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Abstract

In this paper, we present a survey of the use of graph theoretical techniques in Biology. In

particular, we discuss recent work on identifying and modelling the structure of bio-molecular

networks, as well as the application of centrality measures to interaction networks and research

on the hierarchical structure of such networks and network motifs. Work on the link between

structural network properties and dynamics is also described, with emphasis on synchronization

and disease propagation.

1 Introduction and Motivation

The theory of complex networks plays an important role in a wide variety of disciplines, ranging from
communications and power systems engineering to molecular and population biology [2, 13, 133, 51,
5, 3, 31, 6]. While the focus of this article is on biological applications of the theory of graphs and
networks, there are also several other domains in which networks play a crucial role. For instance,
the Internet and the World Wide Web (WWW) have grown at a remarkable rate, both in size and
importance, in recent years, leading to a pressing need both for systematic methods of analysing such
networks as well as a thorough understanding of their properties. Moreover, in sociology and ecology,
increasing amounts of data on food-webs and the structure of human social networks are becoming
available. Given the critical role that these networks play in many key questions relating to the
environment and public health, it is hardly surprising that researchers in ecology and epidemiology
have focussed attention on network analysis in recent years. In particular, the complex interplay
between the structure of social networks and the spread of disease is a topic of critical importance.
The threats to human health posed by new infectious diseases such as the SARS virus and the Asian
bird flu [190, 7], coupled with modern travel patterns, underline the vital nature of this issue.

On a more theoretical level, several recent studies have indicated that networks from a broad range
of application areas share common structural properties. Furthermore, a number of the properties
observed in such real world networks are incompatible with those of the random graphs which had
been traditionally employed as modelling tools for complex networks [2, 133]. The latter observation
naturally poses the challenge of devising more accurate models for the topologies observed in biological
and technological networks, while the former further motivates the development of analysis tools for
complex networks. The common structural properties shared by diverse networks offers the hope
that such tools may prove useful for applications in a wide variety of disciplines. Within the fields
of Biology and Medicine, applications include the identification of drug targets, determining the role
of proteins or genes of unknown function [96, 158], the design of effective containment strategies for
infectious diseases [58], and the early diagnosis of neurological disorders through detecting abnormal
patterns of neural synchronization in specific brain regions [162].

Recent advances in the development of high-throughput techniques in molecular biology have led to
an unprecedented amount of data becoming available on key cellular networks in a variety of simple
organisms [92, 43]. Broadly speaking, three classes of bio-molecular networks have attracted most
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attention to date: metabolic networks of biochemical reactions between metabolic substrates; protein
interaction networks consisting of the physical interactions between an organism’s proteins; and the
transcriptional regulatory networks which describe the regulatory interactions between different genes.
At the time of writing, the central metabolic networks of numerous bacterial organisms have been
mapped [152]. Also, large scale data sets are available on the structure of the protein interaction
networks of S. cerevisiae [92, 178], H. pylori [151], D. melanogaster [67] and C. elegans [117, 43],
and the transcriptional regulatory networks of E. coli and S. cerevisiae have been extensively studied
[90, 169]. The large amount of data now available on these networks provides the network research
community with both opportunities and challenges.

On the one hand, it is now possible to investigate the structural properties of networks in living
cells, to identify their key properties and to hopefully shed light on how such properties may have
evolved biologically. A major motivation for the study of biological networks is the need for tailored
analysis methods which can extract meaningful biological information from the data becoming avail-
able through the efforts of experimentalists. This is all the more pertinent given that the network
structures emerging from the results of high-throughput techniques are too complex to analyse in a
non-systematic fashion. A knowledge of the topologies of biological networks, and of their impact on
biological processes, is needed if we are to fully understand, and develop more sophisticated treat-
ment strategies for, complex diseases such as cancer [184]. Also, recent work suggesting connections
between abnormal neural synchronization and neurological disorders such as Parkinson’s disease and
Schizophrenia [162] provides strong motivation for studying how network structure influences the
emergence of synchronization between interconnected dynamical systems.

The mathematical discipline which underpins the study of complex networks in Biology and elsewhere,
and on which the techniques discussed throughout this article are based, is graph theory [47]. Along-
side the potential benefits of applying graph theoretical methods in molecular biology, it should be
emphasized that the complexity of the networks encountered in cellular biology and the mechanisms
behind their emergence presents the network researcher with numerous challenges and difficulties. The
inherent variability in biological data, the high likelihood of data inaccuracy [186] and the need to
incorporate dynamics and network topology in the analysis of biological systems are just a sample of
the obstacles to be overcome if we are to successfully understand the fundamental networks involved
in the operation of living cells. Another important issue, which we shall discuss at various points
throughout the article, is that the structure of biological and social networks is often inferred from
sampled subnetworks. The precise impact of sampling on the results and techniques published in the
recent past needs to be understood if these are to be reliably applied to real biological data.

Motivated by the considerations outlined above, a substantial literature dedicated to the analysis of
biological networks has emerged in the last few years, and some significant progress has been made
on identifying and interpreting the structure of such networks. Our primary goal in the present
article is to provide as broad a survey as possible of the major advances made in this field in the
recent past, highlighting what has been achieved as well as some of the most significant open issues
that need to be addressed. The material discussed in the article can be divided naturally into two
strands, and this is reflected in the organisation of the document. The first part of the article will
primarily be concerned with the properties and analysis of cellular networks such as protein interaction
networks and transcriptional regulatory networks. In the second part, we turn our attention to two
important applications of Graph Theory in Biology: the phenomenon of synchronisation and its role
in neurological disorders, and the interaction between network structure and epidemic dynamics.

In the interests of clarity, we shall now give a brief outline of the main topics covered throughout
the rest of the paper. In Section 2, we shall fix the principal notations used throughout the paper,
and briefly review the main mathematical and graph theoretical concepts that are required in the
remainder of the article. As mentioned above, the body of the article is divided into two parts. The
first part consists of Sections 3, 4 and 5 and the second part of Sections 6 and 7. At the end of each
major section, a brief summary of the main points covered in that section is given.

In Section 3, we shall discuss recent findings on the structure of bio-molecular networks and discuss
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several graph models, including Scale-Free graphs and Duplication-Divergence models, that have been
proposed to account for the properties observed in real biological networks. Section 4 is concerned
with the application of graph theoretical measures of centrality or importance to biological networks.
In particular, we shall concentrate on the connection between the centrality of a gene or protein within
an interaction network and its likelihood to be essential for the organism’s survival. In Section 5, we
shall consider the hierarchical structure of biological networks. In particular, we shall discuss motifs
in bio-molecular networks and the identification of (typically larger) functional modules.

In the second part of the article, we shall discuss two major applications of Graph Theory to Biology.
Section 6 is concerned with a number of issues and results related to the phenomenon of synchroniza-
tion in networks of inter-connected dynamical systems and its relevance in various biological contexts.
Particular attention will be given to suggested links between patterns of synchrony and neurological
disorders. In Section 7, we shall discuss some recent work on the influence that the structure of
a social network can have on the behaviour of various disease propagation models, and discuss the
epidemiological significance of these findings. Finally, in Section 8 we shall present our concluding
remarks and highlight some possible directions for future research.

2 Definitions and Mathematical Preliminaries

The basic mathematical concept used to model networks is a graph. In this section, we shall intro-
duce the principal notations used throughout the paper, and recall some basic definitions and facts
from graph theory. While the material of this section is mathematical in nature, we shall see in the
remainder of the paper that all of the concepts recalled here arise in real biological networks. Further-
more, the notation and nomenclature introduced in this section will enable us to discuss the various
biological networks encountered throughout the paper in a uniform and consistent manner.

Throughout, R, R
n and R

m×n denote the field of real numbers, the vector space of n-tuples of real
numbers and the space of m× n matrices with entries in R respectively. AT denotes the transpose of
a matrix A in R

m×n and A ∈ R
n×n is said to be symmetric if A = AT .

For finite sets S, T , S × T denotes the usual Cartesian product of S and T , while |S| denotes the
cardinality of S.

Directed and Undirected Graphs

The concept of a graph is fundamental to the material to be discussed in this paper. The graphs
or networks which we shall encounter can be divided into two broad classes: directed graphs and
undirected graphs, as illustrated in Figure 1.

PSfrag replacements uu vv

Figure 1: An example of a directed graph (left) and an undirected graph (right), comprising two nodes
and one edge.

Formally, a finite directed graph, G, consists of a set of vertices or nodes, V(G),

V(G) = {v1, . . . , vn},

together with an edge set, E(G) ⊆ V(G)×V(G). Intuitively, each edge (u, v) ∈ E(G) can be thought of
as connecting the starting node u to the terminal node v. For notational convenience, we shall often
write uv for the edge (u, v). We shall say that the edge uv starts at u and terminates at v. For the
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most part, we shall be dealing with graphs with finitely many vertices and for this reason, we shall
often omit the adjective finite where this is clear from context.

In Biology, transcriptional regulatory networks and metabolic networks would usually be modelled as
directed graphs. For instance, in a transcriptional regulatory network, nodes would represent genes
with edges denoting the interactions between them. This would be a directed graph because, if gene A
regulates gene B, then there is a natural direction associated with the edge between the corresponding
nodes, starting at A and finishing at B. Directed graphs also arise in the study of neuronal networks,
in which the nodes represent individual neurons and the edges represent synaptic connections between
neurons.

An undirected graph, G, also consists of a vertex set, V(G), and an edge set E(G). However, there
is no direction associated with the edges in this case. Hence, the elements of E(G) are simply two-
element subsets of V(G), rather than ordered pairs as above. As with directed graphs, we shall use
the notation uv (or vu as direction is unimportant) to denote the edge {u, v} in an undirected graph.
For two vertices, u, v of an undirected graph, uv is an edge if and only if vu is also an edge. We are
not dealing with multi-graphs [47], so there can be at most one edge between any pair of vertices in
an undirected graph. The number of vertices n in a directed or undirected graph is the size or order
of the graph.

In recent years, much attention has been focussed on the protein-protein interaction networks of
various simple organisms [92, 151]. These networks describe the direct physical interactions between
the proteins in an organism’s proteome and there is no direction associated with the interactions in
such networks. Hence, PPI networks are typically modelled as undirected graphs, in which nodes
represent proteins and edges represent interactions.

An edge, uv in a directed or undirected graph G is said to be an edge at the vertices u and v, and the
two vertices are said to be adjacent to each other. In this case, we also say that u and v are neighbours
. For an undirected graph, G and a vertex, u ∈ V(G), the set of all neighbours of u is denoted N (u)
and given by

N (u) = {v ∈ V(G) : uv ∈ E(G)}.

Node-degree and the Adjacency Matrix

For an undirected graph G, we shall write deg(u) for the degree of a node u in V(G). This is simply
the total number of edges at u. For the graphs we shall consider, this is equal to the number of
neighbours of u,

deg(u) = |N (u)|.

In a directed graph G, the in-degree , degin(u) (out-degree , degout(u)) of a vertex u is given by the
number of edges that terminate (start) at u.

Suppose that the vertices of a graph (directed or undirected) G are ordered as v1, . . . , vn. Then the
adjacency matrix, A, of G is given by

aij =

{

1 if vivj ∈ E(G)

0 if vivj /∈ E(G)
(1)

Thus, the adjacency matrix of an undirected graph is symmetric while this need not be the case for
a directed graph. Figure 2 illustrates this.

Paths, Path Length and Diameter

Let u, v be two vertices in a graph G. Then a sequence of vertices

u = v1, v2, . . . , vk = v,

such that for i = 1, . . . , k − 1:

4



PSfrag replacements

uuA =









0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0









A =









0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 0









Figure 2: The adjacency matrix of an undirected graph is symmetric; that of a directed graph generally
is not. In this example, we have that deg(u) = 3 for the undirected graph and degin(u) = 1, degout(u) =
2 for the directed graph.

PSfrag replacements

u = v1

v2

v3

v4

v5 = v

Figure 3: A path of length 4.

(i) vivi+1 ∈ E(G);

(ii) vi 6= vj for i 6= j

is said to be a path of length k − 1 from u to v. Figure 3 contains an example of a path of length 4.

The geodesic distance, or simply distance, δ(u, v), from u to v is the length of the shortest path from
u to v in G. If no such path exists, then we set δ(u, v) = ∞. If for every pair of vertices, u, v ∈ V(G),
there is some path from u to v, then we say that G is connected. The average path length and diameter
of a graph G are defined to be the average and maximum value of δ(u, v) taken over all pairs of distinct
nodes, u, v in V(G) which are connected by at least one path.

Clustering Coefficient

Suppose u is a node of degree k in an undirected graph G and that there are e edges between the k
neighbours of u in G. Then the clustering coefficient of u in G is given by

Cu =
2e

k(k − 1)
. (2)

Thus, Cu measures the ratio of the number of edges between the neighbours of u to the total possible
number of such edges, which is k(k − 1)/2. The average clustering coefficient of a graph G is defined
in the obvious manner.

Statistical Notations

Throughout the paper, we shall often be interested in average values of various quantities where the
average is taken over all of the nodes in a given network of graph. For some quantity, f , associated
with a vertex, v, the notation 〈f〉 denotes the average value of f over all nodes in the graph.
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3 Identification and Modelling of Bio-molecular Networks

As mentioned in Section 1, this review paper naturally splits into two parts. The first part consists of
the current section and the following two sections and is primarily focussed on the structural properties
of bio-molecular networks and on techniques that have been developed for their analysis.

Due to recent advances in high-throughput technologies for biological measurement, there is now
more data available on bio-molecular networks than ever before. This has made it possible to study
such networks on a scale which would have been impossible two decades ago. In fact, large-scale
maps of protein interaction networks [197, 125, 186, 67, 151, 117], metabolic networks [97, 140] and
transcriptional regulatory networks [114, 177] have been constructed for a number of simple organisms.
Motivated by these developments, there has been a significant amount of work done on identifying and
interpreting the key structural properties of these networks in recent years. In the current section, we
shall give an overview of the main aspects of this work. In particular, we shall describe the principal
graph theoretical properties of bio-molecular networks which have been observed in experimental
data. We shall also discuss several mathematical models that have been proposed to account for the
observed topological properties of these networks.

3.1 Structural Properties of Biological Networks

In this subsection, we shall concentrate on the following three aspects of network structure, which
have received most attention in the last few years:

(i) Degree distributions;

(ii) Characteristic path lengths;

(iii) Modular structure and local clustering properties.

For each of these, we shall describe recently reported findings for protein interaction, metabolic and
transcriptional regulatory networks in a variety of organisms.

Degree Distributions

Much of the recent research on the structure of bio-molecular and other real networks has focussed on
determining the form of their degree distributions, P (k), k = 0, 1, . . ., which measures the proportion
of nodes in the network having degree k. Formally,

P (k) =
nk

n
,

where nk is the number of nodes in the network of degree k and n is the size of the network. It was
reported in [59, 12] that the degree distributions of the Internet and the WWW are described by a
broad-tailed power law of the form1,

P (k) ∼ k−γ , γ > 1 (3)

Networks with degree distributions of this form are now commonly referred to as scale-free networks.
This finding initially surprised the authors of these papers as they had expected to find that the
degree distributions were Poisson or Gaussian. In particular, they has expected that the degrees
of most nodes would be close to the mean degree, 〈k〉, of the network, and that P (k) would decay
exponentially as |k−〈k〉| increased. For such networks, the mean degree can be thought of as typical for
the overall network. On the other hand, the node-degrees in networks with broad-tailed distributions

1In fact, the form P (k) ∼ (k + k0)−γ
e
−k/kc with offset k0 and an exponential cutoff kc is more usually fitted to real

network data.
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vary substantially from their mean value, and 〈k〉 cannot be thought of as a typical value for the
network in this case.

