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Abstract Positive feedback loops are common regulatory elements in metabolic
and protein signalling pathways. The length of such feedback loops deter-
mines stability and sensitivity to network perturbations. Here we provide a
mathematical analysis of arbitrary length positive feedback loops with protein
production and degradation. These loops serve as an abstraction of typical
regulation patterns in protein signalling pathways. We first perform a steady
state analysis and, independently of the chain length, identify exactly two
steady states that represent either biological activity or inactivity. We thereby
provide two formulas for the steady state protein concentrations as a function
of feedback length, strength of feedback, as well as protein production and
degradation rates. Using a control theory approach, analysing the frequency
response of the linearisation of the system and exploiting the Small Gain The-
orem, we provide conditions for local stability for both steady states. Our
results demonstrate that, under some parameter relationships, once a biolog-
ical meaningful on steady state arises, it is stable, while the off steady state,
where all proteins are inactive, becomes unstable. We apply our results to a
three-tier feedback of caspase activation in apoptosis and demonstrate how an
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intermediary protein in such a loop may be used as a signal amplifier within
the cascade. Our results provide a rigorous mathematical analysis of positive
feedback chains of arbitrary length, thereby relating pathway structure and
stability.

Keywords Positive feedback · Recursive protein activation · Apoptosis ·
ODE · Equilibrium points · Local stability
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1 Introduction

Feedback loops are core pathway motifs in biochemical signal transduction
and crucially affect the dynamical behaviour of the proteins and metabolites
under study. Positive feedbacks are common motifs that exhibit robust sig-
nalling [6], to stabilise signals over a long range [12,17] or to filter out spatial
noise [24], whereas negative feedback loops have been implied in generating
transient activation pulses and sustained oscillations. In cases where cellular
signals have to be tightly regulated or a terminal, irreversible decision has to
be reached, feedback loops are of special importance. As such, during induc-
tion of the programmed cell death programme (apoptosis), several positive
and negative feedback loops prevent accidental cell death and guarantee that
only purposeful apoptosis is robustly executed [23,29,1].

The prevalence of feedback chains in signal transduction and how their
length relates to the specific biological contexts has previously been investi-
gated. Originally, positive feedback loops consisting of three or more nodes
were less frequently noticed in protein interaction networks of E. Coli than
randomised networks. As a consequence, long positive feedback loops were
denoted as anti-motifs [2]. However, a more recent study suggested that long
positive feedback cascades may be favoured when a higher degree of sensitivity
to environmental cues is needed [25].

In this paper, we analyse a circular protein activation mechanism with
an arbitrary number of intermediate activation steps and identical reaction
topology for each step. We show that this reaction network presents only
two steady states and derive closed-form analytic expressions for these steady
states in terms of the kinetic parameters. We first characterise the steady states
with Theorem 3 in Section 5, giving exact formulas in terms of the kinetic
parameters. We then avail of the Small Gain Theorem to obtain sufficient
conditions to guarantee local stability of the equilibria. Under some restrictions
on the kinetic parameters of the network, these conditions are also necessary.
We present these results in Section 6 as Theorems 4 and 5.

To conclude our study, in Section 7 we illustrate how intermediate nodes in
positive feedback loops can sense and amplify small fluctuations and illustrate
this on the example of the caspase-3/6/8 feedback loop that is present during
intrinsic apoptosis.
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2 Biological Motivation: Intrinsic, Caspase-dependent Apoptosis

Intrinsic apoptosis is a typical example of a signal transduction process where
several positive feedbacks of different chain lengths are present. This process
is activated during cellular stress such as after DNA damage caused by irra-
diation or chemotherapy [14]. Its canonical pathway is depicted in Figure 1A,
where it can be seen that the central executioner of cell death, the protease
caspase-3, is involved in several positive feedback loops and these feedback
loops result in the activation of further molecules of inactive caspase-3.

In one of these loops, caspase-3 feeds back to the protein BID which is fur-
ther activated by proteolytic cleavage. The presence of more active BID [31]
amplifies the activity of the loop given in Figure 1A (panel Ia). In a second
loop, active caspase-3 cleaves active caspase-9 to an even more enzymatically
active form Figure 1A (panel Ib) [36]. Finally, downstream of caspase-3 activa-
tion, further amplification of caspase-3 is mediated by a three tier feedback [7,
18] Figure 1A (panel II) which will be investigated in further detail in Section
7.

All three positive feedback loops show the amplification of caspase-3 ac-
tivity via chains of different lengths. An abstraction of such loops is depicted
in Figure 1B. In this scheme, each network node i (boxes denoted with P i)
is activated by its preceding node, and, after a number of activation steps p,
the feedback is assumed to be closed. This feedback chain will be studied in
further detail.

For completeness, we note that in Figure 1A additional regulation is pro-
vided by the anti-apoptotic protein XIAP which through binding caspase-3
and caspase-9 can attenuate apoptosis (panel IIIa and IIIb). In turn, XIAP
gets attenuated by the pro-apoptotic protein Smac (panel IV) [9]. However,
we note that due to mutations, several cells fail to express XIAP [27] and, in
such cells, the XIAP/Smac branch can be neglected. For these reasons and
in order to focus on the role that feedbacks exercise in apoptosis, we further
neglect these intricacies.

3 Mathematical Problem Formulation and Methodology

3.1 Representation of the Biochemical Reaction Networks

In the following, we will develop the mathematical model of a sequential ac-
tivation of cellular proteases such as caspases with an arbitrary number p of
activation steps. For this system, we will derive closed-form formulas for the
steady states, allowing investigation of the differences between short and long
activation loops as depicted in Figure 1B.

The interaction of species in a reaction network is represented by

n∑
i=1

aijSi
vj−→

n∑
i=1

bijSi, (1)
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where Si is the ith species in the jth reaction. In turn, aij and bij denote
the stoichiometric coefficients of the corresponding species. The temporal dy-
namics of the concentrations are governed by an ordinary differential equation
(ODE) of the form

d

dt
c = Nv(c). (2)

Here, c(t) : R+ → Rn comprises the trajectories of the species concentrations
in (1). The vector v(c(t)) : R+ → Rm is composed of the rates at which
the reactants are converted to products. In general, these reaction rates are
nonlinear functions of the state c(t) and modelled, for instance, by the Law of
Mass Action. The stoichiometric matrix N ∈ Rn×m relates the reaction rates
to changes of the actual concentrations. Its ijth element is defined as

Nij = bij − aij .

The stoichiometric matrix N will play a major role in the characterisation of
the steady states of our autoactivation system. We recall that once a stable
equilibrium point is reached, the concentrations of the network will remain at
this value for all future time, unless a large external perturbation suddenly
modifies the concentration within the network. The equilibrium points will be
denoted in the following as c̄ and according to (2) satisfy

0 = Nv(c̄). (3)

Hence, v(c̄) belongs to the null space of the linear map N. In order to find
a closed-form expression for the equilibrium point of (2) as a function of the
reaction kinetic parameters, we will make use of this subspace in Sections 4.1
and 5.2.

3.2 Local Stability Analysis of Interconnected Systems

In Section 6 we will analyse the conditions under which the steady states
are stable and how the reaction network can toggle its biological state. This
stability analysis will be performed on the linearisation of the reaction network
in (2), which is given by a set of ODEs of the form

d

dt
e = Ae + Bu, (4a)

y = Ce + Du. (4b)

In this system, e represents the species concentrations referred to their equilib-
rium concentration and is defined by e = c− c̄. The functions u(t) : R+ → Rw
and y(t) : R+ → Rq denote the external input and the output of the system,
respectively. The matrix A is the Jacobian of the system, whereas the ma-
trix B represents how the external inputs comprised in u(t) interact with the
change rate of the species. Likewise, the matrices C and D define the output
of the system in terms of the state e(t) and the input u(t).
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For the stability analysis, we will adopt an input-output approach, availing
of the so-called transfer function of the system (4), which captures the dynam-
ical behaviour of the system when its state is close to the equilibrium. This
transfer function represents the relationship between the Laplace transform
of the output Y(s) and the Laplace transform of the input U(s). When the
initial conditions for e are zero, the transfer function H(s) relates the input
to the output by

Y(s) = H(s)U(s). (5)

Here H(s) is given by

H(s) = D + C(sI−A)−1B. (6)

This formula arises from the Laplace transform of the linear system (4), rep-
resenting this model in the frequency domain s. This allows us to express (4)
as an algebraic relationship that describes the output of the system Y(s) as a
function of the input U(s). This relationship is explicitly given by the transfer
function H(s) in (6). For further discussion and details on this derivation, we
refer to [28].

