives a perturbation formula
for the Moore–Penrose inverse of the Laplacian matrix
for a weighted graph. We require this theorem and the
lemma which follows it in order to justify Eqs. (4)-
(7) of Sec. III-B, which are fundamental to Algorithm 2.

Theorem 1: Suppose that H and H̄ are two connected
weighted graphs on n vertices. Denote their Laplacian
matrices by L and L̄, respectively, and set E = L̄− L.
Then I + EL† is invertible, and

L̄† = L†(I + EL†)−1. (8)

In particular, if there are indices i1, . . . , ik, j1, . . . , jk,
and scalars α1, . . . , αk such that E =∑k
l=1 αlu(il, jl)u(il, jl)t, then letting U be the

n× k matrix U = [ u(i1, j1) . . . u(ik, jk) ], and D
be the k×k diagonal matrix diag(α1, . . . , αk), we have

L̄† = L† − L†UD
(
I + U tL†UD

)−1
U tL†. (9)

Further, we also have

KI(H̄) = KI(H)

− n · tr
(
(I + U tL†UD)−1U t(L†)2UD

)
.

(10)

Proof: The proof that I+EL† is invertible is analogous
to that of Theorem 3.1 of [29], and is omitted. Let J
be the matrix of all ones. By considering the spectral
decomposition of L, it follows from results in Sec. 4.3
of [30] that L† = (L + 1

nJ)−1 − 1
nJ ; similarly, L̄† =

(L̄+ 1
nJ)−1− 1

nJ . Note that L̄+ 1
nJ = L+ 1

nJ +E =
(I+E(L+ 1

nJ)−1)(L+ 1
nJ) = (I+E(L†+ 1

nJ))(L+
1
nJ). Since EJ = 0, we thus find that L̄ + 1

nJ = (I +
EL†)(L + 1

nJ). Consequently, L̄† = (L + 1
nJ)−1(I +

EL†)−1 = (L† + 1
nJ)(I +EL†)−1. Using the fact that

JE = 0, we find that J(I + EL†)−1 = J , and Eq. (8)
now follows.

Suppose now that E =
∑k
l=1 αlu(il, jl)u(il, jl)t, and

observe that E can be written as E = UDU t. In
that case, we have I + EL† = I + UDU tL†. Since
(UD)(U tL†) and (U tL†)(UD) have the same nonzero
eigenvalues, we find that I + U tL†UD is invertible.
Using the formula for the inverse of a low rank update
(see Sec. 0.7.4 of [21]), we find that (I + EL†)−1 =
I − UD(I + UDU tL†)−1U tL†. Equation (9) is now
readily established.

From Eq. (9) it follows that KI(H̄) =
KI(H) − n · tr

(
L†UD(I + U tL†UD)−1U tL†

)
.

For any pair of matrices A,B of orders n×k and k×n,
respectively, tr(AB) = tr(BA). Applying that fact with
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A = L†UD and B =
(
I + U tL†UD

)−1
U tL†, leads

directly to Eq. (5). �

For a connected graph H , an edge i ∼ j is a cut
edge if H \ {i ∼ j} is disconnected; we call an edge of
H a non–cut edge if it is not a cut edge. The following
result deals in part with cut edges.

Lemma 2: Let H be a connected weighted graph on n
vertices with Laplacian matrix L. Fix adjacent vertices
i, j, and let α denote the weight of the edge i ∼ j. We
have

α(ei − ej)tL†(ei − ej) ≤ 1, (11)

with equality holding if and only if i ∼ j is a cut edge
of H .

Proof: From Proposition 2.2 and Theorem 2.3 of [31], it
follows that (ei − ej)tL†(ei − ej) can be written as

(ei − ej)tL†(ei − ej) =

∑
T1,T2

w(T1)w(T2)∑
T w(T )

, (12)

where the sum in the denominator is taken over all
spanning trees of H , and where the sum in the numerator
is taken over all pairs of vertex disjoint trees T1, T2 such
that T1 ∪ T2 is a spanning subgraph of H , and where
i ∈ T1 and j ∈ T2. Here our notation w(T ) stands
for the product of the weights of the edges in T , and
similarly for w(T1), w(T2).

Suppose that we have a pair of trees T1, T2 as
above. Observe then that the graph T = T1 ∪ T2 ∪
{i ∼ j} is a spanning tree of H , and that w(T ) =
w(T1)w(T2)α. We now find readily that

∑
T w(T ) ≥

α
∑
T1,T2

w(T1)w(T2), and Eq. (11) follows.
Next, we consider the case of equality in Eq. (11).

We find readily from the argument above that equality
holds in Eq. (11) if and only if every spanning tree of
H contains the edge i ∼ j. If i ∼ j is a cut edge, then
necessarily each spanning tree of H contains i ∼ j, so
the equality holds in Eq. (11). On the other hand, if
i ∼ j is not a cut edge of H , it follows that H contains
a spanning subgraph H ′ that is unicyclic, and where the
edge i ∼ j is on the cycle in H ′; we find readily that
H ′ (and hence H) contains a spanning tree that does
not involve the edge i ∼ j, from which we deduce that
equality does not hold in Eq. (11). �
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