Following on from the above findings on the WWW and the Internet, several authors have investigated
the form of the degree distributions, P (k), for various biological networks. Recently, several papers
have been published that claim that interaction networks in a variety of organisms are also scale-
free. For instance, in [97], the degree distributions of the central metabolic networks of 43 different
organisms were investigated using data from the WIT database [140]. The results of this paper indicate
that, for all 43 networks studied, the distributions of in-degree, Pin(k), and out-degree, Pout(k), have
tails of the form (3), with 2 < γ < 3.

Similar studies on the degree distributions of protein interaction networks in various organisms have
also been carried out. In [200], the protein interaction network of S. cerevisiae was analysed using
data from four different sources. As is often the case with data of this nature, there was little overlap
between the interactions identified in the different sets of data. However, in all four cases, the degree
distribution appeared to be broad-tailed and to be best described by some form of modified power
law. Similar findings have also been reported for the protein interaction networks of E. coli, D.
melanogaster, C. elegans and H. pylori in the recent paper [70]. Note however that for transcriptional
regulatory networks, while the outgoing degree distribution again appears to follow a power law, the
incoming degree distribution is better approximated by an exponential rule of the form Pin(k) ∼ e−βk

[13, 74, 60].

At this point, it is important to record some remarks on the observations of scale-free topologies in
biological interaction networks. First of all, the broad-tailed degree distributions observed in these
networks is not consistent with the traditional random graph models which have been used to describe
complex networks [21, 2]. In these models, node-degrees are closely clustered around the mean degree,
〈k〉, and the probability of a node having degree k decreases exponentially with |k − 〈k〉|. However,
in scale-free networks, while most nodes have relatively low degree, there are significant numbers of
nodes with unusually high degree - far higher than the mean degree of the network. Such nodes are
now usually referred to as hubs. It has been noted [4] that the scale-free structure has implications for
the robustness and vulnerability of networks to failure and attack. Specifically, while removing most
of the nodes in a scale-free network will have little effect on the network’s connectivity, the targeted
removal of hub nodes can disconnect the network relatively easily. This has led to the suggestion that
genes or proteins which are involved in a large number of interactions, corresponding to hub nodes,
may be more important for an organism’s survival than those of low degree. The connection between
network topology and the biological importance of genes and proteins has been extensively studied
recently and we shall describe this strand of research in detail in Section 4.

A second important point is that all of the analysis described above has been carried out on sampled
subnetworks rather than on a complete network. For instance, the protein interaction networks which
have been studied usually contain only a fraction of the complete set of proteins of an organism.
Moreover, the interactions included in these networks are far from complete. Thus, the conclusion
being drawn are based on a subnetwork containing only a sample of the nodes and edges of the complete
network. While some studies have indicated that the statistical properties of interaction networks
may be robust with respect to variations from one data set to another, the impact of sampling and
inaccurate/incomplete information on the identified degree distributions is an important issue which
is not yet fully understood. For instance, in [176] it was shown using a model of protein interaction
networks that an approximate power law distribution can be observed in a sampled sub-network while
the degree distribution of the overall network is quite different. Further evidence of the need for
caution in drawing conclusions about the overall structure of biological networks based on samples
has been provided in [38, 175], where results on the sampling properties of various types of network
models were presented. For instance, in [38], a sampling regime based on the construction of spanning
trees [47] was studied. Here, starting from a source vertex v0, a tree T is constructed by first adding
the neighbours of v0 to T and then selecting one of these, and repeating the process. In this paper,
approximate arguments were presented to show that such a sampling regime can lead to a subnetwork
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with degree distribution of the form P (k) ∼ 1/k even when the complete network has a Poisson degree
distribution.

Diameter and Characteristic Path Length

Several recent studies have revealed that the average path lengths and diameters of bio-molecular
networks are “small” in comparison to network size. Specifically, if the size of a network is n, the
average path length and diameter are of the same order of magnitude as log(n) or even smaller.
This property has been previously noted for a variety of other technological and social networks [2],
and is often referred to as the small world property [192]. This phenomenon has now been observed
in metabolic, genetic and protein interaction networks. For instance, in [189, 97], the average path
lengths of metabolic networks were studied. The networks analysed in these papers had average
path lengths between 3 and 5 while the network sizes varied from 200-500. Similar findings have
been reported for genetic networks in [177], where a network of approximately 1000 genes and 4000
interactions was found to have a characteristic path length of 3.3, and for protein interaction networks
in [187, 201, 200].

In a sense, the average path length in a network is an indicator of how readily “information” can be
transmitted through it. Thus, the small world property observed in biological networks suggests that
such networks are efficient in the transfer of biological information: only a small number of interme-
diate reactions are necessary for any one protein/gene/metabolite to influence the characteristics or
behaviour of another.

Clustering and Modularity

The final aspect of network structure which we shall discuss here is concerned with how densely
clustered the edges in a network are. In a highly clustered network, the neighbours of a given node
are very likely to be themselves linked by an edge. Typically, the first step in studying the clustering
and modular properties of a network is to calculate its average clustering coefficient, C, and the related
function, C(k), which gives the average clustering coefficient of nodes of degree k in the network. As
we shall see below, the form of this function can give insights into the global network structure.

In [152], the average clustering coefficient was calculated for the metabolic networks of 43 organisms
and, in each case, compared to the clustering coefficient of a random network with the same underlying
degree distribution. In fact, the comparison was with the Barabasi-Albert (BA) model of scale-free
networks which we shall discuss in the next subsection. In each case, the clustering coefficient of
the metabolic network was at least an order of magnitude higher than that of the corresponding BA
network. Moreover, the function C(k) appeared to take the form C(k) ∼ k−1. Thus, as the degree of a
node increases, its clustering coefficient decreases. This suggests that the neighborhoods of low-degree
nodes are densely clustered while those of hub nodes are quite sparsely connected. In order to account
for this, the authors of [152] suggested a hierarchical modular structure for metabolic networks in
which:

(i) Individual modules are comprised of densely clustered nodes of relatively low degree;

(ii) Different modules are linked by hub nodes of high degree.

Similar results for the clustering coefficient and the form of the function C(k) have been reported in
[70] for the protein interaction networks of S. cerevisiae, H. pylori, E. coli and C. elegans, indicating
that these undirected networks may also have a modular structure, in which hub nodes act as links
or bridges between different modules within the networks. Further evidence for the intermediary role
of hub nodes was provided in [122] where correlations between the degrees of neighbouring nodes
in the protein interaction network and the transcriptional regulatory network of S. cerevisiae were
investigated. The authors of this paper found clear evidence of such correlation; in fact, for both
networks, nodes of high degree are significantly more likely to connect to nodes of low degree than to
other “hubs”. This property of a network is referred to as disassortativity. For more discussion on
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this topic, see [40]. Finally, we note that a high degree of local clustering has also been observed in
the transcriptional regulatory network of S. cerevisiae in [177].

3.2 Mathematical Models for Interaction Networks

Given the empirically observed properties of interaction networks discussed above, it is natural to
ask whether these can be explained by means of mathematical models based on plausible biological
assumptions. Furthermore:

(i) Reliable models for the evolution of interaction networks may deepen our understanding of the
biological processes behind their evolution.

(ii) Such models could be used to assess the reliability of experimental results on network structure
and to assist in experimental design. For instance, the strategy for optimally identifying protein-
protein interaction (PPI) network structure described in [112] relies on the statistical abundance
of nodes of high degree in scale-free networks which we shall discuss in more detail below.
Furthermore, this strategy was suggested as a means of determining the PPI network in humans.
Note also the work described in [71] on assessing the reliability of network data and predicting
the existence of links in a PPI network which have not yet been determined. The methods in
this paper were based on properties of the small-world network model of Watts and Strogatz
introduced in [192] to described social and neurological networks.

To date, several different mathematical models of complex networks have been proposed in the litera-
ture. A number of these were not developed with specifically biological networks in mind, but rather
to account for some of the topological features observed in real networks in Biology and elsewhere.
On the other hand, in the recent past several models for protein interaction and genetic networks have
been proposed based on biological assumptions. In this subsection, we shall describe the main models
that have been used to model biological networks, and some theoretical results on the structure of
these models.

Classical Models and Scale-free Graphs

In the 1950’s, Paul Erdös and Alfred Renyi introduced their now classical notion of a random graph to
model non-regular complex networks. The basic idea of the Erdös-Renyi (ER) random graph model
is the following. Let a set of n nodes, {v1, . . . , vn}, and a real number p with 0 ≤ p ≤ 1 be given.
Then for each pair of nodes, vi, vj , an edge is placed between vi and vj with probability p. Effectively,
this defines a probability space where the individual elements are particular graphs on {v1, . . . , vn}
and the probability of a given graph with m edges occurring is pm(1− p)n−m. For background on the
mathematical theory of ER graphs, consult [21, 47].

The theory of random graphs has been a highly active field of mathematics for fifty years and many
deep theorems about the properties of ER graphs have been established. For example, it has been
proven for these networks that the characteristic path length is proportional to the logarithm of the
network size, and that the average clustering coefficient is inversely proportional to network size.
Perhaps the most relevant fact about the ER model in our context is the relatively straightforward
result that the degree distribution is binomial. Thus, the degree distribution of a large ER network
can be approximated by a Poisson distribution. The tails of such distributions are typically narrow,
meaning that, for ER graphs, the node degrees tend to be tightly clustered around the mean degree
〈k〉.

This last fact contrasts with the findings reported in the previous subsection that the degree distribu-
tions of many biological networks appear to follow a broad-tailed power law. The same observation
has also been made for several man-made networks including the WWW and the Internet. This be-
haviour is inconsistent with the classical ER model of random graphs and led Barabasi, Albert and
co-workers to devise a new model for the dynamics of network evolution. This model is based on
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the two fundamental mechanisms of growth and preferential attachment, and has been the subject of
intensive research in the last few years. It is usually referred to as the Barabasi-Albert (BA) model.

The core idea of Barabasi and Albert was to consider a network as an evolving entity and to model
the dynamics of network growth. The simple BA model is now well known and is usually described in
the following manner [2]. Given a positive integer, m and an initial network, G0, the network evolves
according to the following rules (note that this is a discrete-time process):

(i) Growth: At each time j, a new node of degree m is added to the network;

(ii) Preferential Attachment: For each node u in the existing network, the probability that the new
node connects to it is proportional to the degree of u. Formally, writing Gj for the network at
time j and P (u, j) for the probability that the new node added at time k is linked to u in Gj−1:

P (u, j) =
deg(u)

∑

v∈V(Gj−1)
deg(v)

. (4)

Using computer simulations and approximate arguments based on “mean field theory” it has been ar-
gued that the above scheme generates a network whose degree distribution asymptotically approaches
the power law P (k) ∼ k−γ with γ = 3 [2]. A number of variations on the basic BA model have
also been proposed that have power law degree distributions with values of the degree exponent other
than three. See for instance, the models for evolving networks described in [50, 106] which give rise
to power law degree distributions with exponents in the range 2 < γ < +∞.

Some Issues in the Use of Scale-free Models

While the degree distributions of BA and related scale-free models appear to fit the experimental data
on bio-molecular networks more accurately than classical ER networks, there are several issues related
to their use that should be noted. In [25], it was pointed out that the commonly used definition
of BA graphs is ambiguous. For instance, the question of how to initiate the process of network
evolution is not explicitly dealt with in the original papers; how do we connect the new node to the
existing nodes with probability proportional to their degrees if all such nodes have degree zero to
begin with? This issue can be circumvented by beginning with a network which has no isolated nodes.
However, this immediately raises the difficult question of how the choice of initial network influences
the properties of the growing network. These issues have been discussed in detail in [25, 22] where more
mathematically rigorous formulations of the preferential attachment mechanism for network growth
have been presented. A number of formal results concerning degree distributions, network diameter,
robustness to node removal and other network properties have also been presented in [23, 24].

There has been a remarkable level of interest in the scale-free family of random graphs in recent years
and numerous papers claiming that biological interaction networks follow a power law and belong to
this class have been published. However, it is important to note that a number of reservations about
the use of the BA and related models in Biology have been raised recently [62].

(i) Firstly, the BA model is not based on specific biological considerations. Rather, it is a math-
ematical model for the dynamical growth of networks that replicates the degree distributions,
and some other properties, observed in studies of the WWW and other networks. In particular,
it should be kept in mind that the degree distribution is just one property of a network and that
networks with the same degree distribution can differ substantially in other important structural
aspects [185].

(ii) Many of the results on BA and related networks have only been empirically established through
simulation, and a fully rigorous understanding of their properties is still lacking. A number of
authors have started to address this issue in the recent past but this work is still in an early
stage. Also, as noted above, the definition of BA graphs frequently given in the literature is
ambiguous [25].
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(iii) Most significantly, from a practical point of view, the observations of scale-free and power law
behaviour in biological networks are based on partial and inaccurate data. The techniques used
to identify protein interactions and transcriptional regulation are prone to high levels of false
positive and false negative errors [186]. Moreover, the networks being studied typically only
contain a fraction of the genes or proteins in an organism. Thus, we are in effect drawing
conclusions about the topology of an entire network based on a sample of its nodes, and a noisy
sample at that. In order to do this reliably, a thorough understanding of the effect of sampling on
network statistics, such as distributions of node degrees and clustering coefficients, is required.
Some authors have recently started to address this issue and the following two results, presented
in [38, 175], are extremely relevant in the present context:

(a) Subnetworks sampled from a scale free network are not in general scale free;

(b) It is possible for a sampled subnetwork of a network with Poisson degree distribution (which
is certainly not scale-free) to appear to be scale-free.

Further results of a similar nature have recently been reported in [76]. Here, the sampling
process in the large-scale yeast-2-hybrid (Y2H) experiments which have generated many of the
existing protein-interaction maps for yeast was simulated on four different types of network
models. The degree distributions of the models considered were normal, exponential, scale-free
and truncated normal respectively. Based on the findings reported in this paper, the authors
argued that, given the coverage of the yeast interactome currently available, none of the four
models considered could be definitively ruled out as a model of the complete yeast interaction
network! These facts cast doubt on the hypothesis that the complete PPI networks of living
organisms are in fact scale free. At the very least, it demonstrates the need to be careful about
the effects of sampling and data noise when we attempt to draw conclusions about the structure
of biological and other real world networks.

Before moving on to discuss a number of more biologically motivated models for interaction networks,
we note the recent paper [148] in which geometric random graphs [145] were suggested as an alternative
model for protein interaction networks. This suggestion was based on comparing the frequency of small
subgraphs in real networks to their frequency in various network models, including geometric graphs.
However, as with BA models, there is no clear biological motivation for choosing geometric graphs to
model protein interaction networks and, furthermore, the comparisons presented in [148] are based on
a very small number of sample random networks. On the other hand, the authors of this paper make
the important point that the accuracy of network models is crucial if we are to use these to assess the
reliability of experimental data or in the design of experiments for determining network structure.