We say that the system (4) is stable if and only if all the poles of (6) have
negative real part (Theorem 4.7 in [30]). The basic notion of input-output
stability is that a small input u will yield a small output y. In order to char-
acterise the input-output properties of the system (4), we require a means to
measure the ‘size’ of a signal. For this purpose, we define the Lz norm of a
signal as

||u||Lz
:=

(∫ ∞
0

(||u(t)||z)
z

dt

)1/z

, (7)

where ||u(t)||z is the z-norm of u defined as

||u(t)||z :=

(
w∑
i=1

(ui(t))
z

)1/z

.

When ||u||Lz
is finite , we say that this signal belongs to the Lz space. However,

the definition in (7) is a bit restrictive, since there are many signals (e.g. a
constant function) that do not belong to the Lz space. To consider a less
restrictive space, we consider the time truncation of a signal:

uτ (t) : =

{
u(t) : t < τ,
0 : t ≥ τ. (8)

If ||uτ ||Lz
< ∞ ∀ τ < ∞, we say that the signal belongs to the Extended Lz

space: Lze.
In the remainder of the paper, we will focus on the L2 norm of the signals

for which a tight bound on the gain γ can be readily computed. This bound
is given by the following theorem.
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Theorem 1 Consider the linear time-invariant system in (4), where all the
eigenvalues of A have negative real part, and its transfer function H(jω) ∈
Cq×w is given in (6). Then the L2 gain of the system is

γ : = sup
ω∈R+

||H(jω)||2 = sup
ω∈R+

√
λ̄ (H∗(jω)H(jω)),

where λ̄ (X) denotes the maximum eigenvalue of X.

The proof of the theorem above can be found in [21]. For a single-input single-
output transfer function, i.e. h(jω) ∈ C, its gain γ can, thus, be computed
as

γ := sup
ω∈R+

|h(jω)| = sup
ω∈R+

√
h∗(jω)h(jω). (9)

Once the gain of the system is characterised, the following theorem provides
sufficient conditions to determine stability of the feedback connection depicted
in Figure 2.

Theorem 2 (Small Gain Theorem) Consider the interconnected system de-
picted in Figure 2, where H(s) is stable. Then, the closed-loop system is stable
if

||H(jω)|| < 1 ∀ ω ∈ R.

Here ||H(jω)|| denotes any induced norm. However, in the rest of the paper we
will restrict our attention to the induced L2 norm characterised in Theorem
1. The proof of this theorem can be found in [30].

We conclude with a remark on the notation to be used. In the following,
all superscript indices will be used to denote different variables, instead of
an exponent. For example, c1 is used to denote the concentration of the first
species type within the second element of the feedback loop. When needed, the
operation of exponentiation will be explicitly denoted with round brackets: cij×
cij =

(
cij
)2

. This notation will become useful when the generalised, multiple-
tier protein activation is studied. Before studying this generalised system, we
will in the next section motivate our ideas to characterise the steady states
and the local stability of the system in Figure 1B by analysing a protein
autoactivation mechanism (p = 1).

4 Equilibrium and Local Stability Analysis of a Protein
Autoactivation

In this section we study a simple protein autoactivation. While such a mech-
anism was previously discussed in a spatiotemporal setup [24], here we will
exploit it as a motivating example for our stability analysis. This parameter-
independent approach will later be generalised to feedback loops of arbitrary
length as depicted in Figure 1B.
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Autoactivation is described by the interaction of a protein (P ) with its ac-
tivated form (A) resulting in two active molecules of A. We further consider
protein turnover (production and degradation [10]) for P  and degradation for
A. We depict these processes by the following reaction network

P  +A
k1−→ 2A,

A
k2−→ 0,

P 
k3f−−⇀↽−−
k3b

0.

In the latter reaction, the subindex ‘f ’ stands for the forward direction of the

reaction: P 
k3f−−→ 0, whereas the subindex ‘b’ denotes the backward direction:

0
k3b−−→ P . We will use this notation in the rest of the paper.
Defining the vector c = ([P ] [A])T and assuming a mass-action kinetics,

the stoichiometric matrix N and the reaction vector v (c) are given by

N =

(
−1 0 −1

1 −1 0

)
(10a)

v (c) = (k1c

1c

2 k2c


2 k3fc


1 − k3b)T , (10b)

where the subindex 1 in c1 denotes the inactive protein and the subindex 2
in c2 denotes the active protein. We will keep this notation throughout the
rest of the paper. The temporal evolution of the concentrations in c is then
governed by (cf. (2))

d

dt
c = Nv (c). (11)

4.1 Equilibrium Points

The existence of equilibrium sets (steady states) has been investigated by
different approaches. The Chemical Reaction Network Theory (CRNT) by
Feinberg, Horn, and Jackson [11], calculates the number of steady states of
a chemical reaction network and investigates their local stability. Likewise, in
[8], the number of positive steady states is studied by means of the degree
theory for general complex reaction networks. However, both approaches fail
to provide formulas to calculate equilibrium concentrations of the species, in
terms of the kinetic parameters. In this section, we derive closed-form formulas
for the steady states of the autoactivation depicted in Figure 1B, when p = 1.

We will show that this reaction network has two steady states: a state
where the concentrations of all active proteins are zero and a state where
the concentrations of all the active proteins are positive. These states will be
denoted as the off steady state and the on steady state throughout the rest
of the paper. We further note that the on steady state is only biologically
meaningful when concentrations of all species have positive values.
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In order to determine the equilibria set for this model, we recall that all
steady states c̄ satisfy

Nv (c̄) = 0. (12)

We note that to satisfy (12), v (c̄) must belong to the right null space of N.
Let the columns of K ∈ Rm×r form a basis for this null space. According to
the Rank Nullity Theorem, the number of columns of K is r = #col(N) −
rank (N). Since (12) implies that v (c̄) ∈ Null(N), we can express any
element of a vector space as a linear combination of its basis. Hence, there
exists a vector ϑ ∈ Rr such that

Kϑ = v (c̄). (13)

In particular, for our case study, we have that r = 3− 2 = 1 and

K =
(
−1 −1 1

)T
. (14)

From (10b) and (13), we conclude

k1 c̄

1c̄

2 = −ϑ, (15a)

k2 c̄

2 = −ϑ, (15b)

k3f c̄

1 − k3b = ϑ. (15c)

To solve this system, we express c̄1 and c̄2 as a function of ϑ:

c̄1 =
ϑ + k3b
k3f

, (16a)

c̄2 = −ϑ


k2
. (16b)

Substitution of these two expressions in (15a), yields

−ϑ = − k1
k2k


3f

ϑ(ϑ + k3b)

0 = ϑ
(
ϑ −

k2k

3f − k1k3b
k1

)
. (17)

Finally, by substituting the roots of the polynomial above into (16a) and (16b),
we obtain

Off steady state :c̄off =

(
k3b
k3f

0

)T
, (18a)

On steady state :c̄on =

(
k2
k1

k3b
k2
−
k3f
k1

)T
. (18b)

It is noteworthy that we can parametrise the solution of the augmented system
(15a-15c) by ϑ, as shown in (17). Moreover, we note that the dimension
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of the null space of N is 1, and, therefore, only one scalar ϑ is required
to represent the linear combination that spans the null space Null(N). We
finally note that, since all kinetic constants kj are positive, the on steady state
has positive, and therefore biologically meaningful, concentrations whenever
k3b
k2

>
k3f
k1

. In the next subsection, we will analyse the local stability of the

steady states in (18).