Duplication and Divergence Models

Many of the recent models for network evolution are founded on some variation of the basic mechanisms
of growth and preferential attachment. However, there are other, more biologically motivated models
which have been developed specifically for protein interaction and genetic regulatory networks. As
with the models discussed above, these are usually based on two fundamental processes: duplication
and divergence. The hypothesis underpinning these so-called Duplication-Divergence (DD) models is
that gene and protein networks evolve through the occasional copying of individual genes/proteins,
followed by subsequent mutations. Over a long period of time, these processes combine to produce
networks consisting of genes and proteins, some of which, while distinct, will have closely related
properties due to common ancestry.

To illustrate the main idea behind DD models, we shall give a brief description of the model for protein
interaction networks suggested in [181]. Given some initial network G0, the network is updated at
each time t according to the rules:

(i) Duplication: A node v is chosen from the network Gt−1 at random and a new node v′ - a
duplicate of v - is added to the network and connected to all of the neighbours of v;
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(ii) Divergence: For each neighbour, w, of v′, the edge v′w is removed with probability q.

As pointed out in [181], the above scheme effectively introduces a preferential attachment mechanism
into the network and generates a power law degree distribution. A number of basic properties of the
model and its suitability to model the PPI network of S. cerevisae are discussed in this paper also.
The same basic model has also been studied more analytically in [37]. In this paper, it was shown that
if q < 1/2, then the degree distribution of the DD network is given by a power law whose exponent γ
satisfies γ < 2. The authors of this paper also considered some closely related models for the growth
of gene networks in the earlier paper [18]. Here it was pointed out that duplication alone will not give
rise to a power law degree distribution.

The model described in [181] allowed for self-interacting proteins, where the copy v ′ can also form a link
to the original v with some non-zero probability. However, there are several assumptions associated
with the basic scheme described above whose biological validity is questionable.

(i) The new node, v′, can only form links to neighbours of the original node v - this restricts the
types of mutations allowed for duplicate genes;

(ii) A node can only undergo mutation or divergence at the instant when it is added to the network
- this ignores the possibility of genes continuing to mutate long after the duplication event;

(iii) Nodes and edges can only be added to the network and not removed - this clearly places a
significant restriction on the types of mutation and evolution possible.

Several extensions of the basic DD model have been proposed to relax some of the assumptions
outlined above. For instance, point (i) above has been addressed in [170], while a model that allows
for edge additions and removals at a much faster rate than gene duplications has been described and
analysed in [16]. Yet another growth model (based on a preferential attachment mechanism) which
allows edges to be added and deleted between nodes in the existing network, and for new nodes to be
added to the network has been presented in [188]. Finally, the issue in point (iii) has been addressed
in the recent paper [36] by a growth-deletion model that allows for the addition and removal of both
edges and nodes.

While DD models of network growth are based on more plausible biological assumptions than the
BA-type models, several of the caveats expressed above for BA networks still apply. In particular,
the question of how reliably we can infer a network’s structure from studying a sample of its nodes
is critical, as is the impact of noisy data on identifying network structure. However, these points
should not be seen as a criticism of the models themselves. Our aim is rather to highlight important
issues that need to be taken into account in assessing how accurately such models reflect the biological
reality. Of course, more reliable data is required for this to be possible. Finally, we should note that
the theory of DD networks is still in a very early stage and many of their key mathematical properties
are only partially understood.

3.3 Summarizing Comments

(i) Significant progress has been made recently on constructing maps of bio-molecular networks in
simple organisms. Using the available data, the structural properties of protein-protein inter-
action, transcriptional regulatory and metabolic networks have been studied and preliminary
results have been reported. The networks studied appear to have scale-free degree distributions,
short characteristic path lengths and high clustering coefficients. The observed properties are
not in agreement with those of traditional random graph models for complex networks.

(ii) Several new mathematical models for the growth of random networks have been proposed in
the recent past. These include a number of variations on the basic BA scale-free model, and the
more biologically inspired Duplication-Divergence models for gene and protein networks. The
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mathematical theory of these models is only beginning to be developed and offers many exciting
and challenging opportunities for future biologically motivated research.

(iii) Both in the identification of network properties, and in the development of mathematical models,
the issues of inaccurate data and sampling are of paramount importance. Recent results on the
sampling properties of networks with power law and Poisson degree distributions highlight the
need for caution when drawing conclusions on global network properties from an analysis of a
sampled subnetwork.

4 Measures of Centrality and Importance in Biological Net-

works

The problem of identifying the most important nodes in a large complex network is of fundamental
importance in a number of application areas, including Communications, Sociology and Management.
To date, several measures have been devised for ranking the nodes in a complex network and quanti-
fying their relative importance. Many of these originated in the Sociology and Operations Research
literature, where they are commonly known as centrality measures [191]. More recently, driven by
the phenomenal growth of the World Wide Web, schemes such as the PageRank algorithm on which
GOOGLE is based, have been developed for identifying the most relevant web-pages to a specific user
query.

As described in the previous section, there is now a large body of data available on bio-molecular
networks, and there has been considerable interest in studying the structure of these networks and
relating it to biological properties in the recent past. In particular, several researchers have applied
centrality measures to identify structurally important genes or proteins in interaction networks and
investigated the biological significance of the genes or proteins identified in this way. Particular
attention has been given to the relationship between centrality and essentiality, where a gene or
protein is said to be essential for an organism if the organism cannot survive without it. The use
of centrality measures to predict essentiality based on network topology has potentially significant
applications to drug target identification [184, 96].

In this section, we shall describe several measures of network importance or centrality that have been
applied to protein interaction and transcriptional regulatory networks in the recent past. We shall
place particular emphasis on the efforts to assess the biological significance of the most central genes
or proteins within these networks.

4.1 Classical Centrality Measures

In this subsection, we shall discuss four classical concepts of centrality which have recently been
applied to biological interaction networks:

(i) Degree centrality;

(ii) Closeness centrality;

(iii) Betweenness centrality;

(iv) Eigenvector centrality.

Degree Centrality

Degree centrality is the most basic of the centrality measures to be discussed here. The idea behind
using degree centrality as a measure of importance in network is the following:
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An important node is involved in a large number of interactions.

Formally, for an undirected graph G, the degree centrality of a node u ∈ V(G) is given by

Cd(u) = deg(u). (5)

For directed networks, there are two notions of degree centrality: one based on in-degree and the other
on out-degree. These are defined in the obvious manner. Degree centrality and the other measures
discussed here are often normalised to lie in the interval [0, 1].

As discussed in the previous section, a number of recent studies have indicated that bio-molecular
networks have broad-tailed degree distributions, meaning that while most nodes in such networks
have a relatively low degree, there are significant numbers of so-called hub nodes. The removal of
these hub nodes has a far greater impact on the topology and connectedness of the network than the
removal of nodes of low degree [4]. This naturally leads to the hypothesis that hub nodes in protein
interaction networks and genetic regulatory networks may represent essential genes and proteins. In
[95], the connection between degree centrality and essentiality was investigated for the protein-protein
interaction network in S. cerevisiae. The analysis was carried out on a network consisting of 1870
nodes connected by 2240 edges, which was constructed by combining the results of earlier research
presented in [178, 197]. In this network, 21% of those proteins that are involved in fewer than 5
interactions, Cd(u) ≤ 5, were essential while, in contrast, 62% of proteins involved in more than 15
interactions, Cd(v) ≥ 15, were essential.

More recently, similar findings were reported in [201]. Again, the authors considered a network of
protein interactions in yeast, this time consisting of 23294 interactions between 4743 proteins. The
average degree of an essential protein in this network was 18.7, while the average degree of a non-
essential protein was only 7.4. Moreover, defining a hub to be a node in the first quartile of nodes
ranked according to degree, the authors of [201] found that over 40% of hubs were essential while only
20% of all nodes in the network are essential.

The above observations have led some authors to propose that, in protein interaction networks, node
degree and essentiality may be related [201, 95]. However, the precise nature of this relationship is
far from straightforward. For instance, using a network constructed from data published in [92, 178],
the author of [194] has claimed that there is little difference between the distributions of node degrees
for essential and non-essential proteins in the interaction network of yeast. However, in this network,
the degrees of essential proteins are still typically higher than those of non-essential proteins.

In [75] the connection between the degree of a protein and the rate at which it evolves was investigated.
The authors reasoned that if highly connected proteins are more important to an organism’s survival,
they should be subject to more stringent evolutionary constraints and should evolve at a slower rate
than non-essential proteins. However, the authors of [75] found no evidence of a significant correlation
between the number of interactions in which a protein is involved and its evolutionary rate. Once
again, this indicates that while node degree gives some indication of a protein’s likelihood to be
essential, the precise relationship between essentiality and node degree is not a simple one.

Closeness Centrality Measures

We shall now discuss closeness centrality measures which are defined in terms of the geodesic distance,
δ(u, v) between nodes in a graph or network. The basic idea behind this category of measures is the
following:

An important node is typically “close” to, and can communicate quickly with, the other
nodes in the network.

In the recent paper [196], three closeness measures, which arise in the context of resource alloca-
tion problems, were applied to metabolic and protein interaction networks. The specific measures
considered in this paper were excentricity, status, and centroid value.
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The excentricity, Ce(u), of a node u in a graph G is given by

Ce(u) = max
v∈V(G)

δ(u, v), (6)

and the centre of G is then the set

C(G) = {v ∈ V(G) : Ce(v) = min
w∈V(G)

Ce(w)}. (7)

Thus, the nodes in C(G) are those that minimise the maximum distance to any other node of G.

The status, Cs(u), of a node v is given by

Cs(u) =
∑

v∈V(G)

δ(u, v), (8)

and the median of G is then the set

M(G) = {v ∈ V(G) : Cs(v) = min
w∈V(G)

Cs(w)}. (9)

The nodes in M(G) minimise the average distance to other nodes in the network.

The final measure considered in [196] is the centroid value which is closely related to the status defined
above. In fact, these two measures give rise to identical rankings of the nodes in a graph and, for this
reason, we shall not formally define centroid value here.

A number of points about the results presented in [196] are worth noting. First of all, on both ER
graphs and the BA model of scale-free graphs, all three measures were found to be strongly correlated
with node-degree. The measures were then applied to the central metabolic network of E. coli and
the centre, C(G), and the median, M(G), of this network were calculated. The authors reasoned
that central nodes represent “cross-roads” or “bottlenecks” in a network and should correspond to
key elements of the organism’s metabolism. In support of this assertion, the centre, C(G), contained
several of the most important known substrates, including ATP, ADP, AMP and NADP. On the
other hand, in the protein interaction network of S. cerevisiae, no discernible difference between
the excentricity distribution of essential and non-essential proteins was observed. In the same paper,
centrality measures were also applied to networks of protein domains where two domains are connected
by an edge if they co-occur in the same protein. The nodes with the highest centrality scores in these
networks corresponded to domains involved in signal transduction and cell-cell contacts.

Betweenness Centrality Measures

In [64], the concept of betweenness centrality was introduced as a means of quantifying an individual’s
influence within a social network. The idea behind this centrality measure is the following:

An important node will lie on a high proportion of paths between other nodes in the network.

Formally, for distinct nodes, u, v, w ∈ V(G), let σuv be the total number of geodesic paths between
u and v and σuv(w) be the number of geodesic paths from u to v that pass through w. Also, for
w ∈ V(G), let V (u) denote the set of all ordered pairs, (u, v) in V(G)×V(G) such that u, v, w are all
distinct. Then, the betweenness centrality of w, Cb(w), is given by

Cb(w) =
∑

(u,v)∈V (w)

σuv(w)

σuv
. (10)

Recently, in [99] the measure Cb was applied to the yeast protein interaction network and the mean
value of Cb for the essential proteins in the network was approximately 80% higher than for non-
essential proteins. In fact, the results in this paper indicate that the performance of Cb as an indicator
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of essentiality is comparable to that of node degree. In this paper, it was also noted that there
were significant numbers of proteins with high betweenness centrality scores but low node degree.
The authors pointed out that this was not consistent with the scale-free BA model or with the
more biologically motivated DD models proposed in [170, 181]. Furthermore, there was considerable
variation in the value of Cb(u) for proteins u with the same degree. This naturally raises the following
question: if two proteins, u, v have the same degree k but Cb(u) > Cb(v), is u more likely to be essential
than v? However, no clear evidence to support this hypothesis was found in the data considered in
[99].

In the present context, it is worth noting the work in [136] where a definition of betweennness centrality
based on random paths between nodes, rather than on geodesic paths was considered. This centrality
measure was motivated by the fact that, in real networks, information does not always flow along the
shortest available path between two points. To the best of the authors’ knowledge, this new concept
of betweenness centrality has yet to be applied to bio-molecular networks in a systematic way.

Eigenvector Centrality Measures

As with many of the measures considered in this section, eigenvector centrality measures appear to
have first arisen in the analysis of social networks, and several variations on the basic concept described
here have been proposed [26, 27, 191, 28]. This family of measures is a little more complicated than
those considered previously and eigenvector centrality measures are usually defined as the limits of
some iterative process. The core idea behind these measures is the following.

An important node is connected to important neighbours.

In much of the original work presented in the sociology literature, the eigenvector centrality scores
of a network’s nodes were determined from the entries of the principal eigenvector of the network’s
adjacency matrix. Formally, if A is the adjacency matrix of a network G with V(G) = {v1, . . . , vn},
and

ρ(A) = max
λ∈σ(A)

|λ|

is the spectral radius of A, then the eigenvector centrality score, Cev(vi) of the node vi is given by the
ith co-ordinate, xi, of a suitably normalised eigenvector x satisfying

Ax = ρ(A)x.

In the recent paper [57], the connection between various centrality measures, including eigenvector
centrality, and essentiality within the protein interaction network of yeast was investigated. In this
paper, the performance of eigenvector centrality was comparable to that of degree centrality and it
appeared to perform better than either betweenness centrality or closeness centrality measures. A
number of other centrality measures which we shall mention later in this section were also studied.
Before concluding our discussion of the classical centrality measures and their possible application to
the identification of essential genes or proteins, it is worth noting the following points about eigenvector
centrality.

(i) In order for the definition above to uniquely specify a ranking of the nodes in a network it is
necessary that the eigenvalue ρ(A) has geometric multiplicity one. For general networks, this
need not be the case. However, if the network is connected then it follows from the Perron-
Frobenius Theorem for irreducible non-negative matrices [17, 86] that this will be the case.

(ii) Similar ideas to those used in the definition of eigenvector centrality have recently been applied
to develop the Page-Rank algorithm on which the GOOGLE search engine relies [32, 111]. The
HITS algorithm for the ranking of web pages, proposed by Kleinberg [105], also relies on similar
reasoning.