4.2 Local Stability Analysis

Having obtained an analytical expression for the concentrations in equilibrium,
we next investigate the stability of both steady states. Several approaches to
stability analysis have been described in the literature. In [3] and references
therein, they provided the so-called ‘secant condition’ as a necessary condition
to ensure the (diagonal) stability of a reaction network, whose linear dynamical
system can be described by circulant matrix. Furthermore, [19] extended the
results of [3] to reaction diffusion systems, where they ruled out diffusion
driven instability arising from diffusion coefficients of different magnitudes
[33]. Despite similarities between the approach of [3] and ours, their system
did not account for feedback terms that include products of concentrations(
ki1c

i
1c
i+
2

)
arising from a mass action description of reaction kinetics of our

protein interaction cascade (10b).

Analysing the global stability of a nonlinear system with a locally Lipschitz
nonlinearity such as k1c


1c

2 can be a difficult task. We therefore investigate

the local stability of both equilibrium points in (18). For this purpose, we
investigate the stability of the system’s linearisation, which may be used to
conclude the local stability of the studied equilibrium point of the nonlinear
system [21]. We present sufficient conditions on the parameters to guarantee
the local stability of each equilibrium point in (18). To do so, we will express
the linearisation of (11) as the unitary feedback loop depicted in Figure 2.
After computing the L2 gain of the linearisation of (11), we will avail of the
Small Gain Theorem (2) to derive local stability conditions. Motivated by this
procedure, we will generalise these results to an arbitrary number of activation
steps p in Section 6.

The linearisation of (11), with the stoichiometric matrix N and the reac-
tion vector v (c) in (10), is given by

d

dt
e = Ae, (19)

where e := c − c̄ denotes the species concentrations referred to the steady
state c̄ . Here A is the Jacobian of (11):

d

dc
Nv (c) =

( −µ 0
µ − k3f −k2

)
+ σ

(
0 −1
0 1

)
=A + BC. (20)
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Additionally, we have defined

σ : = k1 c̄

1 (21a)

µ : = k1 c̄

2 + k3f , (21b)

and

B : = σ
(
−1

1

)
(22a)

C : =
(
0 1
)
. (22b)

By letting u = y and considering the definitions above, we can rewrite (19)
as

d

dt
e = Ae + Bu, (23a)

y = Ce. (23b)

The transfer function of the system (23), as defined in (6), is given by

h1(s) = σ
s+ k3f

(s+ µ)(s+ k2)
. (24)

We note that if µ > 0, then the transfer system above is stable. Moreover, we
note that given the definition of µ in (21) and the positivity of parameters,
µ is always positive.

Furthermore, from (9), the L2 gain of the transfer function above is given
by

γ1 = |σ| sup
ω∈R

√√√√√√ ω2 +
(
k3f

)2

[
ω2 + (µ)

2
] [
ω2 + (k2)

2
] . (25)

Now, we note that the square root function is a monotonically increasing
function of its argument. Hence, the supremum of the square root in (25) is
given by the square root of the supremum of the argument. Therefore

γ1 = |σ|

√√√√√√sup
ω∈R

ω2 +
(
k3f

)2

[
ω2 + (µ)

2
] [
ω2 + (k2)

2
] .

Let us define R≥0 3 Ω = ω2. In order to find the critical points Ω∗, we apply
the natural logarithm to the argument of the square root and differentiate
with respect to Ω:

d

dΩ

{
ln
(
Ω +

(
k3f
)2)− ln

(
Ω + (µ)

2
)
− ln

(
Ω + (k2)

2
)}∣∣∣

Ω=Ω∗
= 0.
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Solving the foregoing equation for Ω∗, yields

Ω∗ = −
(
k3f
)2 ±√[(k3f)2

− (k2)
2

] [(
k3f

)2

− (µ)
2

]
. (26)

For simplicity, let us consider the case in which

k3f > k2 . (27)

When k3f > µ, the radicand in (26) is positive, but smaller than
(
k3f

)4

resulting in a negative Ω∗. On the other hand, if k3f < µ, the radicand is
negative and Ω∗ becomes complex. That is to say, when k3f > k2 , there is
no positive real solution for Ω∗. Therefore, the global supremum in equation
(25) is obtained at either Ω = 0 or Ω =∞. By substitution, we note that this
supermum is achieved at Ω = 0. From (25) we have

γ1 =

∣∣∣∣σk3fµk2

∣∣∣∣ . (28)

In the following, we consider the definition of the parameters to derive local
stability conditions of each steady state in (18).

1. Off Steady State
Considering the definition of the off steady state in (18a) and the definitions
in (21) for σ and µ, the L2 gain of the system in (28) reduces to

γ1
off =

k1k

3b

k2k

3f

.

The Small Gain Theorem (2) guarantees stability when γ1
off < 1, hence the

off steady state is locally stable if

k2k

3f − k1k3b > 0. (29)

2. On Steady State
Likewise, taking into account the definitions in (21) evaluated at this steady
state (18b), the L2 gain of the system in (28) becomes

γ1
on =

k2k

3f

k1k

3b

,

leading to the following sufficient condition for stability for the on steady
state:

k1k

3b − k2k3f > 0. (30)
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Note that the stability conditions for the off and on steady states in (29)
and (30), respectively, are mutually exclusive. That is to say, only one steady
state is stable for any chosen parameter values that complies with (27). We
furthermore note that the stability condition in (30) coincides with the con-
dition for the steady state concentration of the active proteins in (18b) to be
positive, and therefore biologically meaningful.

In the next sections, we will also demonstrate that these stability conditions
are not only sufficient, but also necessary. There, we will also generalise these
results to a protein activation mechanism with p activation steps as depicted
in Figure 1B.

5 Equilibria of Positive Feedback Loops of Arbitrary Length

5.1 Sequential Protein Activation Mechanism Definition

We now calculate the steady states for a sequential protein activation of arbi-
trary length. We consider that the i+ 1th active protein

(
Ai+

)
activates the

ith inactive protein
(
P i
)
, by the following reaction network

P i +Ai+
ki1−→ Ai +Ai+, (31a)

Ai
ki2−→ 0, (31b)

P i
ki3f−−⇀↽−−
ki3b

0. (31c)

The latter two reactions in (31) again describe degradation of the ith active
form of the protein and protein turnover of the inactive form, respectively. To
close the activation loop, the first active protein (A) is assumed to activate
the last inactive protein (P p), according to the mechanism shown in Figure 1B.
In other words, the index i should be understood within arithmetic modulo p.

By letting

c =
(
cT . . . cpT

)T
(32a)

ci =
(
[P i] [Ai]

)T
, (32b)

the stoichiometric matrix and reaction rate vector are given by

N = diag {N,N, . . . ,Np} , (33a)

v(c) =
(
v(c, c)

T
v(c, c)

T
. . . vp(cp, c)

T
)T

(33b)

where
vi(ci, ci+) = (ki1c

i
1c
i+
2 ki2c

i
2 ki3fc

i
1 − ki3b)T . (34)

We recall that c̄i1 and c̄i2 denote the concentration of the ith inactive and
activated protein, respectively. With these definitions, we derive closed-form
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formulas for the steady states concentrations of the 2p proteins concentrations
in terms of the kinetic parameters.

5.2 Calculation of Equilibrium Points

Following the ideas introduced in Section 4.1, we calculate the equilibrium
points of the reaction network in (31). We present these results in the theorem
below.

Theorem 3 Consider the reaction network in (31), with the mass-action based
reaction rates defined in (34). This reaction network

i) has two equilibrium points,
ii) specified by the following relation, for all i in [1, p],

Off steady state :c̄ioff =

(
ki3b
ki3f

0

)T
, (35a)

On steady state :c̄ion =

(
ϑi + ki3b
ki3f

− ϑi

ki2

)T
, (35b)

where

ϑi+ =

p∏
j=1

ψj −
p∏
j=1

ζj

i∏
j=1

ζj
p∑

`=i+1

k`1 `−1∏
j=i+1

ψj
p∏

j=`+1

ζj

+

p∏
j=i+1

ψj
i∑

`=1

k`1 `−1∏
j=1

ψj
i∏

j=`+1

ζj

 ,
(36)

and

ψj : = kj+2 kj3f , (37a)

ζj : = kj1k
j
3b. (37b)

We note that only the superindex i in ki1, ki2, ki3f , and ki3f is treated as a
modulo p integer. Whereas the limits of the sums and products indexes in
(36) are integers. Additionally, when the index of the lower bound of the sum
(product, respectively) is greater than the upper bound, the sum (product) is
defined to be zero (one).