Other Centrality Measures
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Finally for this subsection, we briefly note several less standard centrality measures which have been
developed in the last decade or so, with potential applications in the analysis of biological networks.
For instance, in [57] the notion of subgraph centrality was introduced and the relationship between the
subgraph centrality of a protein in the yeast interaction network and its likelihood to be essential was
investigated. Loosely speaking, the subgraph centrality of a node measures the number of subgraphs of
the overall network in which the node participates, with more weight being given to small subgraphs.
Formally, if A is the adjacency matrix of a network with vertex set, V(G) = {v1, . . . , vn}, and we write
µk(i) for the (i, i) entry of Ak, then the subgraph centrality of node vi, Csg(vi) is defined by

Csg(vi) =

∞
∑

k=0

µk(i)

k!
. (11)

The findings presented in [57, 56] indicate that Csg performs as well as node degree in predicting
essentiality.

Other concepts of centrality that have been proposed include flow betweenness centrality [65], infor-
mation centrality [172]. For completeness, we also note the recent measure introduced in [113] which
ranks nodes according to the effect their removal has on the efficiency of a network in propagating
information and the centrality measure based on game theoretic concepts defined in [72]. We shall
not discuss these in detail here however as little work on their biological relevance has been done to
date.

4.2 Alternative Approaches to Predicting Essentiality

We shall now briefly discuss some other methodologies for predicting gene or protein essentiality that
have been proposed in the last few years.

Functional Classes and Essentiality

In the Yeast Protein Database (YPD) [43] various functional classes are defined to which the proteins
in yeast can be assigned. Using the functional classification of proteins in the Yeast Protein Database
(YPD) [43], the authors of [96] studied the relationship between the functions of a protein in the
interaction network of yeast and its likelihood to be essential. They found that the probability of
essentiality varied significantly between the 43 different functional classes considered. For instance, in
one class containing proteins that are required for DNA splicing, the percentage of essential proteins
was as high as 60% while only 4.9% of the proteins in the class responsible for small molecule transport
were essential. This suggests that to predict essentiality, the functional classification of proteins should
be taken into account. However, the fact that many proteins are as yet unclassified is a significant
impediment to such an approach.

In the same paper, the nodes within each of the 43 functional classes were ranked according to their
degree and, within each class, the degree of a protein was found to be a good indicator of its likelihood
to be essential. Genes were also ranked using the standard deviation of their expression levels across a
large number of different yeast derivatives: each derivative corresponding to one gene deletion. Some
connection between the variability in the mRNA expression of a gene and its likelihood to be essential
was observed. Specifically, genes whose expression levels varied little were more likely to be essential.
It is hypothesised in [96] that this may be due to robustness mechanisms that maintain the expression
levels of essential genes close to a constant level, while those of less important genes are subject to
less stringent constraints, and hence can be more variable.

Damage in Metabolic and Protein Networks

The concept of damage was recently defined for metabolic networks in [115] and then later for protein
interaction networks in [161]. In the first of these papers, metabolic networks were modelled as directed
bi-partite graphs [47]. Such a graph has two distinct sets of nodes: one contains the metabolites while
the nodes of the other set represent the reactions catalysed by the enzymes of the metabolism. Each
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such enzyme, v, is assigned a score dg(v), its damage , which characterises the topological effect of
deleting v from the network. Essentially, dg(v) is the number of metabolites that would no longer be
produced if the enzyme v and all the reactions catalysed by it were removed from the network. The
following findings about the relationship of this concept to essentiality were reported in [115].

(i) For each value of the damage, D > 0, let fD be the fraction of enzymes, v with dg(v) = D which
are essential. An F-test indicated that there was a statistically significant correlation between
D and fD.

(ii) The set of enzymes v for which dg(v) ≥ 5 contains 9% of all enzymes and 50% of the essential
enzymes.

Based on their findings, the authors of [115] suggested that enzymes with high damage are potential
drug targets. However, it should be noted that there exist several essential enzymes, v, for which
dg(v) is quite low and that, conversely, there are also non-essential enzymes with high damage scores.

More recently, in [161] an analogous concept for protein interaction networks was defined and applied
to the yeast protein interaction network. The results of this paper indicate that any correlation
between damage and essentiality is very weak. On the other hand, the authors of this paper found
that if the set of nodes disconnected from the network by the removal of a protein v contains an
essential protein, then there is a high probability of v itself being essential. Finally, we note another
measure of importance in biological networks which was recently described in [149]. This measure was
based on the notion of bottle-necks within networks and its relationship to essentiality was investigated
in this paper.

4.3 Final Thoughts on Essentiality

Finally, we shall discuss a number of issues with the various approaches to predicting essentiality that
have been described throughout this section.

(i) Marginal Essentiality

While our discussion has focussed on essentiality, a gene or protein may be important to an
organism without necessarily being essential. For instance, some sets of non-essential genes are
synthetically lethal, meaning that the simultaneous removal of the genes in the set kills the
organism while individual deletions are non-fatal. In the paper [201], the less restrictive concept
of marginal essentiality and its relationship to various topological measures was studied in the
protein interaction network of S. cerevisiae. Here, proteins were classified into five groups based
on their marginal essentiality: those with the lowest marginal essentiality scores being assigned
to group 1, and those with the highest assigned to group 5. The authors of [201] found that the
average degree and clustering coefficient of the nodes in a group increases monotonically with
the group number. For instance, the average degree of those proteins assigned to Group 1 is
about half of that of the proteins in Group 4. Moreover, defining a hub node to be one in the
first quartile of nodes ranked according to degree, they found that less than 10% of the proteins
in Group 1 are hubs while more than 35% of those in Group 5 are hubs. The percentage again
increased monotonically with the group number.

(ii) Fitness Effect and Evolutionary Rate

In [63] it was reported that the degree of a protein in the interaction network of yeast was
positively correlated with the fitness effect of deleting the gene that encodes the protein. Here,
fitness effect measures the reduction in the growth rate of the organism when the gene is deleted.
This investigation was motivated by the question of whether the importance of a gene or protein
for an organism correlates with the rate at which it evolves. For more information, and varying
opinions on this topic, consult [75, 98, 198, 141, 80, 79].
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(iii) Sensitivity to Data Errors

The issue of sensitivity to data inaccuracy is of critical importance for all of the techniques
described here. It was noted in [161] that the measure damage discussed above is quite sensitive
to false negative errors, in which a real interaction between two nodes in a network has not
been identified due to experimental error. Clearly, such sensitivity to data noise has serious
implications for the practical use of any of the methods described here. In particular, it is
important to have a thorough understanding of the effect of missing or inaccurate data on the
performance of centrality measures or other approaches to predicting essentiality. While there
has been some research into this fundamental issue recently [42, 202, 29, 163], more intensive
quantitative and theoretical studies are needed before we can reliably apply the techniques
discussed here to the problem of essentiality prediction. This issue is all the more important
given that much of the data available on bio-molecular networks contains large numbers of false
positive and false negative results [40, 186].

(iv) Essentiality and Modules

Finally for this section, we note the work of [46] on determining the essentiality and cellular
function of modules within the yeast PPI network. The results of this paper indicate that the
essentiality (or non-essentiality) and functionality of an overall complex is largely determined
by a core set of proteins within the complex. Moreover, the essentiality of individual proteins
appears to depend on the importance of the modules in which they lie. This suggests that it
may be more appropriate to address the question of essentiality at the level of modules rather
than individual proteins or genes and motivates the problem of extending centrality measures
to deal with groups of nodes.

4.4 Summarizing Comments

(i) In this section, we have discussed several measures of the importance, or centrality, of the nodes
in complex networks, including degree centrality, betweenness centrality, closeness centrality
and eigenvector centrality. We have described the findings of several recent studies which have
applied these measures to datasets on protein-protein interaction and transcriptional regulatory
networks.

(ii) Most of the studies discussed in the text indicate a link between the centrality score of a gene
or protein and its likelihood to be essential for survival.

(iii) There appears to be no compelling evidence at the current time that the more complex centrality
measures described here perform any better as indicators of essentiality than simple degree
centrality.

(iv) As with the identification of network structure discussed in Section 3, the impact of inaccurate
and incomplete data on the performance of centrality measures as indicators of essentiality is of
critical importance and needs to be more fully investigated.

5 Motifs and Functional Modules in Biological Networks

The analysis methods discussed in the previous section were concerned with identifying individually
important nodes within a network. However, several recent studies have revealed that bio-molecular
networks are often modular in nature, with groups of individual nodes collaborating to carry out
some specific biological function. This has led researchers to investigate more closely the hierarchical
structure of real interaction networks, and to provide biological explanations for how the observed
structure of such networks has emerged.
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Recently, a loose hierarchical structure for bio-molecular networks has been proposed in [10, 13]. The
lowest level in this hierarchy consists of individual nodes, which are then organised into so-called
network motifs. Motifs are small subgraphs that occur significantly more often in a network than
would be expected by chance. These are in turn grouped into larger modules of functionally related
nodes before finally, the modules are themselves connected to form the overall network. In this section,
we shall discuss recent work on identifying motifs within specific biological networks, and the efforts of
a number of researchers to use motifs to classify networks into distinct families. We shall also consider
the question of why motifs occur so frequently in real networks. Towards the end of the section, we
shall consider the problem of identifying communities of functionally related nodes in bio-molecular
networks and discuss a number of algorithms that have been proposed for this purpose.

5.1 Identification of Network Motifs

The concept of a network motif and a basic scheme for motif detection were described in the paper
[126]. Specifically, given a directed network G, the motifs in G of size k are identified as follows:

(i) For each possible subgraph, S of size k, of G count the number of occurrences, NS , of S in G.

(ii) Next randomly generate a large number of networks such that in each random network:

(a) Each node has the same in-degree and out-degree as in the real network G;

(b) Every subgraph of size k − 1 occurs with the same frequency as in the real network G.
Two schemes for generating the random networks are described in [126] and its supporting
material.

(iii) A subgraph, S, is then said to be a motif of G if it satisfies the following three conditions:

(a) The probability of S occurring in a random network more often than NS times is less than
some prescribed value P (in [126] P is taken to be .01);

(b) There are at least four distinct occurrences of S in the network G;

(c) The actual number of occurrences of S in G is significantly larger than the average number
of occurrences of S in the randomly generated networks, denoted 〈N rand

S 〉; formally, NS −
〈Nrand

S 〉 > 0.1〈N rand
S 〉.

Comments

(i) The scheme described above can, and has been [195], easily adapted to detect motifs in undi-
rected networks such as protein interaction networks.

(ii) The identification of motifs within large complex networks is computationally intensive and, to
the best of the authors’ knowledge, standard methods are only feasible for motifs containing less
than 7 or 8 nodes.

(iii) In [205] a systematic method of defining network measures or “scalars” which are related to
subgraphs and can be used to detect motifs was introduced. The techniques of this paper
address some of the issues with standard motif detection algorithms but the precise relationship
between “scalars” and subgraphs is not straightforward.

Using the scheme described above, small motifs have been identified in a number of real biological
networks. In particular, the transcriptional regulatory networks of E. coli and S. cerevisiae have been
found to have one three-node motif and one four-node motif. These are the so-called feed-forward
motif and bi-fan motif, shown in Figure 4 below.
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Figure 4: Feed-forward and Bi-Fan motifs of transcriptional networks

The feed-forward and bi-fan patterns are also motifs of the neuronal network of the nematode C.
elegans. This network has an additional four-node motif known as the bi-parallel motif. Other
common motifs which have been detected in food webs, electronic circuits and the World-Wide-Web
include the three-chain , three and four-node feedback loops and the fully-connected triad shown below.
Note that the network motifs of the transcriptional network of yeast have also been investigated in
the paper [114], where the motifs identified have also been related to specific information processing
tasks.
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Figure 5: Common motifs in real networks

Before proceeding, a number of facts about the findings reported in [126] are worth noting. The feed-
forward loop and bi-fan motifs have been found in transcriptional regulatory networks and neuronal
networks, both of which involve some form of information processing. Also, the motifs found in
the food-webs studied are distinct from those found in transcriptional regulatory networks and the
WWW, while electronic circuits with distinct functions tend to have different sets of motifs. These
observations have led some authors to suggest that there is a connection between a network’s motifs
and its function, and hence, that complex networks may be classified into distinct functional families
based on their typical motifs. For instance, given that information processing is fundamental to both
neuronal and transcriptional networks, it is reasonable to suggest that feed-forward loops and bi-fans
occur often in such networks because of their suitability for information processing tasks. On the
other hand, there is no overlap between the motifs observed in transcriptional networks and those of
the functionally unrelated food-web networks.

Finally for this subsection, we note that the transcriptional network of E. coli has been investigated
in more detail in [169] and several additional motifs have been identified: single input modules (SIMs)
; dense overlapping regulons and negative autoregulatory units.
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5.2 Dynamical Properties of Motifs

In the recent past, there have been several theoretical and experimental studies carried out on the
dynamical properties of specific motifs and on clarifying the relationship between motifs and func-
tionality. For example, in [169], it was demonstrated that the feed-forward loop motif can provide a
mechanism of filtering out transient or fluctuating input signals. This motif structure also responds to
persistent activation with a slight delay and shuts down rapidly once the activating signal is removed.
Circuits of this type are said to act as sign-sensitive delays. The authors of [169] presented a simple
mathematical model to describe the action of the feed-forward loop in transcriptional regulatory cir-
cuits and then studied the behaviour of this model under the assumption that the circuit was coherent
in the following sense. Each regulatory interaction is assigned a positive or negative sign depending
on whether it is excitatory or inhibitory. The circuit is coherent if the indirect and direct paths have
the same sign, and incoherent otherwise. Under the assumption that all regulations are excitatory, it
was shown numerically in [169] that the FFL motif does indeed act as a sign-sensitive delay element.

A more complete mathematical analysis of the kinetic behaviour of the FFL motif was presented in
the paper [120], where the response times of all of the different possible configurations of the FFL were
studied. Note however that coherent configurations seem to occur far more frequently than incoherent
configurations in real systems such as the transcriptional network of E. coli [121]. Also, in [77], a more
detailed model of the coherent FFL circuit was described and analysed. Here, the robustness of the
model’s behaviour with respect to variations in parameter values and external perturbations was
investigated. For instance, the sign-sensitive delay action was found to be quite sensitive to variations
in the model’s parameters and, while the circuit is quite robust with respect to the size of external
perturbations, the duration of the perturbation in comparison to the internal time-scales of the circuit
appears to be critical.

In addition to the theoretical investigations described above, the kinetics of the coherent FFL motif
have been studied experimentally in [121]. Specifically, the authors of this paper analysed the l-
arabinose utilization circuit in E. coli and confirmed that, in this case, the coherent FFL circuit
functions as a sign-sensitive delay element that filters out transient activation signals from a fluctuating
environment.

Before finishing our discussion of this topic, we should note a number of other theoretical and exper-
imental investigations of the dynamical properties of network motifs. The negative autoregulatory
circuit consisting of a transcription factor that down-regulates its own transcription was studied in
[157], where the response times of a simple transcriptional unit (without autoregulation) and a neg-
ative autoregulatory circuit were compared. Here, it was shown theoretically that the response-time
of the autoregulatory circuit is shorter than that of the simple transcriptional circuit, with the same
steady state. In fact, for very strong auto-repression, the response-time of the auto-regulatory circuit
is only one fifth of that of simple transcription. It has also been demonstrated experimentally in the
same paper that while a transcriptional circuit without autoregulation has a response-time of approx-
imately one cell-cycle, the response-time for a circuit with negative auto-regulation is about one-fifth
of a cell cycle. Finally, we also note the recent work on the kinetics of the single-input module (SIM)
motif in E. coli [169] and the p53-Mdm2 feedback loop [110].