Proof Since the reaction topology is the same for every activation step, we
note that N = N = . . . = Np. The matrix N has already been defined in
(10a). A basis for Null(N) is given by

K = diag {K,K, . . . ,Kp} .
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Furthermore, we note that K = K = . . . = Kp with K defined in (13).
Now, the equilibrium set will be found by noting that

Nv(c̄) = 0 ⇔ Nivi
(
c̄i, c̄i+

)
= 0 ∀ i ∈ [1, p],

which in terms of the null space of Ni, becomes

Kiϑi = vi
(
c̄i, c̄i+

)
.

Or in extenso, using the definitions of K and vi
(
c̄i, c̄i+

)
in (14) and (34),

we get

ki1c̄
i
1c̄
i+
2 = −ϑi (38a)

ki2c̄
i
2 = −ϑi (38b)

ki3f c̄
i
1 − ki3b = ϑi, (38c)

Analogously to the one-tier feedback analysed in Section 4.1, we conclude
that the solution for the equation above can be parametrised by ϑi as

c̄i1 =
ϑi + ki3b
ki3f

, (39a)

c̄i2 = −ϑ
i

ki2
. (39b)

Substituting the above formulas into (38a), leads to

ϑi+ =
αiϑi

1 + βiϑi
=

αin
(
ϑi
)

d (ϑi) + βin (ϑi)
. (40)

Here, n
(
ϑi
)

and d
(
ϑi
)

denote the numerator and denominator of the rational
term ϑi. Moreover, we have defined

αi : =
ki+2 ki3f
ki1k

i
3b

=
ψi

ζi
, (41a)

βi : =
1

ki3b
. (41b)

The constants ψi and ζi are defined in (37). To find a closed-form expression
for all ci, we note that from (40) ϑ, ϑ and ϑ can be expressed in terms of
ϑ, as follows

ϑ = α
ϑ

1 + βϑ
,

ϑ = αα
ϑ

1 + [β + αβ]ϑ
,

ϑ =
ϑ
∏3
j=1 α

j

1 + [β + αβ + ααβ]ϑ
.
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In general

ϑi+ =
ϑ
∏i
j=1 α

j

1 +
[∑i

`=1 β
`
∏`−1
j=1 α

j
]
ϑ
. (42)

When i = p the expression above becomes

ϑ =
ϑ
∏p
j=1 α

j

1 +
[∑p

`=1 β
`
∏`−1
j=1 α

j
]
ϑ
. (43)

Solving (43) for ϑ, we obtain

0 = ϑ

(
ϑ −

∏p
j=1 α

j − 1∑p
`=1 β

`
∏`−1
j=1 α

j

)

0 = ϑ

(
ϑ −

∏p
j=1 ψ

j −∏p
j=1 ζ

j∑p
`=1 k

`
1

∏`−1
j=1 ψ

j
∏p
j=`+1 ζ

j

)
. (44)

The constants ζj and ψj above were defined in (37). Equation (44) is a second
order polynomial in ϑ. Substituting the trivial solution ϑ = 0 of (44) into
(42) leads to ϑi = 0 for all i, defining the off steady state.

In order to find the solution for the ϑis defining the on steady state, we
note that we can rewrite (42) as

ϑi+ =
n (ϑ)

∏i
j=1 α

j

d (ϑ) +
[∑i

`=1 β
`
∏`−1
j=1 α

j
]

n (ϑ)
.

Substituting the non-trivial root of (44) into the equation above and consid-
ering (41a) and (41b) yield

ϑi+ =

p∏
j=1

ψj −
p∏
j=1

ζj

i∏
j=1

ζj
p∑

`=i+1

k`1 `−1∏
j=i+1

ψj
p∏

j=`+1

ζj

+

p∏
j=i+1

ψj
i∑

`=1

k`1 `−1∏
j=1

ψj
i∏

j=`+1

ζj

 .

ut

We conclude this section with a remark on the nonnegativity of the steady
states. For the off steady state, according to equation (39) and given the pos-
itivity of the kinetic parameters kij , the concentrations of all inactive proteins
are positive and those of all active proteins are zero. Consequently, the off
steady state is biologically meaningful for all possible kinetic parameter val-
ues.
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To investigate the positivity of the concentrations of the on steady state, we
note that, from (38a) and (38b), c̄i1 may be expressed as the ratio of positive
terms (see the definition of d

(
ϑi+

)
in (36)):

c̄i1 =
ki+2

ki1

ϑi

ϑi+
,

c̄i1 =
ki+2

ki1

d
(
ϑi+

)
d (ϑi)

. (45)

Hence, we can be assured that all concentrations of the inactive proteins for
the on steady state are positive. In turn, for all the concentrations of the active
proteins to be positive, we require the numerator ϑi+ in (36) to be negative
since the denominator of ϑi+ in (36) is positive. As for every i, the numerator
of ϑi+ is the same, all the active proteins are positive when

p∏
j=1

kj1k
j
3b −

p∏
j=1

kj2k
j
3f > 0. (46)

Here we used the relation (41) and replaced j + 1 by j in the second product
by exploiting the modularity of the product with respect to p. Furthermore,
this condition is independent of i, therefore unspecific for the actual protein
and, consequently, a general condition for a meaningful on steady state.

We conclude by stating that the existence of a biologically meaningful on
steady state requires that the product of all the synthesis and activation rates
of the inactive proteins is greater than the product of all degradation rates of
the active and inactive proteins.

In the next section, we characterise the stability of the steady states in
(35), by means of procedure used in Section 4.2.

6 Local Stability Analysis of Positive Feedback Loops of Arbitrary
Length

As exemplified in Section 4.2, we now present local stability conditions for both
steady states of the reaction system in (31) and express these conditions in
terms of the kinetic parameters. The linearisation of the entire system (33) will
therefore be expressed as an interconnection of p linear subsystems. For each
subsystem, the L2 gain will be calculated using Theorem 1. Further application
of the Small Gain Theorem (Theorem 2) leads to sufficient conditions for the
stability of the off and on steady states. A comparable approach using the
Small Gain Theorem has recently been provided for local instability analysis
to investigate periodic oscillations in gene regulatory networks [15].
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6.1 Linearisation of the p-tier Feedback Loop Model

The linearisation of the nonlinear model in (2) has the form

d

dt
e = Ae, (47)

where e = c− c̄ are the deviation coordinates relative to the steady state c̄,
and A is the Jacobian of the system (2). With the definitions of the stoi-
chiometric matrix and reaction rate given in (33), this Jacobian is given by

A :=
d

dc
Nv(c) =


A A 0 . . . 0
0 A A . . . 0
. . .

. . .
. . .

. . .
. . .

Ap 0 0 . . . App

 , (48)

with the block matrices defined as

Aii :=
d

dci
Nivi

(
ci, ci+

)
=

( −µi 0
µi − ki3f −ki2

)
(49a)

Ai,i+1 :=
d

dci+
Nivi

(
ci, ci+

)
= σi

(
0 −1
0 1

)
, (49b)

where

σi : = ki1c̄
i
1 (50a)

µi : = ki1c̄
i+
2 + ki3f . (50b)

Note that Ai,i+1 can be expressed as the product Ai,i+1 = BiC, where

Bi : = σi
(
−1

1

)
, (51a)

C : =
(
0 1
)
. (51b)

Therefore, the linearisation in (47) can be expressed as the interconnection of
p systems of the form (cf. Eq. (4))

d

dt
ei = Aiiei + Biui, (52a)

yi = Cei. (52b)

Here ei = ci − c̄i is the species concentration referred to the steady state c̄i.
From the interconnection topology in (31) and the order of states as defined
in (32), we note that

ui = yi+. (53)
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In addition, the transfer function of the system in (52), as defined in (6), is
given by

hi(s) = σi
s+ ki3f

(s+ µi)(s+ ki2)
. (54)

By splitting the linearisation of the reaction network in (47) into p subsys-
tems of the form (52), we can analyse the input-output behaviour of p systems
separately and, then, infer conditions on the stability of each steady state of
the entire interconnected system (47). These ideas, motivated in Section 4.2
for p = 1, will lead to local stability conditions of (47) and are summarised in
Theorem 4. The strategy of the proof is to obtain the L2 gain of the transfer
function of the system (52). Once the gain for the p isolated systems is ob-
tained, we avail of the Small Gain Theorem (Theorem 2) to obtain conditions
on the parameters that ensure local stability of the interconnected systems.
For application of the Small Gain Theorem, it is sufficient that the individ-
ual subsystems are stable. The following lemma states that for all i and both
steady states, the transfer function of the ith system in (54) is stable.