5.3 Evolutionary Conservation, Extensions and Final Thoughts on Motifs

Motifs and Evolutionary Conservation

The work discussed in the last subsection was concerned with investigating the dynamical properties
and biological function of a number of common motifs. The biological significance of motifs has been
considered from a slightly different point of view in [195] where the extent to which motifs in the protein
interaction network of yeast are evolutionarily conserved was studied. Specifically, 678 proteins in the
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yeast PPI network were identified which have orthologs 2 in each of five higher organisms, and for
each 2, 3, 4 and 5 node motif, the percentage of motifs which were completely conserved across all of
the 5 higher organisms was determined. A sub-graph is completely conserved if all of the proteins in it
have orthologs in each of the higher organisms. For the yeast PPI network, motifs which have a higher
number of nodes and are more densely interconnected also have a higher rate of conservation. For
instance, the completely connected five-node motif has the highest rate of conservation of all motifs
with between 2 and 5 nodes.

To validate these findings, the same number of orthologs was positioned randomly on the network
and the percentages of completely conserved motifs were again calculated. In this case, the rates of
conservation were considerably lower, and moreover, the rate of conservation decreased with increasing
motif size, in contrast to what was observed for the real orthologs. In particular, for the completely
connected five-node motif, the natural rate of conservation was found to be 47.24% while the random
conservation rate was as low as .02%. Furthermore, larger, more tightly connected and conserved
motifs were found to be more functionally homogeneous. In fact, for a significant number of these, all
of the proteins in the complex belonged to at least one common functional class.

Note also that in [182] a correlation between the natural rate of conservation of motifs in the yeast
PPI network and the suitability of the motif structure for synchronization of interconnected Kuramoto
oscillators was reported. We shall have more to say about the question of synchronization later in the
article.

Extensions of the Motif Concept

In [128], the significance profile (SP) was proposed as a means of classifying networks. Given a network,
G, for each possible subgraph, S, the number of occurrences of S in a real network G is calculated
and compared to the average number of occurrences of S in an ensemble of random networks with
the same degree profile as G. The Z-score for each such subgraph is then calculated as

ZS =
NS − 〈Nrand

S 〉

std(N rand
S )

(12)

where NS , 〈Nrand
S 〉 and std(N rand

S ) denote the number of occurrences of S in G, and the mean and
standard deviation of the number of occurrences of S in the ensemble of random networks respectively.
The vector of Z-scores for subgraphs of a fixed size is then normalized to give the significance profile
vector.

SPS =
ZS

(
∑

S Z2
S)1/2

. (13)

Significance profiles for subgraphs of sizes three and four are calculated in [128] for a number of real
biological networks. While this method has been proposed as a means of identifying different classes
of complex networks, it should be noted that some networks with similar SP vectors for three-node
subgraphs have distinct four-node SPs. As mentioned in [128], this means that higher order SPs are
needed if this technique is to be used effectively to classify networks. Also it is not clear at the moment
how to determine the maximal subgraph size required to correctly distinguish network classes using
this technique.

Another possible extension of the motif concept was recently suggested in [103]. Here, so-called topolog-
ical generalizations of subgraphs and motifs were introduced based on duplicating certain nodes within
the subgraph. Several significant motif generalizations within the transcriptional regulatory networks
of E. coli and S. cerevisiae were identified and possible functions for the observed generalizations
were also proposed and investigated on simple mathematical models of transcriptional regulation and
neuronal networks. While most of our discussion has focussed on transcriptional networks or protein
interaction networks in isolation, this distinction is somewhat artificial, and ultimately the methods
described here will need to be extended to more integrated cellular networks. In this context, the work

2Orthologs are genes with a common ancestor.
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of [199] on identifying motifs within a more complete cellular network, which takes into account both
transcriptional interactions and direct protein-protein interactions, and the study of motifs within an
integrated network involving five different interaction types in [203] should be noted.

Some Final Thoughts on Motifs

Before drawing our discussion of network motifs to a close, we note a number of motivations for the
study of network motifs as well as some caveats that should be kept in mind.

(i) Studying the motifs of a complex biological network can provide useful insights into the both
the structure and function of the network. For instance, once we have identified a network’s
motifs, analysis such as that described above on the dynamical properties of the FFL motif can
help us to determine the key functional roles of the network. Motifs can also be used to help
develop more complete models for the evolution of bio-molecular networks than those discussed
in Section 3.

(ii) As mentioned above, motifs and extensions such as the significance profile could be used to
identify distinct categories of complex networks. However, as noted in [128], networks with
the same motif profile for three-node subgraphs can have different four-node or higher order
motifs and this casts some doubt on how effective these methods are likely to prove as a means
of classifying networks. Moreover, the identification of higher order motifs is likely to be very
costly from a computational point of view.

(iii) A knowledge of the motifs of a network is a necessary step in unravelling its hierarchical structure
and can help in identifying modules which can then be used to simplify the network’s analysis.

(iv) The precise biological significance of the various network motifs which we have discussed is still
unclear and it should be noted that while motifs are statistically significant subgraphs, there
may be other subgraphs within a network, occurring in smaller numbers, that are biologically
important. This issue has been debated in [9, 127], and in [41] two biological reasons for the
emergence of motifs have been considered: gene duplication and convergent evolution. The
findings described in [41] indicate that the motifs in the transcriptional regulatory networks of
S. cerevisiae and E. coli have not emerged due to gene duplication, which the authors argue,
provides evidence for claims that network motifs have emerged as the result of some mechanism
of natural selection. Further evidence that motifs have emerged as a result of some biological
optimization was recently presented in [93]. Here, the motif patterns of geometric networks,
where links are formed based on the spatial proximity of nodes, were studied analytically. The
results of this paper show that simple geometric constraints alone are not sufficient to account
for the motifs observed in biological and social networks. The authors of this paper argued that
this indicates that additional, possibly biological, factors have played a role in determining the
emergence of motifs in such networks.

5.4 Community Structure and Functional Modules in Biological Networks

In the introductory remarks to this section, we outlined a loose hierarchical structure for biological
networks, in which the next level above that of motifs was that of modules or communities of func-
tionally related nodes. Recent research has indicated that functionally coherent families of genes and
proteins can be determined from the topology of interaction networks [200]. Hence, the development
of reliable methods for identifying such functional modules would have significant implications for
the problem of assigning functions to unannotated proteins or genes. This issue is of considerable
importance given that the biological function of many of the genes and proteins within even simple
organisms such as yeast are still unknown. In this subsection, we shall discuss a number of algorithms
and techniques that have been developed for the identification of modules and community structure
within complex networks. To begin with, we shall review those methods that have been developed
specifically to detect functional families and hierarchical structure in bio-molecular networks. We shall
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also discuss some techniques that have been proposed specifically for the problem of protein function
assignment.

Network Hierarchy and Motif Clusters

The authors of [48] studied how the FFL and bi-fan motifs in the E. coli transcriptional regulatory
network are integrated into the overall network structure. The findings of this paper suggest a hierar-
chical organization of this network, where motifs are first aggregated into larger motif clusters, with
each cluster primarily consisting of the same motif type. These clusters are then further combined
into so-called super-clusters which form the core of the overall network. For instance, all but one
of the identified feed-forward loops (FFLs) in the network were contained in six FFL clusters, and
similarly, all but one of the bi-fan motifs were contained in two bi-fan clusters. Moreover, these motif
clusters combined to form one large super-cluster containing all but one feed-forward loop and one
bi-fan motif.

Another approach to investigating the hierarchical and modular structure of the transcriptional net-
work of E. coli was described in [119]. Here, five different regulatory levels were identified, such that
each node is either self-regulatory or else can only regulate nodes at lower levels. Based on this hier-
archical decomposition of the network, a scheme for identifying modules of functionally related genes
was described which appears to work quite well in identifying sets of genes with similar functional-
ity. The authors of this paper also found that many of the FFL and bi-fan motifs in this network
contained genes responsible for regulating modules with diverse function. They argue that this fact
is not in agreement with the view that motifs themselves form the basic building blocks of functional
modules, as, for instance, it shows that the same feed-forward loop can be involved in the regulation
of numerous different modules.

Graph Theoretical Approaches to Identifying Functional Modules

A graph clustering algorithm for identifying families of related nodes in networks was described in
[55], where the problem of how to cluster proteins in large databases into families based on sequence
similarity was considered. The first step in this algorithm was to assign sequence similarity scores to
each pair of proteins using an algorithm such as BLAST. A weighted graph was then constructed,
whose nodes are proteins and where the weight of an edge between two nodes is the similarity score
calculated in the previous step. The TRIBE-MCL algorithm for detecting communities of related
nodes within this graph was then described. This technique is based on Markov chain clustering
, and identifies communities through iterating two different mathematical operations of inflation
and expansion . The core concept behind this method is that families of related nodes are densely
interconnected and hence there should be more “long” paths between pairs of nodes belonging to the
same family than between pairs of nodes belonging to distinct families. Subsequently, in [146] this
algorithm was used to identify functionally related families in the protein interaction network of S.
cerevisiae. In fact, the algorithm was applied to the line-graph L(G), where the nodes of L(G) are
the edges of G and two nodes in L(G) are connected if the corresponding edges in G are incident on
a common node in G. Three separate schemes of protein function classification were then used to
validate the modules identified with this algorithm, and the coherence of functional assignment within
these modules was significantly higher than that obtained for random networks obtained by shuffling
protein identifiers between modules. This together with further analysis indicated that the identified
modules did represent functional families within the network.

Further approaches to the determination of functional modules within biological networks have been
described in [149, 166]. The technique in [149] relies on searching for highly connected subgraphs (HCS)
where a HCS of a graph G is a subgraph S for which at least half of the nodes of S must be removed
in order to disconnect it. On the other hand, in [166, 165] a procedure is described which identifies
modules of related genes in the transcriptional regulatory network of yeast as well as the regulators
of each such module. Other approaches to determining functional modules within transcriptional
networks have been described in [11, 90]. The techniques described in these papers are not based on a
graph theoretical analysis of network topology however; in fact, they rely on analysing gene expression
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data across different experimental conditions and determining sets of genes which are regulated by
common transcription factors.

Predicting Protein or Gene Function from Network Structure

Several direct approaches to assigning functions to unannotated proteins have also been proposed
recently. The simplest of these is the so-called majority rule which works in the following way [164,
131]. Given a classification scheme with an associated set of functions,

F = {fs : 1 ≤ s ≤ M},

an interaction network, G, and an unannotated protein i in G, each function, fs ∈ F , is assigned
a score which is simply the number of times fs occurs among the annotated neighbours of i. The
functions with the highest scores are then identified as the most likely functions for the protein i. A
simple extension of this concept which takes into account nodes other than the immediate neighbours
of the unannotated protein was presented in [81]. It should be noted that this approach has the major
drawback of relying entirely on the functions of previously annotated proteins, while it can often
happen that none of the neighbours of a protein of unknown function have been annotated.

Two more sophisticated approaches to protein function prediction that avoid the above mentioned
difficulty were described in [180, 102]. Essentially, these algorithms assign functions to the proteins
in an interaction network so as to minimize the number of pairs of interacting proteins with different
functional assignments. A key aspect of these approaches is that the optimal global assignment of
protein function is not unique. In practice, a number of different optimal solutions are determined,
and the frequency with which a given function fs is assigned to a protein i is interpreted as the
probability of the protein having that function.

The work presented in two other recent papers is also worth noting in the present context. Firstly,
in [131], the functional flow algorithm was described. The core idea of this method is to consider
annotated proteins within the network as reservoirs or sources of flow for the functions assigned to
them. Each such function then “flows” through the network according to a specified set of rules
and the amount of each function at a node when the iterations finish is used to determine the most
likely functions for that node. On the other hand, the technique described in [158] is based on the
hypothesis that pairs of proteins with a high number of common interaction partners are more likely
to share common functions. Formally, for a pair of proteins i, j, of degrees n1, n2 respectively, with
m common interaction partners, the probability p(i, j,m) of them having m common partners if links
were distributed randomly is calculated. This method was applied to the protein interaction network
of S. cerevisiae and, of the 100 pairs of proteins with the lowest value of p(i, j,m), over 95% of them
consisted of proteins with similar function. The authors also described how to use these basic ideas to
identify modules within an interaction network and validated the method on the yeast interaction data.
A related probabilistic approach to using interaction network topology to predict protein function has
also been presented in [116].

In the recent paper [167], the PRISM algorithm for identifying modules of functionally related genes
based on analysing epistatic interactions was presented. 3 The core idea behind this algorithm is that
genes belonging to one functional module should interact with genes in another module in a similar
fashion. Using this algorithm, it was possible to group genes with similar functional annotation into
the same module even in the absence of a direct interaction between them. Finally, we note that in
[33], a technique for identifying quasi-cliques in protein interaction networks based on the eigenvectors
of the network’s adjacency matrix was described and applied to the yeast interaction network. Most of
the quasi-cliques identified in this way were found to have homogeneous functional annotation in the
MIPS database suggesting that this technique could be useful in assigning function to unannotated
proteins.

Module Identification in General Networks

3Epistatic networks describe the interactions through which different genetic mutations either aggravate or buffer
each other’s effects on an organism.
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The problem of identifying communities and cohesive modules is also of importance in a number of
other application domains including the analysis of social networks, communication networks, and
power networks. Before concluding this section, in the interest of completeness, we briefly note some
techniques that have been developed recently for this general problem which could also be used
to identify functional modules within bio-molecular networks; see [134] for an overview of recent and
traditional approaches to the problem of identifying community structure in networks. In [68, 137, 150,
61] the notions of betweenness and information centrality were first extended to apply to edges rather
than nodes. Then, based on the observation that edges connecting distinct communities will typically
have higher betweenness and information centrality scores than edges within communities, divisive
algorithms for identifying communities were described. The basic principle of these algorithms has
been adapted to determine the hierarchical and modular structure of metabolic networks in [82]. More
recently, algorithms based on edge-betweenness have been applied to datasets on protein interaction
networks in yeast and humans in [52]. Here, the ability of these clustering algorithms to identify
families of functionally related proteins was studied. The robustness of these approaches to false
positive errors in the datasets was also investigated.

In contrast to the divisive approaches discussed above, the techniques proposed in [135, 39] work in
an agglomerative rather than divisive fashion. Here, a function that measures the modularity of a
proposed division of a network into communities was defined and algorithms to optimize this function
appropriately were presented. A different, information-theoretic measure of modularity which applies
directly to a network rather than a specific partition of the network has recently been proposed in
[204]. Algorithms for splitting a network into modules were also described in the same paper and
their effectiveness was tested on real and synthetic network data, with promising results. Note also
the approaches based on analysis of the spectrum of the Laplacian matrix of the network described
in [35, 49].