Lemma 1 The transfer function hi(s) in (54) is stable for all i ∈ [1, p] and
for the off and on steady state.

The proof of this Lemma can be found in Appendix 9.1.

6.2 Necessary and Sufficient Criteria for Local Stability of Both States

In the following theorem, we present necessary and sufficient conditions for
stability of the interconnection depicted in Figure 1B of p subsystems of the
form (52) above which hold for certain conditions of the kinetic parameters.

Theorem 4 Consider the system in (47) and suppose ∀ i ∈ [1, p] that one of
the following conditions holds

case 1: ki3f ≥ ki2 or (55a)

case 2: ki2 > ki3f , µi ≥ ki3f , and
1(

ki3f

)2 <
1(
ki2
)2 +

1

(µi)
2 , (55b)

with µi as defined in (50). Then, the system in (47) is stable if and only if

p∏
i=1

σiki3f
µiki2

< 1. (56)

Proof In Lemma 1 we have shown that every subsystem (54) is stable, hence
the cascade connection of the p subsystems leads to a stable system. Thus we
can use the Small Gain Theorem (2) to determine the condition under which
the closed-loop depicted in Figure 2, where H(s) =

∏p
i=1 h

i(s), is stable. That
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is to say, for the circular connection of the p subsystems to be stable, we
require ∣∣∣∣∣

∣∣∣∣∣
p∏
i=1

hi(s)

∣∣∣∣∣
∣∣∣∣∣ ≤

p∏
i=1

∣∣∣∣hi(s)∣∣∣∣ < 1. (57)

Now, we compute the L2 gain of the individual subsystems. From Theorem 1
the L2 gain of hi(s) is given by

γi =
∣∣σi∣∣ sup

ω∈R

√√√√√√ ω2 +
(
ki3f

)2

[
ω2 + (µi)

2
] [
ω2 +

(
ki2
)2] . (58)

Analogously to the case in Section 4.2 where autoactivation (p = 1) was
studied, the gain γi is maximum under the condition

Ω∗ = −
(
ki3f
)2 ±√[(ki3f)2

−
(
ki2
)2] [(

ki3f

)2

− (µi)
2

]
. (59)

for Ω = ω2 ∈ R≥0.
To find the supremum of (58), we again investigate the existence of positive

real solutions of (59). Once more, we will conclude that no local maximum
exists and the global extremum has to be found at the boundaries. We first
focus on case 1 where condition (55a) is met. In this case, two subcases have
to be considered. First, when ki3f ≥ µi holds, the radicand will be less than

(ki3f )4, resulting in a negative Ω∗. In contrast when the condition ki3f ≤ µi is
met, the radicand in (59) is negative resulting in a complex Ω∗.

For case 2, where condition (55a) is not met, the radicand is non-negative
when both relations ki2 > ki3f and µi ≥ ki3f hold, leading to a real value for
the square root. Nevertheless under these conditions Ω∗ is negative when

(
ki3f
)2
>

√[(
ki3f

)2

−
(
ki2
)2] [(

ki3f

)2

− (µi)
2

]
.

The foregoing condition is equivalent to

1(
ki3f

)2 <
1(
ki2
)2 +

1

(µi)
2 .

In conclusion, no positive real solution of (59) exists under either condition
(55a) or (55b). Therefore, the supremum in equation (58) is obtained for either
Ω = 0 or Ω = ∞. Indeed, the maximum value is achieved for Ω = 0. Hence,
from (58) we obtain

γi =

∣∣∣∣∣σiki3fµiki2

∣∣∣∣∣ . (60)
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The Small Gain Theorem 2 implies that the closed loop system is stable if

γ :=

p∏
i=1

∣∣∣∣∣σiki3fµiki2

∣∣∣∣∣ < 1. (61)

where we have considered the definition of γi in (60).

To prove the necessary condition of Theorem 4, we firstly note that the
closed loop transfer function of the interconnected system is given by

h(s) : =
hp

1−∏p
i=1 h

i(s)
. (62)

Let γ ≥ 1. From (62), the characteristic equation is given by

q(s) : = 1−
p∏
i=1

hi(s),

= 1−
p∏
i=1

σi
s+ ki3f

(s+ µi)(s+ ki2)
,

where we have used the definition of the transfer function in (54). The limit
of the equation above as s approaches to +∞ and 0 yields

q(∞) = 1

q(0) = 1− γ.

Hence there must be at least one root of the characteristic equation with a
non-negative real part, when γ ≥ 1. ut

The theorem above provides necessary and sufficient conditions for the
local stability of each steady state. We now consider the definition of these
steady states and express, for each steady state, the stability condition in
(56) in terms of the kinetic parameters of the reaction network in (31). The
results are summarised in the following corollary whose proof can be found in
Appendix 9.2.

In the following, we denote Aoff as the Jacobian in (48) evaluated at the
off steady state, defined in (35a). The definition of Aon follows similarly.

Corollary 1 Consider the system (47):

1. The off steady state of (47) is stable if and only if

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b > 0. (63a)
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2. Provided ∀ i ∈ [1, p] one of the following conditions holds

case 1: ki3f ≥ ki2 or

case 2: ki2 > ki3f and 1

(ki3f)
2 <

1

(ki2)
2 + 1

(µi)2
, (63b)

then the on steady state is stable if and only if

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f > 0. (63c)

From the corollary above we find that the stability conditions for the off
steady state and on steady state are mutually exclusive. Since for all parameter
sets satisfying (63b) these conditions are both sufficient and necessary for
stability of the respective steady state, exactly one steady state will be stable
in this parameter regime. Comparing (63c) and (46), we note that stability of
the on steady state is equivalent to this state having positive concentrations,
therefore being biologically meaningful.

6.3 Sufficient conditions for local stability of the on steady state for
the remaining sets of parameters

Although Corollary 1 provides full characterisation of the stability of the
closed-loop system, its validity for the on steady state depends on the kinetic
parameters conditions in (55). For completeness, in Theorem 5 we analyse the
stability of the on steady state, for the kinetic parameters not considered in
(55). More specifically, we assume that for some i the condition (55) is vio-
lated. Nevertheless, also for these nodes an upper bound for γ can be derived
by assessing positive real solution for Ω∗ in (59). Results are formulated in the
Theorem below with its proof given in Appendix 9.4.

Theorem 5 Let for some i ∈ [1, p]

ki2 > ki3f , (64a)

µion > ki3f , (64b)

1(
ki3f

)2 >
1(
ki2
)2 +

1

(µion)
2 . (64c)

Then the on steady state of the system in (47) is stable if

p∏
i=1

ki+2 ki3f
ki1k

i
3b

<

p∏
i=1

θi, (65)

where

θi =

 ki3f
µi
on

√
1−

(
ki3f
ki2

)2

+
ki3f
ki2

√
1−

(
ki3f
µi
on

)2

,∀ i which satisfy (64)

1 , otherwise.

(66)
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A more conservative, yet tractable, stability criterion is given by

p∏
i=1

ki+2 ki3f
ki1k

i
3b

<

p∏
i=1

νi, (67)

where,

νi =


(
ki3f
ki2

)2

,∀ i which satisfy (64)

1 , otherwise.

(68)

Moreover, the on steady state will be unstable if (63c) does not hold.

Both conditions (65) and (67), provide a criterion for determining the stability
of the on steady state, when some of the subsystems in the loop satisfy (64).
However, some parameters may not satisfy (65) and (67), while their stability
also cannot be excluded by Corollary 1 (Condition (63c)). For these parame-
ters, no statement about stability of the on steady state of system (47) can be
given using our approach.