5.5 Summarizing Comments

(i) In many real biological, and technological, networks, certain small subgraphs occur far more fre-
quently than would be expected for randomly wired networks with the same degree distribution.
Such subgraphs are known as motifs.

(ii) Experimental observations have indicated that networks with similar function tend to have
similar sets of motifs. For instance, feed-forward loops are very common in both neuronal and
transcriptional regulatory networks; both of which are involved in the processing of biological
information. This has led researchers to consider a network’s motifs as being characteristic of
the network in some sense.

(iii) While the precise biological significance of motifs is still not completely understood, several
recent studies on the dynamical properties of simple motifs have provided some insights into
this question. In particular, the dynamics of the FFL motif and the auto-regulatory motif in
transcriptional networks have been studied and linked to biological function.

(iv) Graph theoretical techniques have been used to determine the role of proteins or genes whose
function is currently unknown. Several such techniques have been described in the text. General
algorithms for identifying communities in complex networks can also be applied to protein
interaction networks to identify modules of functionally homogeneous proteins.

6 Synchronization

So far, our discussion of complex biological networks has largely focussed on their structural properties.
We have discussed some of the key topological parameters for bio-molecular networks, as well as
numerical techniques for identifying the most important nodes within such networks and for elucidating
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their hierarchical structure. As a next step, we shall consider some aspects of network function and
network dynamics, with particular emphasis on the relationship between dynamic behaviour and
network topology. Specifically, in this section, we shall review the results of recent work on the
connection between synchronizability—that is, fitness for synchronization— and network properties
such as characteristic motifs, average node-degree, betweenness centrality and degree distribution.

The outline of the section is as follows. We start off with a general introduction to synchronization
phenomena. We then consider some aspects of mathematical modelling, focusing on the Kuramoto
model of coupled oscillators, and discuss some common measures of synchrony. Following this, we
review results on synchronizability. Lastly, we discuss the role of synchronization in the brain with
particular emphasis on the connection between abnormal synchrony and neurological disorders. We
close with some summarizing comments.

6.1 Biological Oscillators and Synchrony

Consider a graph wherein each node represents a dynamical process and each edge an interaction
between two processes. This simple construct makes for an elegant description of many biological
systems. Consider, for example, the group of pacemaker cells that make up the Sinoatrial Node [69]
in the heart. For this system we can construct a graph, such that each node represents a pacemaker
cell and each edge an interaction between two such cells. The topology of this graph determines, to
a large degree, the system’s overall behaviour. Indeed, abnormalities in the way these cells are wired
up can have a more significant impact on the functioning of the Node than defects in individual cells.
To appreciate how important these interactions are, consider that in isolation, each pacemaker cell
oscillates at its own distinct frequency; yet when put together, these same cells coordinate their action
in such a way as to generate a single impulse exactly once during each cardiac cycle [104]. This is an
instance of a phenomenon known as synchronization, or more precisely, frequency synchronization.
Roughly speaking, synchronization is the process through which the output of a system aligns itself
with that of another system or group of systems. A special case of this is the synchronization of
oscillators, to which we shall confine ourselves in this survey.

Oscillators can lock to both internal and external stimuli. The locking to external stimuli is generally
called entrainment. Examples of entrainment are commonplace in human physiology. Many of the
fundamental rhythms in our body, for instance, are entrained by the light-dark cycle [69]. More specif-
ically, neural circuits have been found to support entrainment, particularly in the gamma frequency
range (50-100 Hz) [139].

Synchronization is a population effect in the sense that it emerges in complex systems comprising
a large number of identical or nearly identical components. In the natural world, synchronization
manifests itself across many different levels of organization, from groups of organisms (the synchronous
flashing of fireflies [34]) down to groups of cells (the pacemaker cells in the example of the Sinoatrial
Node). Less well known, perhaps, is its implication in discussions on the binding problem, one of
the central problems in the philosophy of mind. Specifically, in this context, synchronization has
been put forward as a mechanism to explain how information, distributed across the brain, might be
integrated to make coherent perception possible [54]. Given the variety of applications, the importance
of understanding the principles of synchronization is clear. One way to gain such understanding is to
try to reproduce this phenomenon in silico, using a simple mathematical model of coupled oscillators.
In the next subsection we review some aspects of the Kuramoto model, which has been the principal
model used for the study of synchronization phenomena over the past thirty years.

6.2 A Model of Synchronization

Over the years, a great deal of interest has been expressed in the physics and mathematics of syn-
chronization. One of the first to present a detailed mathematical treatment of the subject was Arthur
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Winfree. His 1967 paper [193] laid the basis for the work of Kuramoto and others, who helped develop
it into a mature mathematical theory with applications in different fields [174].

In this review we shall focus on a model of synchronization, introduced and popularized by Ku-
ramoto [107, 108, 1]:

θ̇i = ωi +
K

N

N
∑

j=1

sin(θi − θj) (14)

Here θi and ωi respectively denote the phase and intrinsic frequency of oscillator i; K is the coupling
strength, and N is the number of oscillators. This setting assumes undirected all-to-all coupling,
meaning that the underlying graph is complete [47]

Kuramoto’s model describes a mechanism of self-organization in a population of coupled oscillators.
The model is thought to reflect some aspects of coordinated behaviour in natural systems. Studies
indicate that the emergence of synchronization in the model is robust with respect to variations in
the interconnection structure, albeit that the transition dynamics generally depend upon the details
of the underlying topology. We shall discuss this dependence in more detail shortly.

A qualitative description of the behaviour of the system (14) is as follows (see [173]). When the
interactions are weak, i.e. K is small, the system is in an incoherent state, in which the distribution
of the phases {θi} is roughly uniform. In this state, each oscillator tends to oscillate at its own
intrinsic frequency, ωi. When the level of interaction is gradually increased, clusters of oscillators will
emerge, oscillating at a common frequency and (sometimes) phase. When the coupling is still further
increased, more and more oscillators will join in, leading eventually to a state of full synchronization
in which all oscillators are oscillating as one. Note that, strictly speaking, full synchronization is only
possible when all the oscillators are identical, i.e. when ωi = ωj for all i, j. The transition from a
completely incoherent to a completely coherent state is typically steep, and associated with it is some
critical coupling strength Kc, which marks the start of this transition.

The analysis of the Kuramoto model has a long and rich history, and while a full understanding
of its dynamics is still lacking, a number of important results have been obtained in recent years.
Among them a proof of the instability of the unsynchronized state for large coupling strengths, and
formulae for the critical coupling, and the steady state coherence. Most of these results are only
strictly valid in the thermodynamic limit when N → ∞, though some results are available for large
but finite populations [94]. For an extensive review of results related to the Kuramoto model and its
applications, the reader may consult [1].

The Kuramoto model has found application in many areas, including neuroscience, physics, engineer-
ing and biology [147, 1]. This wide applicability appears to be both a strength and a weakness in the
sense that, as the model captures the essence of synchronization, it necessarily lacks the specificity
to fully describe any one phenomenon in particular. We shall come back to this when we discuss the
role of synchronization in the brain.

6.3 Types and Measures of Synchrony

In a system of coupled oscillators such as (14), the emergence of synchronization is easy to detect and
quantify. In experiment, this is not quite as easy. The fundamental problem is to extract from the
complex time series that are your data information about phase and frequency. This is a non-trivial
problem as the underlying processes are typically non-stationary and, in a strict sense, non-periodic.

Before trying to detect synchronization proper, there are a few other things one can do. For instance,
to test for statistical dependence between two time series, one could compute the spectral covariance
or coherence [100]. In [156, 168] this technique was used to quantify task-specific interactions in the
brain. In recent years, it has been suggested that this measure would lack the sensitivity required to
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detect subtler forms of synchrony, such as phase synchrony, as it would not separate out effects of
amplitude and phase.

Other measures of synchrony include phase coherence [171, 109], entropy, and mutual information
[87, 91]. These latter measures are particularly popular among experimentalists, who seek to establish,
for instance, whether or not a particular phase relationship exists between a given set of experimental
variables. The application of these measures is limited by the fact that, in a typical experiment,
phase information is not directly accessible, but needs to be extracted from the recorded time series
using specialized algorithms. This is a nontrivial problem as the time series (e.g. EEG recordings)
are generally non-periodic, and hence standard notions of phase do not apply. Fortunately, there
exist alternative notions of phase that do generalize to non-periodic signals. Based on these notions,
computational techniques have been developed that are capable of extracting phase information from
arbitrary time series [147]. These techniques have been successfully applied to the analysis of brain
data [109, 87, 171], revealing interesting patterns of synchrony.

Another factor that might complicate the application of these measures in practice, is the lacks of
statistics. If prior information about the data were available one could use that to specify what
degree of coherence should be considered statistically significant. But in an experimental setting, such
information is typically not available. One way to overcome this problem is to use schemes which
generate ensembles of surrogate data that are in some sense statistically similar to the original time
series [87]. An early example of an application of this approach can be found in [109].

For the system of coupled oscillators (14), the standard measure of synchrony is the order parameter,
typically but not exclusively defined as [124, 84, 173]:
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where, as before, N denotes the number of oscillators in the network, and θj(t) the instantaneous
phase of oscillator j. Geometrically, the value of the order parameter indicates how well a given set of
unit vectors are aligned with respect to one another (with 1 indicating perfect alignment). A slightly
more general definition is adopted in [154], incorporating the adjacency matrix to account for the
network’s local structure. Much the same measure is used again in [89].

6.4 Synchronizability

Recent studies have indicated that particular network properties, such as the average clustering coef-
ficient and betweenness centrality, among others, have a major impact on the dynamics of a network
[124, 89, 84, 73]. Here we shall review those results that relate specifically to synchronization.

Kuramoto Oscillators on Random Graphs

The study of systems of coupled oscillators has recently been extended from dealing exclusively with
networks with all-to-all coupling to include networks with local connectivity, such as lattices and,
indeed, random networks (particularly scale-free and small-world networks). It has become clear that
these complex networks differ from their regular (random) counterparts in many ways, and not least
in terms of their dynamic properties. Great interest has been expressed in the question as to what
extent the topology of a network determines the behaviour of the same; or more in particular for a
system of coupled oscillators: to what extent the topology impacts the transition behaviour.

As regards the latter question, in [154] the transition behaviour of an appropriately defined order
parameter was approximated to good accuracy in large networks of almost arbitrary structure. In
particular, the following expression for the critical coupling strength was derived:

kc =
k0

λ
. (16)
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Here k0 is a constant, depending on the distribution of the oscillators’ intrinsic frequencies, and
λ is the spectral radius of the network’s adjacency matrix. Note that this estimate requires full
knowledge of the adjacency matrix. A less restrictive estimate was obtained by introducing the
additional assumption that the components of the eigenvector associated with the spectral radius are
proportional to the vector of node degrees. The expression thus obtained reads

kc = k0
〈k〉

〈k2〉
, (17)

which coincides with the result reported in [89]. A detailed account of the validity of the various
assumptions involved can be found in the paper [154]. In the above expression (17), 〈k〉 and 〈k2〉 denote
the first and second moments of the node degree distribution, respectively. As pointed out in [89], for
scale-free networks with a power law coefficient between 2 and 3, the second moment grows without
bound as the number of nodes tends to infinity. This would suggest that, in such networks, there
is no critical coupling in the thermodynamic limit; or indeed no threshold for coherent oscillations.
This has been demonstrated not to be the case for finite networks [182, 89]. Indeed, in [89] it is
reported that there exists a clear dependence between the critical coupling strength and the network
size. We draw attention to the fact that related observations have been reported in the literature
on disease propagation. Particularly, the absence of an epidemic threshold has been established as a
characteristic feature of disease spread models on (infinite) scale-free networks. Finite-size effects have
also been discussed in this context [123]. The similarity between the physics of coupled oscillators and
models of disease spread has been discussed previously in [89]. We shall have more to say about this
connection in the next section.

Factors that Promote Synchronization

Let us consider what structural properties of a network promote synchronization. A recent study
[124] suggests that one factor might be the amount of clustering. Indeed, the study indicates that
networks (Poisson or scale-free) that share the same number of nodes, the same number of edges and
the same degree distribution, but have a different average clustering coefficient, may have very differ-
ent synchronization properties. In particular, it was found that increasing the clustering coefficient
of a Poisson network leads to a more gradual transition from incoherence to coherence. For scale-
free networks, the effect was more ambiguous in that increased clustering appeared to promote the
onset of synchronization at low coupling strengths, suppressing the same at high coupling strengths.
For moderate coupling strengths the network would seem to split into several dynamic clusters os-
cillating at different frequencies. The authors proposed that scale-free networks with high clustering
undergo two separate transitions: a first transition to a partially synchronized state, corresponding
to the formation of clusters oscillating at distinct frequencies; followed by a second transition to full
synchronization when the clusters are tuned to a common frequency.

Other factors, reported in [84], in a study of Watts-Strogatz small-world networks, include large
maximum degree, short characteristic path length, heterogeneity of the degree distribution and a low
value for the average betweenness centrality. Among these factors, betweenness centrality was found
to account for the strongest correlations. Some of these findings have been shown not to hold for
other types of networks. Notably, for scale-free networks, it appears that homogeneity in the degree
distribution, rather than heterogeneity would promote synchronization [138]. This would contradict
the popular belief that because the average path length in heterogeneous networks tends to be smaller
than, for example, in lattices, communication between oscillators would be more efficient, which would
amount to better synchronizability. Using the ratio between the smallest (nonzero) and the largest
eigenvalue of the Laplacian as a measure of synchrony (which was also the measure used in [84]), the
authors demonstrated the opposite, namely that heterogeneity in a scale-free network tends to inhibit
rather than promote its ability to synchronize.

In [182], it was demonstrated numerically that (finite-size) scale-free networks of Kuramoto oscillators
exhibit a phase transition at a coupling strength that is inversely proportional to the average node
degree. In the same study, the authors also investigated the ‘fitness for synchronization’ of particular
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network motifs, defining fitness as the (normalized) coupling strength at which the probability that
a motif synchronizes first exceeds one half. The results suggested that motifs with high intercon-
nectedness are more prone to synchronize. Interestingly, this ability to synchronize was found to be
correlated with the motif’s natural conservation rate in the yeast protein interaction network (see
Section 5.3).

In a study involving d-dimensional lattices of coupled oscillators [85], it was investigated what the
minimal dimension d∗ of a lattice should be in order for the oscillators to synchronize in the limit
of strong coupling. Based on extensive simulations the authors conclude that d∗ = 3 for frequency
synchronization, and d∗ = 5 for phase synchronization.

For networks of Erdös-Rényi type, the authors of [73] derived a lower bound on the critical average
degree, that is the smallest average degree for which synchronization is possible. Moreover, if p is
the probability that an edge is placed between a given pair of nodes in an ER network, it was shown
that networks with different values of p share the same critical coupling strength, which is that of the
globally coupled network.

In small-world networks, the onset of phase and frequency synchronization appears to depend strongly
on the rewiring probability when this probability is small, and no synchronization whatsoever is
observed when this probability is identically zero [83]. Interestingly, the synchronization behaviour
appears to be roughly the same for larger values of the rewiring probability, suggesting some form of
saturation to set in.

6.5 Synchronization in the brain

Having described various theoretical aspects of synchronization, we shall close this section with a
discussion on the proposed role of synchronization in the brain.