We further note that even when only some i fulfil the condition ki2 > ki3f ,
the stability criterion in (67) can be applied for all i. Consequently, Theorem
5 is often the preferred option to Theorem 4 when analysing stability for the
on steady state. While this choice may lead to a more conservative estimation
of stability and does not allow to prove necessity of stability criteria, the
parameter space covered is more extensive and a tedious case-by-case analysis
of the parameter conditions necessary for applying the appropriate theorem
and subcases can be avoided.

In conclusion, in this section we performed local stability analysis of (47)
and stated our results for certain conditions of the parameter space. The re-
sults described in Theorem 4 provides necessary and sufficient conditions for
stability of the off and on steady state. In turn, Theorem 5 presents sufficient
stability conditions for the on steady state, for cases not accounted for in The-
orem 4. In addition, we remark that since we only performed a local stability
analysis, we have not rigorously ruled out the existence of strange attractors
or chaotic behaviours [32]. However, such phenomena were not observed in
numerical analysis performed in the context of this work (data not shown).
To finalise our study, we avail of the analytical formula for the steady states
(35) and also apply the stability criterion in (67) for all i to investigate the
caspase-3 activation in the caspase-3/6/8 feedback loop.

7 Application to Caspase Activation in Programmed Cell Death

The analyses in the previous sections demonstrated that the existence and
the stability of the on steady state, as well as the concentrations of its active
proteins are characterised by the product of the kinetic constants kij . Like any
other product, this condition crucially depends on each of its factors which
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denote biochemical activity of the feedback ki1, the activity of protein degra-
dation ki2 or protein expression (the fraction ki3f/k

i
3b) for each protein in the

loop [16].
We envisioned that small variations in such constants strongly affect the

existence and the stability properties of the on steady state and the concentra-
tion of active proteins. In particular, we assumed that any bottleneck in this
loop (such as a weak feedback link or a protein expressed at low levels) would
significantly determine whether or not the loop would lead to an activation of
the entire protein chain and how extensive the protein activation would be.
To this end, we focused on the process of caspase-dependent programmed cell
death (apoptosis) and illustrated how a three-tier feedback loop can act as a
signal amplifier. During execution of apoptosis, a three-tier positive feedback
has been shown to occur downstream of caspase-3 activation. In this loop,
caspase-3 cleaves and activate caspase-6, while caspase-6 activates caspase-8
and caspase-8 closes the feedback by cleaving caspase-3 [7,18] (Figure 3A).
Moreover, caspase-6 has been shown to be expressed at lower levels compared
to both other caspases [35,4], suggesting it to be the major bottleneck in the
loop.

We therefore investigated how fine tuning of the caspase-6 synthesis rate
(k3b), and therefore a small change in caspase-6 expression levels, influenced
the steady state expression levels of the major effector in this loop, the active
caspase-3. We modelled this caspase-3/6/8 feedback as described previously
[35] taking all kinetic constants from their supplementary data. We then varied
the caspase-6 synthesis rate and studied the expression of active caspase-3 at
steady state (Figure 3A; dashed arrow for variation of caspase-6; solid arrow for
output of caspase-3). To calculate these equilibria we exploited our analytical
formula (35) leading to the following expression for steady state levels of active
caspase-3

C̄3a =
1.8× 1025k3b − 1.5× 1015

2.2× 1026k3b + 4.8
, (69)

which is depicted in Figure 3B. We note that local stability condition for the
off steady state is given by (see Theorem 4)

k3b < 8.36× 10−11[µM/min].

When this threshold is exceeded, the on steady state is positive. In order to
determine the stability of the on steady state, we note that ki2 > ki3f , as can
be seen in the supplemental material of [35]. Hence, we may use the criterion
in (67) for all i, to determine the stability of the on steady state. As a function
of k3b, (67) becomes

k3b >
1

k3bk

3b

3∏
i=1

(
ki2
)3

ki1k
i
3f

= 9.05× 10−10[µM/min]. (70)

As confirmed by the simulations in the panel Figure 3D, the variation of k3b
in agreement with the threshold in (70), yields stable on steady states.
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To determine the range in which a variation of k3b yields a large effect on
the location of the steady state concentration of active caspase-3, we analyse
the sensitivity of C̄3a with respect to k3b by

∂C̄3a

∂k3b

k3b
C̄3a

=
5.8× 1048k3b

(2.2× 1026k3b + 4.8× 1017) (1.1× 1031k3b + 9.6× 1020)
. (71)

We present the bi-logarithmic plot of the expression above in Figure 3C, where
we note that for a variation of k3b between 5×10−9 and 8.36×10−11[µM/min],

the amount of active caspase C̄3a was markedly amplified (∂C̄3a

∂k3b

k3b
C̄3a

> 1).

In contrast, variations of k3b at regions larger than 5 × 10−9, had a modest
effect on the amount of C̄3a when k3b increases. Motivated by this observation,
in Figure 3D we present the steady state concentration of active caspase-3
(C3a) and its concentrations in time C3a(t), under a sudden variation of the
production rate of k3b. In the first case D.1, a relatively small variation of
the caspase-6 production rate k3b led to a pronounced change in the amount
of active caspase-3 (at steady state) C3a (Figure 3D.1). When the caspase-6
production rate (k3b) was varied within a different, and by absolute means
even larger, concentration range (see right vertical axis of Figure 3D.2), only a
small effect in the expression levels of caspase-3 was observed. Taken together,
these results suggest that within certain parameter ranges, an intermediary
node in a feedback such as caspase-6 may act as an amplifier, similar to a
molecular transistor.

8 Discussion

In this study, we focused on a mathematical treatment of the dynamical equa-
tions governing positive feedback loops of arbitrary length under the consid-
eration of protein production and degradation. We derived exact formulas for
steady state concentrations and exact stability conditions for these steady
states and found that, irrespectively of the chain length, a maximum of two
steady states is possible. These states represent either an off steady state where
all concentration of active proteins are zero or, on the contrary, an on steady
state where the active versions of all the proteins are present. Under the condi-
tions described in Corollary 1, the on steady state was stable as long as it had
a positive value, whereas the off steady state became unstable. In turn, when
the off state was determined to be stable, no meaningful on steady state was
predicted. For completeness, Theorem 5 provided sufficient stability results,
for the cases excluded in Theorem 4. As the conditions for stability and ex-
istence of both states only depended on kinetic parameters, we conclude that
such feedback loops convert any analogue changes of kinetic parameters into
digital, on/off switch in the resulting signalling.

We have obtained mathematical expressions that relate kinetic parameters
to activity and stability of the resulting pathway of the entire loop. Kinetic
parameters describe enzymatic activity, protein production and degradation
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[16]. Variations in protein production and degradation may be imposed by
variations of the cell’s transcriptional machinery and/or of its proteasomal
activity. Enzyme activities vary as a result of changes of pH and tempera-
ture [20]. Likewise, pharmacological interventions may target enzyme activity,
protein production and degradation. Our analytical results therefore provide
an easy means to study dose-responses in pharmacology or robustness of a
signalling programme against physiological changes.

We have analytically investigated how feedback loops with larger chain
lengths introduce a higher sensitivity in the responding signalling pathway.
We found that the activity of the feedback depends on expression levels and
activity of all nodes in a multiplicative manner. To illustrate the consequences
of this, potentially significant dependency on each node, we studied a three-
tier feedback loop of caspase-activation in apoptosis. Results of this example
demonstrated that a small modulation of the lowly expressed, intermediary
node caspase-6 can markedly influence activity of caspase-3. It is therefore
appealing to look at such feedback loops as ‘molecular transistors’. Similar to
electrical transistors, molecular transistors may amplify weak input signals.
Likewise, these molecular transistors may act as a robust switch that shut off
activity of the feedback when expression levels of one intermediary node fall
below a certain threshold, resulting in an non-existent on steady state.

The molecular transistors described above may be convenient in cases of
spatial signal transduction within large cells such as skeletal muscle cells or
neurones. Here, small gradients of an intermediary protein such as caspase-
6 within a cell can either amplify the entire signal or lead to robust switch
between activity and inactivity of the loop. This allows the cell to create a
location dependent response such as location-dependent caspase activation
without investing much effort in keeping up large gradients in protein expres-
sion and, therefore, investing in active transport processes. In this context it
is interesting to note that localised, but robust caspase-activation has been
identified in neurones [34,22]. Likewise, caspase-6 has also been shown to be
involved in neuronal apoptosis, while being dispensable for apoptosis in other
cells [26,13,29].

In conclusion, even though feedback loops with longer chain lengths may
be underrepresented in protein and transcriptional networks of prokaryotes [2]
their higher sensitivity as discussed within this paper makes them likely to be
beneficial for other cellular contexts. Even in prokaryotes, higher variability
is beneficial when changes in external cues need to be integrated and, indeed,
larger feedbacks are overrepresented in pathways for chemotaxis and biofilm
production [25]. In eukaryotic cells, signalling is more complex and has to
respond to a greater variety and to more subtle changes of environmental cues,
suggesting the need for higher degree of variability in and richer vocabularity
of the signalling response.
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9 Appendix

In this section, we present three proofs required in Section 6, to prove the local
stability of the off and on steady state.

9.1 Proof of Lemma 1

Proof From hi(s) in (54), we note that the roots of its characteristic polyno-
mial are all negative if

µi > 0. (72)

In the following, we show that µi is positive for both steady states and for all
i.

1. Off Steady State
Considering the definition of the off steady state in (35a) and the definition
of σi and µi, (72) becomes

µioff = ki3f > 0.

2. On Steady State
The on steady state is given by (35b), which is parametrised by ϑi+ defined
in (36). We note that (39b) allows us to express µion in (50) as

µion = ki1c̄
i+
2 + ki3f =

ki+2 ki3fd
(
ϑi+

)
− ki1n

(
ϑi+

)
ki+2 d (ϑi+)

. (73)

Furthermore, we claim

ki+2 ki3fd
(
ϑi+

)
= d

(
αi
)

d
(
ϑi
)

+ ki1n
(
ϑi+

)
. (74)

We provide a proof of this statement in Claim 1, below. Hence µi in (73)
becomes

µion =
d
(
αi
)

d
(
ϑi
)

ki+2 d (ϑi+)
> 0 ∀ i ∈ [1, p]. (75)

ut

Now, we present the proof of (74).

Claim 1 For all i ∈ [1, p]

ki+2 ki3fd
(
ϑi+

)
= d

(
αi
)

d
(
ϑi
)

+ ki1n
(
ϑi+

)
,

where αi has been defined in (41a).
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Proof The strategy of the proof is to rewrite d
(
ϑi+

)
in terms of d

(
ϑi
)
. From

(36), we have

n
(
αi
)

d
(
ϑi+

)
=n
(
αi
) i∏
j=1

d
(
αj
) p∑
`=i+1

k`1 `−1∏
j=i+1

n
(
αj
) p∏
j=`+1

d
(
αj
)

+ n
(
αi
) p∏
j=i+1

n
(
αj
) i∑
`=1

k`1 `−1∏
j=1

n
(
αj
) i∏
j=`+1

d
(
αj
)

=

i∏
j=1

d
(
αj
) p∑
`=i+1

k`1 `−1∏
j=i

n
(
αj
) p∏
j=`+1

d
(
αj
)

+

p∏
j=i

n
(
αj
) i∑
`=1

k`1 `−1∏
j=1

n
(
αj
) i∏
j=`+1

d
(
αj
)

=d
(
αi
)i−1∏

j=1

d
(
αj
) p∑
k=i

k`1 `−1∏
j=i

n
(
αj
) p∏
j=`+1

d
(
αj
)

+

p∏
j=i

n
(
αj
) i−1∑
`=1

k`1 `−1∏
j=1

n
(
αj
) i−1∏
j=`+1

d
(
αj
)

+ ki1

 p∏
j=1

n
(
αj
)
−

p∏
j=1

d
(
αj
)

=d
(
αi
)

d
(
ϑi
)

+ ki1n
(
ϑi+

)
.

ut

9.2 Proof of Corollary 1

Proof The closed-form expressions of det (Aoff) and det (Aon) in (63a) and
(63c), respectively, are derived in Lemma 4 in Section 9.3.

1. Off Steady State
The off steady state is given in (35a).
We note that when we evaluate the conditions (55b) at the off steady state
(35a), we obtain

ki2 > ki3f , ki3f ≥ ki3f , and
1(

ki3f

)2 <
1(
ki2
)2 +

1(
ki3f

)2 .

The later two expressions are always satisfied, given the parameters are
positive. Now, the former condition ki2 > ki3f combined with the condition

ki2 < ki3f in (55a), shows that we can guarantee the local stability of the off
steady state for all parameter values that satisfy (56). Substituting (35a)
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into (56) yields

γoff :=

p∏
i=1

ki1k
i
3b

ki2k
i
3f

< 1, (76)

or equivalently

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b > 0, (63a)

as stated in (63a).
2. On Steady State

The on steady state is given by (35b), which is parametrised by ϑi+ defined
in (36). Moreover, we recall that

µion =
d
(
αi
)

d
(
ϑi
)

ki+2 d (ϑi+)
. (75)

In addition, we note that, with the expressions (38a) and (39b), σi in (50)
may be rewritten as

σion = ki1c̄
i
1 =

ki+2 d
(
ϑi+

)
d (ϑi)

.

With the two former expressions, the stability condition (56) becomes

γon :=

p∏
i=1

γion =

p∏
i=1

ki+2

ki2

(
d
(
ϑi+

)
d (ϑi)

)2
ki+2 ki3f
ki1k

i
3b

< 1. (77)

Consequently, the small gain stability condition in (56) is

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f > 0, (63c)

where we have taken into account the modularity of the superindex i in
ki+2 .

ut

9.3 Closed Form of the Determinant of Aoff and Aon

In order to prove the closed-form expression of the determinant of (47) in
Theorem 4, we will exploit the following lemma that presents a formula for
the determinant of a block matrix.
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Lemma 2 Let a square matrix M be defined by blocks:

M =

(
M11 M12

M21 M22

)
,

Provided the existence of
(
M22

)−1
, the determinant of M is given by

det (M) = det
(
M22

)
det

(
M11 − 1

det (M22)
M12AdjT

(
M22

)
M21

)
,

where AdjT (X) denotes the transpose of the Adjugate or Adjoint matrix of X.

We will also avail of the following theorem, which shows how to compute the
determinant of a sum of matrices.

Lemma 3 (Matrix Determinant Lemma) Let A be a non-singular square
matrix and x, y be column vectors of the dimension of A, then

det
(
A + xyT

)
= det(A) + yTAdjT (A) x.

The proof of the previous lemmas can be found in [5], for example. Now, we
use these theorems to prove the forthcoming lemma.

Lemma 4 The determinant of (47) is given by

1. Off Steady State

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b

2. On Steady State

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki2k
i
3f

Proof The strategy of the proof follows a recursive application of the Lemma 2,
finalised by the application of Lemma 3 to obtain a closed-form expression for
the determinant. We note that applying p−1 times Lemma 2, the determinant
of (47) can be expressed as

det (A) =

p∏
i=2

det
(
Aii
)

det

(
A −

p∏
i=2

1

det (Aii)

[
p−1∏
i=1

−Ai,i+1AdjT
(
Ai+1,i+1

)]
Ap

)
.

(78)

Moreover, we note that

−Ap−pAdjT (App) Ap = −σp−
(

0 −1
0 1

)(
−kp2 0
kp1 c̄


2 −µp

)
σp
(

0 −1
0 1

)
= kp3fσ

p−σp
(

0 −1
0 1

)
.
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Where σi and µi have been defined in (50). Hence[
p−1∏
i=1

−Ai,i+1AdjT
(
Ai+1,i+1

)]
Ap = σ

[
p∏
i=2

ki3fσ
i

](
0 −1
0 1

)
.

Substituting the expression above into (78), yields

det (A) =

p∏
i=2

det
(
Aii
)

det

(
A + σ

p∏
i=2

1

det (Aii)

[
p∏
i=2

ki3fσ
i

](
0 −1
0 1

))
.