Synchronization and the Problem of Integration of Information

Synchronization has been put forward by some as the mechanism that would make possible the
integration of distributed neural activity in our brain [179]. Others have argued against this. Here we
shall focus on the supporting evidence. What is neural integration and what part does synchronization
have to play in it? Recent studies suggest that during processing of visual and auditory stimuli,
activities of functionally specific brain regions are temporally aligned so as to produce a unified
cognitive moment. This would imply that an inability to synchronize, due to abnormalities in the
neural circuit for instance, could have severe behavioral implications [139, 171]. An understanding of
the mechanics of this phenomenon may thus hold the key to devising new treatments for neurological
disorders.

It has been known for a long time that groups of neurons within a single sensory modality such
as the visual cortex, selectively synchronize their activities, supposedly to integrate the particular
features for which they encode. However, the fact that this same kind of integration would take place
across different sensory modalities was discovered only recently. In a study reported by Roelfsema et
al. [156], five cats were conditioned to press and release a lever in response to particular visual stimuli.
Electrodes were implanted at different locations in the motor and visual cortices to monitor the
electrical activity during execution of the task. Coupling between these brain areas was investigated
using cross-correlation analysis on pairs of LFP (Local Field Potential) traces. Tighter coupling was
observed when the animals were engaged in the specific visuomotor task than when engaged in feeding
or at rest. Based on these and other findings, Varela et al. have suggested that “large-scale synchrony
is the underlying basis for active attentive behaviour”. [179, 155].

In a more recent study [168], it was investigated how the interactions between selected areas in the
hippocampus and amygdala in fear-conditioned mice compare against those in controls. The response
of the fear-conditioned group indicated a selective synchronization in the theta frequency range (4-7
Hz) upon presentation of the conditioned stimulus, which was not found in the control group. No
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significant synchronization was observed in either group during presentation of the unconditioned
stimulus. It was argued that these results are indicative of a functional relationship between theta
rhythm synchronization and the retrieval and expression of fear.

Abnormal Neural Synchrony and Schizophrenia

Assuming synchronization is the mechanism that underlies neural integration, it seems reasonable to
suppose that disruptions in neural synchrony would impact one’s behaviour. Interestingly, an impaired
ability to integrate information has long been identified as one of the symptoms of Schizophrenia, which
makes this disorder particularly relevant in this context. Schizophrenia, a complex and debilitating
disease, is generally defined in terms of its symptoms, which may be divided into (a) positive symptoms,
which include delusions, hallucinations, and incoherent thoughts; and (b) negative symptoms, which
include social withdrawal, poor motivation, and apathy [160, 101]. In recent years, it has been
proposed that these cognitive and affective impairments may be related to a defect in the mechanism
believed to be responsible for the integration of distributed neural activity, that is, to gamma band
synchronization [171, 139, 84].

A recent report supports this [171]: when a set of Gestalt images were presented to a group of pa-
tients diagnosed with Schizophrenia (SZ) and a group of Normal Control (NC) subjects, a significant
difference in neural orchestration between the two was observed. A phase-locking response, persistent
among individuals from the NC group, but absent in the SZ group, was hypothesized to reflect a
feature-binding mechanism in the visual cortex which would explain the more efficient task perfor-
mance by healthy individuals.

Further evidence for abnormal neural synchrony in Schizophrenia was reported in [91]. In this study,
two groups, patients and controls, were presented with a set of images depicting six basic human
emotions, which they were to recognize. The response of each individual was measured using whole
head MEG (Magnetoencephalogram). Local activity was averaged over a so called region of interest
(ROI) and a coherence score was computed as the mutual information (MI) [44] between ROIs. The
MI analysis revealed a very organized pattern of linkages for normal subjects, as opposed to the overall
disturbed linkages for Schizophrenia patients. At some level, these results agree with the outcome
of another study [84], which involved first-degree relatives of patients with Schizophrenia. Gamma-
band synchronization was found to be reduced in first-degree relatives with Schizophrenia Spectrum
Personality Problems.

A Theory of Neural Synchronization?

It has been established beyond doubt that the processing of particular audiovisual stimuli coincides
with the temporal synchronization of neural activities in functionally specialized brain regions. In
addition there is some evidence that patients with Schizophrenia or related neurological disorders are
more likely to display abnormal patterns of synchrony than controls. Meanwhile, the mechanics of
this synchronization and its supposed role in the integration of information remain poorly understood.
Most experimental studies resort to elementary statistical techniques to conclude with confidence that
some form of synchronization takes place. Beyond that, there appears to be a shortage of quantitative
models; models that do not just extract information from the data, but indeed attempt to explain the
data. With no disrespect for the seminal importance of Kuramoto’s work, and that of others’ who
have contributed to the theory of coupled oscillators, it appears that we are still far removed from
effectively applying this theory in the context of the neural synchronization problem. Fortunately,
there is reason to believe that this gap is closing fast, considering on the one hand the rate at which
measurement techniques are being refined, and, on the other hand, some of the pioneering work that
is being done on the theoretical front.
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6.6 Summarizing Comments

In this section we discussed some aspects of synchronization, using the Kuramoto model of coupled
oscillators as a starting point. We reviewed recent results on the relation between network structure
and synchronizability.

(i) the onset of synchronization in complex networks is determined by a few key factors that in-
clude: the average clustering coefficient, the second moment of the degree distribution, the
maximum degree, the characteristic path length and the average betweenness centrality. These
factors may impact different networks in different ways.

(ii) For scale-free network of infinite size and with a power law exponent between 2 and 3, the
value for the critical coupling is zero. For finite-size scale-free networks, the critical coupling is
nonzero. We pointed out parallel results in the disease propagation literature.

(iii) We discussed the role of synchronization in the brain and argued that, ongoing efforts notwith-
standing, there is a lot of work to be done in the way of tuning the abstract mathematical models
of coupled oscillators to the experimentalist’s needs.

7 Network Structure and Disease Propagation

The final major topic that we shall consider here is the impact of network structure on disease
propagation models. Given that several of the novel network properties considered in the recent past
have been observed in social networks and in networks of human sexual contacts [118], it is natural
to ask what effect these properties have on the spread of disease through such networks. Given the
emergence of new virulent diseases such as the SARS virus and the Asian bird flu, the importance
of understanding the interaction between network structure and the dynamics of disease propagation
cannot be over-emphasised. The current section is organised as follows. First, we shall discuss recent
numerical and theoretical work on the effect of different degree distributions on the behaviour of
classical epidemic models, with particular emphasis on the effect of power-law distributions on the
so-called epidemic threshold. We shall then discuss extensions of this basic line of research which have
attempted to take into account finite-size effects correlations between the degrees of connected nodes.
Finally, we shall discuss a number of other issues pertaining to disease spread on networks, including
the containment of epidemics on different network topologies and the evolution of different disease
strains.

7.1 Scale-free Networks and Epidemic Thresholds

The mathematical theory of epidemics has been the subject of intensive research for some time now
and several different models for disease spread have been developed. A detailed discussion of the
properties of all of these models is well beyond the scope of the current document, and the interested
reader should consult [8, 78]. Here, we shall confine our discussion to results concerned with two
basic models of disease spread: the Susceptible-Infected-Susceptible or SIS model and the Susceptible-
Infected-Removed or SIR model. Much of the recent work on disease propagation through networks
has focussed on these two core models.

In the SIS model, a population is divided into two groups: the first (S) consists of susceptible indi-
viduals, who are not infected but can contract the disease from members of the second group (I) of
infected individuals. After a period of time, an infected person recovers and then becomes susceptible
again. Hence no immunity is conferred by contracting the disease and the recovered infective can be-
come infected again at a later time. In contrast, in the SIR model, a recovered infective is regarded as
being immune to the disease and cannot subsequently become infected again. Hence, the population
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is divided into three groups in such models: susceptibles (S), infectives (I) and removed or recovered
(R).

There are two fundamental parameters associated with any SIS or SIR model: the probability λ of an
infective passing on the disease to a susceptible with whom they are in contact during the period in
which they are infective, and the rate ν at which an infective recovers. In basic models of population
epidemiology, it is assumed that the population is homogeneously mixed. This essentially amounts to
assuming that each individual, or node, in the population has the same number of contacts. Under
the assumptions of homogeneous mixing and a fixed population size, the standard equations for the
SIR model are given by [130, 30]

dS

dt
= −λSI (18)

dI

dt
= λSI − νI

dR

dt
= νI.

Here, the variables S(t), I(t), R(t) represent the total number of individuals in the susceptible, infected
and recovered classes respectively at time t. From a network point of view, we can consider the
population as a graph, G, in which each individual is represented by a node and each edge represents a
contact or connection between individuals, through which the disease can spread. In a homogeneously
mixed population, each node v in G has the same degree, which would be equal to the mean degree,
〈k〉, of the network. This assumption is only reasonable for networks whose degree distributions are
narrow, meaning that the coefficient of variation, CV =

√

〈k2〉/〈k〉2 − 1, is very small.

Under the assumption of homogeneous mixing, the quantity ι0 = 〈k〉λ/ν, represents the average
number of secondary infections that would result from the introduction of a single infected individual
into an entirely susceptible population. In this case, the introduction of an infective into the population
will result in an epidemic if the basic reproductive number R0 = ι0 is greater than one, while if R0 < 1,
the disease will die out. Thus, defining λc = ν/〈k〉, an epidemic occurs if the spreading rate, λ satisfies
λ > λc while the disease dies out if λ < λc. The constant λc is usually referred to as the epidemic
threshold.

While the assumption of homogeneous mixing might be reasonable for the classical ER random graph
models, it is entirely inappropriate for BA and other scale-free networks with broad-tailed degree
distributions. In [123], the dynamics of the SIR model on heterogeneous networks of this type were
studied. It was pointed out that for such networks, the basic reproductive number R0 is given by the
formula

R0 = ρ0(1 + C2
V ). (19)

Now, in the limit as network size tends to infinity, for a scale-free network with degree distribution
of the form P (k) ∼ k−γ with 2 < γ < 3, the coefficient of variation CV of its node-degrees is infinite
(more precisely, the second moment 〈k2〉 diverges as the network size, n, tends to infinity, while 〈k〉
remains finite). Thus, for any non-zero spreading rate λ, the introduction of an infective into the
population can result in an epidemic. Similar findings were also reported in [142] for the SIS model.
These results lead to the somewhat surprising conclusion that for scale-free networks, the epidemic
threshold is effectively zero. This also follows from the following formula for the epidemic threshold
for scale-free networks with degree distribution P (k) ∼ k−3, which was presented in [144] (as well as
a number of other sources).

λc =
〈k〉

〈k2〉
(20)

Note that this same formula has appeared above in the context of coherent synchronization on random
networks (17).
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The authors of [123] also derived approximate expressions for the fraction of nodes, I, in a scale-
free network that are ever infected for an SIR model of disease spread. (I is usually referred to as
the final epidemic size.) First of all, for scale-free networks with power-law exponent γ = 3, they
demonstrated that, essentially, I decreases with decreasing λ as Ce−(A/λ) for constants A,C. Using
approximate, mean-field arguments and simulations, a similar result was derived in [142] for the steady-
state prevalence of an SIS epidemic4. The dependence of I on λ for networks with 2 < γ < 3 was
also calculated in [123] and it was established that in this case, I decays with decreasing λ according
to a power law of the form C(λ)1/(3−γ). In the same paper, it was also shown that, for networks
with γ = 3, the number of infected nodes of low-degree is small, while many (essentially all) nodes of
high-degree are infected. These findings are in agreement with those described in [14], which indicate
that disease spreads in a hierarchical cascade from hub nodes to nodes with intermediate degree to
nodes with low degree. These observations clearly have significant implications for the development
of containment strategies. Specifically, they suggest that an effective containment strategy would first
and foremost target the hubs of a network. Similar recommendations have been made in [45].

Before we proceed, it should be noted that the results discussed in the previous paragraph are based
on a number of assumptions.

(i) The results described above were derived for the limiting case of an infinite network or popula-
tion, and rely on a continuous approximation of the node-degree variable k. It has been noted in
[123] that when finite size effects are taken into account the epidemic threshold does not vanish
but in fact takes a positive value.

(ii) These results apply to networks in which there is no correlation between the degrees of connected
nodes.

(iii) Finally, as with biological interaction networks, the inferred scale-free nature of social and sexual
networks typically relies on sampled network data. Hence, in order to reliably apply the results
discussed here, it is vital to understand the effect of sampling on the identification of a network’s
topology.

Later in this section, we shall describe the results of a number of authors who have attempted to
address some of these limitations.

7.2 Impact of Finite Size and Local Structure on Disease Spread

The above results on the properties of SIS and SIR models on scale-free networks were derived for
the limiting case of networks of infinite size. Of course, real networks of social and sexual contacts
are finite and, for this reason, a number of authors have studied the dynamics of disease spread on
scale-free networks with finitely many nodes. In [143], the epidemic threshold, λc, and the steady-state
prevalence, ρ, for the SIS model on finite scale-free networks were investigated. It was found that λc

is non-vanishing in this case, and formulae approximating the dependence of λc and ρ on the network
size, n, were also derived. Note that while the epidemic threshold is non-vanishing for the finite
scale-free networks studied in [143], it is considerably smaller than for a corresponding homogeneous
network with the same average degree. In fact for scale-free networks of size larger than 1000, the
threshold is at least one order of magnitude smaller than in the homogeneous case. These findings
are largely in agreement with the remarks on finite-size effects for SIR models made towards the end
of the paper [123]. Note also the findings reported in [88] where the behaviour of the SIS model on
two different types of network with scale-free degree distributions was studied numerically. For both
network types, the epidemic threshold λc is non-zero. However, the dependence of λc on network size
and the effect of the spreading rate λ on ρ varied significantly between the two classes of network,
even for networks with the same underlying degree distribution. These results demonstrate that it is

4The steady-state prevalence is the fraction of infected nodes in the steady state.
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possible for two networks with the same degree distribution, but different local structures, to exhibit
significantly different behaviours with respect to disease propagation.

The final observation in the previous paragraphs has motivated a number of authors to study classes
of scale-free networks in which the degrees of neighbouring nodes are correlated. Such networks offer
a more realistic picture of real social networks in which such correlation is common. In [53] the SIS
model was studied on a class of highly-clustered scale-free networks. Numerical simulations indicated
that the highly clustered networks behave in a qualitatively different manner than the usual scale-free
models, both with respect to the dependence of steady-state prevalence ρ on spreading rate λ and
to survival probability of the disease. Moreover, the authors of this paper argue that for this highly
structured class of scale-free networks, there is a non-vanishing epidemic threshold even in the limit
as the network size, n, tends to infinity. They further conjectured that the value of the threshold
depends on the degree correlations within the network rather than on the degree distribution itself.