By Lemma 3 and Aii in (49a), the expression above becomes

det (A) =

p∏
i=2

det
(
Aii
) [

det (A)−
p∏
i=2

1

det (Aii)

p∏
i=1

ki3fσ
i

]
,

det (A) =

p∏
i=1

ki2µ
i −

p∏
i=1

ki3fσ
i. (79)

We further consider the definition of the steady states, to conclude the proof.

1. Off Steady State
By substituting the definition of this equilibrium point in (35a), into (79),
we obtain the expression

det (Aoff) =

p∏
i=1

ki2k
i
3f −

p∏
i=1

ki1k
i
3b,

as desired.
2. On Steady State

This equilibrium point is parametrised by ϑi+, defined in (36), via the
relationships (39a) and (39b). Firstly, we analyse the product of the main
blocks determinants in (79). By means of (39b) we can rewrite it as

det
(
Aii

on

)
= ki2

ki3fk
i+
2 d

(
ϑi+

)
− ki1n

(
ϑi+

)
ki+2 d (ϑi+)

det
(
Aii

on

)
= d

(
αi
) ki2d

(
ϑi
)

ki+2 d (ϑi+)
,

where we availed of the expression in (74). From the expression above, we
note

p∏
i=1

det
(
Aii

on

)
=

p∏
i=1

d
(
αi
) ki2d

(
ϑi
)

ki+2 d (ϑi+)

p∏
i=1

det
(
Aii

on

)
=

p∏
i=1

ki1k
i
3b. (80)
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Secondly, we note that, with the expressions (38a) and (39b), c̄i1 may be
rewritten as

c̄i1 =
ki+2 d

(
ϑi+

)
ki1d (ϑi)

.

Hence the later product in (79) becomes

p∏
i=1

ki3fk
i
1c̄

i =

p∏
i=1

ki3fk
i+
2 .

Subtraction of (80) and the relationship above, yields

det (Aon) =

p∏
i=1

ki1k
i
3b −

p∏
i=1

ki3fk
i
2,

when exploiting the modularity of the product with respect to p.

ut

Now, we provide the proof of Theorem 5, which determines the stability of
the on steady state under the conditions on the parameters described in (64).

9.4 Proof of Theorem 5

Proof Accounting for the conditions (64), the solution for Ω∗ in (59) is positive
and real, for the positive sign of the square root. Let us rewrite this solution
as

Ω∗ = −
(
ki3f
)2

+

√[(
ki3f

)2

−
(
ki2
)2] [(

ki3f

)2

− (µion)
2

]
=: −

(
ki3f
)2

+ φiηi,

(81)

where

φi =

√(
ki2
)2 − (ki3f)2

, (82a)

ηi =

√
(µion)

2 −
(
ki3f

)2

. (82b)
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Then, from (58), the gain of the system evaluated in the peak frequency
(81) is

γion = σi

√√√√√ φiηi[
−
(
ki3f

)2

+ φiηi + (µion)
2

] [
−
(
ki3f

)2

+ φiηi +
(
ki2
)2]

= σi

√
1

(φi)
2

+ 2φiηi + (ηi)
2

=
σi

φi + ηi

=
σi√(

ki2
)2 − (ki3f)2

+

√
(µion)

2 −
(
ki3f

)2
(83)

=
σiki3f
µionk

i
2

ki2
ki3f

µion√(
ki2
)2 − (ki3f)2

+

√
(µion)

2 −
(
ki3f

)2

γion =
ki+2 ki3f
ki1k

i
3b

ki+2

ki2

[
d
(
ϑi+

)
d (ϑi)

]2
1

ki3f
µi
on

√
1−

(
ki3f
ki2

)2

+
ki3f
ki2

√
1−

(
ki3f
µi
on

)2
.

In the derivation of the expression above, we exploited the definitions in (82)
and (50). Except for the last factor, the expression above resembles the gain
for the on steady state in (77), analysed in Theorem 4. Moreover, we have
just considered that for some i, the conditions in (64) are satisfied. Then the
stability condition form the Small Gain Theorem can be expressed as

p∏
i=1

ki+2 ki3f
ki1k

i
3b

(
θi
)−1

< 1

p∏
i=1

ki+2 ki3f
ki1k

i
3b

<

p∏
i=1

θi,

where the definition of θi is given in (66). Although exact, the condition above
might be an intricate function of the parameters. In the following, we pursue
a tractable bound of γion. To this end we note that (64c) implies

1−
(
ki3f
ki2

)2

>

(
ki3f
µion

)2

1−
(
ki3f
µion

)2

>

(
ki3f
ki2

)2
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Using these two last inequalities in (83), we obtain the bound

γion <
σi

ki2
ki3f
µi
on

+ µion

ki3f
ki2

=
ki2
ki3f

σiµion(
ki2
)2

+ (µion)
2

=
σiki3f
µionk

i
2

(
ki2
ki3f

)2 (
µion

)2(
ki2
)2

+ (µion)
2

=
ki+2 ki3f
ki1k

i
3b

ki+2

ki2

[
d
(
ϑi+

)
d (ϑi)

]2(
ki2
ki3f

)2 (
µion

)2(
ki2
)2

+ (µion)
2

<
ki+2 ki3f
ki1k

i
3b

ki+2

ki2

[
d
(
ϑi+

)
d (ϑi)

]2(
ki2
ki3f

)2

.

Here we used the definitions of µion and σi in (50). Again, the expression above
resembles the gain for the on steady state in (77), analysed in Theorem 4. Since
the conditions in (64) just hold for some i, the stability of the closed loop is
guaranteed if (67) holds. ut
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Fig. 1 Feedback loop of variable length as an abstraction of typical regulation patterns
in signal transduction. A Feedback cycles in intrinsic apoptosis. Proteolytic cleavage of the
BH3-only protein BID initiates a cycle of proteolytic events culminating in the activation of
caspase-3 which executes cell death by cleaving DNA and cytoskeleton. I Once activated,
caspase-3 further activates BID (Ia) and Caspase-9 (Ib), establishing a positive feedback
loop. II Positive feedback downstream of caspase-3 trough initiation of a caspase-3/6/8
cascade as studied in the text. III-IV While the anti-apoptotic protein XIAP may attenuate
caspase-3 (IIIa) and -9 (IIIb) activity and itself may be attenuated by the pro-apototic
proteins SMAC, this pathway is not present in cells with XIAP-deficiency [27]. B The
p-tier feedback loop as studied in the manuscript. Boxes indicate protein species. Active
and inactive protein forms, protein production and degradation are not explicitly specified.
Arrows indicate protein activation, whereas circles indicate signal summation. The steady
states and their stability dependent on chain length are investigated.
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Fig. 2 Unity feedback connection of a system H(s). Theorem 2 establishes conditions under
which the closed-loop system is stable, provided H(s) is stable.
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Fig. 3 Dynamical response of active caspase-3 (C3a) under variation of the synthesis of
caspase-6 (k3b). The rest of the parameters were taken from the supplemental material of
[35]. In panel A caspase-6 (C6) activates caspase-8 (C8), which further activates caspase-
3 (C3); to complete the loop, caspase-3 activates caspase-6. The detailed mechanism of
activation for all panels is described in (31). The sequence of activation (superindex i in (31))
is represented by the number adjacent to each box. Panel B shows the equilibrium points for
active caspase-3 as a function of the synthesis rate of caspase-6

(
k3b
)

as presented in (69).
The solid line represent locally stable equilibrium points, whereas the dashed line depicts
unstable equilibrium points. In turn, panel C shows the logarithmic sensitivity of C3a with
respect to log

(
k3b
)
, as expressed in (71). Finally, the lower panels D show concentration

over time of C3a in response to a sudden variation of k3b. The dashed line depicts the
concentration of C3a as a function of time, whereas the solid line shows the equilibrium
point as a function of k3b. Despite the absolute variation of the parameter k3b was lower in
D.1 than in D.2, the effect of this variation was much higher in the corresponding activation
of caspase-3. (Please, note the different scales in the left and right vertical axes between D.1
and D.2). As consequence, in certain ranges, a small variation of k3b yields a severe effect
on the location of the equilibrium point of C3a, similar to a ‘molecular transistor’. Hence,
a fine tuning of the synthesis of inactive caspase-6 is crucial for pronounced activation of
caspase-3.