The relationship between the epidemic threshold and the degree correlations in a scale-free network
has been further investigated in [19, 20]. In [19] the value of the epidemic threshold is related to
the largest eigenvalue of the so-called connectivity matrix C, where Ckk′ = kP (k′|k). Here P (k′|k)
represents the probability that a given link emanating from a node of degree k connects to a node
of degree k′. For networks with no higher order correlations, they demonstrate that the epidemic
threshold is equal to the reciprocal of the largest eigenvalue of C. Based on these results, in [20]
conditions for the absence of an epidemic threshold in scale-free networks with arbitrary two-point
degree correlation functions P (k′|k) and degree exponents in the range 2 < γ ≤ 3 were investigated.
The principal result of this paper established that in this case, provided the network possesses no
additional, higher order, structure, the epidemic threshold is again zero in the limit of infinite network
size. We should also note here the work described in [185, 129] which further investigated the effects
of degree correlations and local structure on the dynamics of disease spread in scale-free networks.

7.3 Containment Strategies on Heterogeneous Networks

One of the most fundamental issues in epidemiology is how to design effective strategies for containing
the outbreak of an infectious disease. One simple strategy would be mass vaccination, in which
(almost) every individual in the population is vaccinated against a disease, and hence immune to it.
While this can be an effective strategy for containing infectious diseases, it is crude and operationally
expensive. As a result, there is great interest in alternative strategies which, although perhaps slightly
less effective, are much more economical in terms of resources and logistics. Recently, in [45, 144],
the implications of power law degree distributions for the design of immunization programmes was
investigated using mean-field approximations and numerical simulations. The first strategy considered
was that of uniform random vaccination in which individuals are uniformly selected at random and
vaccinated. However, while this strategy can work for homogeneous populations, it is known to be
ineffective in the heterogeneous case [8]. The findings in [45, 144] suggest that for scale-free networks,
and the SIS model of disease spread, considerable improvements over uniform vaccination can be
achieved through targeting hub nodes within a network. In fact, two different approaches of this
kind were suggested. In the first of these, nodes are vaccinated with probability proportional to their
degree, so that a greater proportion of nodes of high degree are vaccinated than is the case for nodes
of low degree. The second strategy aims to specifically target hub nodes by vaccinating all nodes in
the network of degree higher than some threshold kc. While this appears to be more cost effective,
in terms of how many individuals need to be immunized in order to eventually eradicate the disease,
it relies on a fairly complete knowledge of the network’s topology. As mentioned before in the text,
it is unrealistic to assume that we will have exact knowledge of each individual’s degree within the
network and the impact of sampling errors and inaccurate network data on vaccination schemes needs
to be analysed more thoroughly.

A disease containment strategy, aimed at controlling outbreaks of smallpox was recently proposed in
[58]. In this paper, the social networks through which disease spreads were modelled as bi-partite
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graphs [47]. Such a graph has two distinct types of vertices, which correspond to locations and indi-
viduals respectively. The results of this paper suggest a containment strategy of targeted vaccination
combined with early detection. Early detection could be accomplished by placing sensors at locations
with high degree, that is, locations visited by many people, while efficient vaccination is effected by
targeting long-distance travellers. The impact of factors such as targeted or mass vaccination schemes,
withdrawing infected individuals to their homes, and delays in introducing containment measures, on
the number of deaths caused by a smallpox outbreak was investigated by numerical simulation. The
results suggested that the most significant factor was the early removal of infected individuals to their
homes with the next most influential factor being the length of delay in implementing vaccination
schemes.

In [15], motivated by the recent emergence of the SARS virus, several intervention strategies for
epidemic containment were considered, and the impact of each strategy on the effective reproduction
number was determined. In general, the results of the paper suggest that combining different strategies
is a good idea, while the strategy of tracing and quarantining the contacts of diagnosed cases was
found to be particularly effective. The model studied in this paper incorporated several realistic
aspects of social structure. For instance, given that people tend to be more frequently in contact
with individuals within their own household than with people from other households, a distinction
was drawn between within-household transmission and between-household transmission. Furthermore,
school-children and the rest of the population were considered separately. While the manner of
counting secondary infections, and the reproduction number, used in this paper were somewhat non-
standard, they have the advantage of being analytically tractable and, moreover, the number of
“offspring” of a single infective, as counted in this paper, is independent of the size of the infective’s
own household. Parameter values pertaining to the distribution of household sizes were selected in
accordance with given census data. Various control strategies were considered, including exposure
avoidance, isolating cases at diagnosis, closing schools, quarantining affected household, and contact
tracing. Apart from the efficacy of the above mentioned strategy of tracing and quarantining contacts
of diagnosed cases, the results indicate that if an emerging infection were to enter a juvenile population,
closing schools can reduce transmission significantly.

7.4 Other Network Models and the General Theory of Disease Spread on

Networks

In addition to the work discussed above on epidemic dynamics on scale-free network, a number of
authors have considered the problem of disease spread on other network topologies. For instance, in
[159] the impact of dynamically adding long-range links to regular one-dimensional lattices on the
spread of disease was studied. Using the SIR model for disease spread, they have shown that the
resulting small-world network [192] structure exhibits a shortcut-dependent epidemic threshold. An
approximate expression for this threshold in terms of the effective spreading rate and the effective
recovery rate was shown to be accurate over a large range of parameter values. The authors also
acknowledged the fact, previously stated elsewhere [7, 123], that the basic reproduction number has
limited use outside the homogeneous mixing paradigm. They argue that this is particularly true
for small-world networks because “the effect of a secondary infection caused by nearest-neighbor
transmission is different from the one caused by a long-range jump” [159]. Assuming a spreading
probability of one, so that susceptibles in direct contact with infectives will become infected during
the next iteration step, it was shown that the epidemic saturation time, i.e. the time it takes for 95%
of the susceptible population to become infected, scales with −log(n0), where n0 is the fraction of
nodes initially infected. The scenario of spreading with near certainty would correspond to the onset
of an epidemic, and is used by the authors to predict the final epidemic size as well the development
of an epidemic from its beginning stages. The dynamics of the SIR model and the related susceptible-
exposed-infected-removed (SEIR) model on small-world network were also investigated in the paper
[183].
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Recently, in [132] analytical techniques were developed which can be used to derive exact solutions for
a large class of standard epidemiological models on a variety of networks. These techniques are based
on generating functions and allow for great flexibility in terms of assumptions on network structure and
degree correlations. Further they can accommodate heterogeneity in transmission rate and infectious
period and allow for correlations between parameters such as transmission rate and node degree.
The results derived in this paper include formulae for the epidemic threshold and average outbreak
size for the network classes considered. More recently, the problem of epidemic spread on random
graph models has been studied in a mathematically rigorous fashion within the framework of Markov
processes in [66]. Here, the dependence of the final epidemic size and the lifetime of an outbreak on
graph parameters such as the spectral radius of the network’s adjacency matrix and the isoperimetric
number of the network was investigated. Some general theorems as well as results for a variety of
graph models including the ER and scale-free models were derived for the SIS and SIR models of
disease spread.

The techniques developed in [132] were then applied in [7] in an effort to explain some puzzling
aspects of the recent SARS outbreaks. Specifically, the question of why these outbreaks never led to
an epidemic, given the relatively high estimates for the basic reproduction number, was considered.
Using purely analytical tools, the authors derive expressions for the likelihood that a small outbreak
results in an epidemic in, respectively, an urban network, a power-law network, and a Poisson network.
It turns out that (and this is confirmed by numerical simulations) “outbreaks are consistently less likely
to reach epidemic proportions in the power-law network than in the others”. It should also be noted
that it was shown that for all networks there is a nonzero probability that an outbreak does not
become an epidemic, even when the spreading rate of a disease exceeds the epidemic threshold. By
contrast, in the paradigm of homogeneous mixing, an epidemic will occur with certainty whenever the
basic reproduction number is greater than unity. Other interesting findings are that:

(i) The likelihood of an outbreak is a monotonically increasing function of the degree of the first
infective;

(ii) When the transmissibility of disease is far above the epidemic threshold, the risk of an epidemic
is very high even for small initial outbreaks, at least in the case of urban networks.

Finally, we note that the evolution of diseases on local and global networks has been studied in [153].
The basic premise of this work was that different disease strains adapt to compete for resources
(susceptible hosts). In the model proposed here, adaptation corresponds to a random mutation of
both the transmission rate and the infectious period, which takes place whenever a new infection
occurs. As the authors point out, in mean-field models this type of evolution would result in runaway
behavior with selection for ever higher transmission rates and ever longer infectious periods. By
contrast, both spatial heterogeneity in local networks and the presence of shortcuts in global networks
appear to constrain the evolutionary dynamics, to the effect that the rate of adaptation is generally
slower (in the case of a global network, the transmission rate even saturates at some finite value) and
the variability (in the dynamics) higher than in mean-field models. Simulation results suggest that
in networks with many long-distance connections and a low clustering coefficient, disease strains with
conservative transmission rates and long infectious periods are most likely to survive. By comparison,
for networks with strong local connectivity the fittest strains are those that have high transmission
rates and relatively short infectious periods.

7.5 Summarizing Comments

(i) The structure of a social network can have a significant impact on the dynamics of disease
propagation. In particular, it has been shown for scale-free networks, in the limiting case of
infinitely many nodes, that the epidemic threshold is zero. This would mean that any non-zero
spreading rate could lead to an epidemic.
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(ii) The previous fact was initially established for uncorrelated scale-free networks of infinite size.
For scale-free networks of finite size, the epidemic threshold is non-vanishing but considerably
smaller than in the case of a homogeneously mixed population.

(iii) Results have recently been derived giving conditions under which the epidemic threshold will be
zero for scale-free networks with degree correlations, in the limiting case of networks of infinite
size.

(iv) The dynamical behaviour of epidemics on networks with heterogeneous degree distributions has
implications for the design of strategies for containing outbreaks. In particular, the targeting of
nodes, or individuals, of high degree can offer significant improvements over random immuniza-
tion programmes.

8 Conclusions and Directions for Future Research

The need for a more systematic approach to the analysis of living organisms, alongside the availability
of unprecedented amounts of data, has led to a considerable growth of activity in the theory and
analysis of complex biological networks in recent years. Networks are ubiquitous in Biology, occurring
at all levels from biochemical reactions within the cell up to the complex webs of social and sexual
interactions that govern the dynamics of disease spread through human populations. Over the last
few years, several core themes and questions in biological network analysis have arisen from pressing
problems in Biology and Medicine. For instance, while the research on bio-molecular and neurological
networks is still at a relatively early stage, a comprehensive understanding of these networks is needed
to develop more sophisticated and effective treatment strategies for diseases such as Cancer and
Schizophrenia. Other aspects of this line of research have been motivated by the need to determine
the biological role of unannotated genes or proteins. On the other hand, at the level of social networks,
future approaches to epidemic containment will need to take into account the interplay between
network topology and dynamics.

Our aim in this article has been to provide as comprehensive an overview as possible of the uses of
Graph Theory and Network Analysis within Biology, and to point out problems in Graph Theory that
arise from the study of biological networks. Specifically, we concentrated on the following five broad
topics.

(i) Structural identification and modelling of bio-molecular networks

Recent advances in high-throughput techniques have led to the construction of maps of protein-
protein interaction, transcriptional regulatory and metabolic networks for a variety of organisms.
Numerical investigations of the properties of these network maps, described in Section 3, indi-
cate that they tend to have short characteristic path lengths, high clustering coefficients and
scale-free degree distributions. Motivated by these observations, mathematical models such as
the Barabasi-Albert scale-free network and Duplication-Divergence models have been proposed
for protein interaction and genetic networks. However, the experimental techniques on which
these network maps are based are prone to high rates of false positive errors, and typically only
cover a fraction of the network’s nodes. The development of more accurate and reliable exper-
imental methodologies is of course of vital importance for future research on the structure of
bio-molecular networks. On a more theoretical level, two of the most significant issues that need
to be addressed in this area are the sampling properties of complex networks and the impact of
data inaccuracies on the identification of network statistics such as the degree distribution.

(ii) Centrality measures and essentiality in gene and protein networks

Much of the research on applying centrality measures to bio-molecular networks has focussed
on the prediction of gene or protein essentiality. In most of the studies discussed in Section 4,
the centrality score of a node was found to be indicative of its likelihood to be essential. In
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particular, this appears to be true for degree centrality, betweenness centrality and eigenvector
centrality measures. However, there is no clear evidence that the more complex centrality
measures perform any better than degree centrality. A major source of open problems in this
area is the robustness of centrality measures to data inaccuracies. Once again, this issue is very
important for the reliable application of these techniques to biological data.

(iii) Motifs, modules and the hierarchical structure of bio-molecular networks

The research on motifs described in Section 5 has helped to clarify the structural organisation
of complex biological networks. Furthermore, the motifs of a network appear to characterise it
in some sense, and motifs such as the feed-forward loop seem well suited to specific informa-
tion processing tasks. However, while the motifs of a network represent statistically significant
patterns, their precise biological significance and the mechanisms behind their emergence are
only partially understood. To date much of the work on motifs has been numerical in nature,
and the theoretical analysis of the motif profiles in mathematical network models is a poten-
tially rich source of open and challenging problems. Moreover, analysis of this type will provide
further insights into how accurately models such as Duplication-Divergence network describe
real biological networks. A related area of research, discussed in Section 5, is the identification
of functional modules and the prediction of protein function based on network topology. The
latter problem is of considerable importance and the results discussed in the text indicate the
potential of graph theoretical approaches to this question.

(iv) Synchronization, network topology and neurological function

Among the key issues in the study of complex networks is the question as to how indicative a
network’s topology is of its overall behaviour. Studies on systems of coupled oscillators suggest
that, as far as fitness for synchronization is concerned, there are at least five structural prop-
erties that qualify as important indicators. These are: average betweenness centrality, average
clustering coefficient, maximum degree, node degree variance, and characteristic path length.

The dynamics of synchronization on scale-free networks are characterized by a two-stage tran-
sition, initiated at low coupling strengths by the formation of distinct clusters oscillating at
distinct frequencies, followed by a process of alignment at high coupling, during which the dif-
ferent clusters are tuned to a common frequency. A second characteristic property of scale-free
networks is that, in the limiting case of infinitely many nodes, the threshold for the onset of
synchronization vanishes.

At present, the majority of results on synchronization in complex networks appear to have been
obtained using a combination of approximations and extensive simulations. As such, there is a
clear need for a rigorous mathematical analysis to support, and underpin, the numerical findings.
Also there is work to be done in applying the abstract mathematical models of phase-coupled
oscillators to the analysis of experimental data.

(v) Network structure and epidemic dynamics

The interplay between epidemic dynamics and network structure is vital for understanding and
containing the spread of infectious diseases. The numerical studies and mean-field analyses dis-
cussed in Section 7 have shown that a scale-free topology can significantly reduce the epidemic
threshold, making the outbreak of epidemics more likely in networks with such a structure.
Network topology also has an impact on the effectiveness of immunization schemes for con-
taining epidemic outbreaks. In particular, for networks with a scale-free topology, the targeted
immunization of nodes of high degree offers substantial improvements over uniform random
immunization. Of course, the reliable identification of social network structure is vital for the
practical implementation and interpretation of such results. One important direction for future
research in this area is the extension of recent results to incorporate the effects of sampling and
data noise on epidemic dynamics on networks and containment strategies.

To finish, it is our hope that this article will be of assistance to the broad community of researchers

41



working on the study of biological networks, by highlighting recent advances in the field, as well as
significant issues and problems that still need to be addressed.
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